
957

Multiphase FlowsA pore-scale approach of two-phase flow in granular porous media

IV International Conference on Particle-based Methods – Fundamentals and Applications
PARTICLES 2015
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Abstract. A pore-scale model is presented for simulating two-phase flow in granular
materials. The solid phase is idealized as dense random packings of polydisperse spheres,
generated with the discrete element method (DEM). The pore space is conceptualized as
a network of pores connected by throats, which is obtained by using regular triangulation.
Theoretical formulas for calculating geometrical properties and entry capillary pressure
for given pores are developed by extending the Mayer and Stowe-Princen (MS-P) theory
of drainage. Such relationships are employed in the network for defining as local invasion
criteria, so that the drainage can be represented by the replacement of W-phase when the
threshold value is reached. The events of W-phase entrapment are considered during the
coupling procedures. This pore-scale model is verified by comparing simulation results
with experimental data of quasi-static drainage experiments in a synthetic porous medium.
The simulated P c − Sw curve in primary drainage is in agreement with the experimental
one.

1 INTRODUCTION

Understanding transport properties of multiphase flow in porous media is of great
importance for many areas of engineering and science, such as oil recovery, agriculture
irrigation and environmental restoration. Although most of these problems describe such
flow process at the macro-scale, pore-scale modeling provides an important means to
improve our understanding of the insight physical processes. In order to simulate large
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domains, one often represent the porous medium by a pore-network, in which the void
space of the medium is represented by a lattice of wide pores connected by narrow throats.
By using appropriate physical laws that govern the transport and arrangement of fluids
in system, network can then be made to replicate experimental measurements at the
microscopic scale. The use of network modeling was pioneered by Fatt in the 1950s[9], who
derived capillary pressure curves of primary drainage and computed pore size distributions
in a network of interconnected pores. Since then, numerous researchers have contributed
to our present understanding of multiphase flow in pore-scale with network[16, 19, 2, 14,
17, 11].

The method considered in this study is similarly devoted to the pore-scale modeling
of the transport process of multiphase flow, but important differences are also noticeable
in the geometrical idealization of the pore space and network modeling. These difference
are mainly due to the spherical geometry of the solid particles and to the pore space
decomposition technique. This study represents a first step in the direction of developing a
fully coupled, computationally efficient model combining two-phase flow and deformation
in porous media. In particular, we will focus our effort on the faithful approximation
of the capillary pressures applied by the fluid-fluid interface on solid grains and of the
arrangements of phases displacements, with the aim of incorporate these pressures and
arrangements in the discrete element method (DEM) computation[7].

2 PORE-SCALE NETWORK

We propose a pore-scale network model for simulating two-phase flow in granular ma-
terials. The solid phase is idealized as dense random packings of polydisperse spheres,
generated with the discrete element method (DEM)[22]. The decomposition of the pore
space is obtained in three dimensions by a using Regular Triangulation method, in which
the void of porous media is conceptualized as a network of pores connected by throats.
A similar network was introduced recently for the so called the Pore-scale Finite Volume
scheme (PFV) for one-phase flow. It is able to reflect in a natural way the deformation of
the porous material system. Here it will be discussed briefly; a more detailed description
can be found in [5] and [3].

Regular Triangulation (or referred as weighted Delaunay triangulation) generalizes clas-
sical Delaunay triangulation to weighted points, where weights account for the size of the
spheres[8]. The dual Voronoi graph of regular triangulation is entirely contained in voids
between solid spheres. Such network scheme can ideally be assigned to solve the flow path
problem within the porous sample. A typical network of Regular Triangulation is shown
in Fig.1. Based on this decomposition, a “pore” in 3D is bounded by four solid spheres
with respective radius R{r1, r2, r3, r4}, which are arranged forming a simple tetrahedron
packing order. Pore body volume is defined to be the irregular cavity within the tetrahe-
dron(see Fig.2a). The shape of pore throat is considered to be the cross section extending
within tetrahedral facets, thus the volume of throat is assumed to be 0. Specifically, the
geometry of entry pore throat is a critical cross-sectional area quantified by the multiphase
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Figure 1: Definition of pore network for packing of spheres, generated by regular triangulation in 3D(a)
and 2D(b).

contact lines(shown in Fig.2b).
Since each pore is a tetrahedron, it has four neighbors, resulting in a lattice of connec-

tivity four. Although the similar network can be found in other models [15, 10], those
decomposition techniques are limited by solid particle size, in which the triangulation can
only be assigned in packing of equal spheres. In this model, the network definition applies
polydisperse sphere packings. The only restriction on this geometrical description is that
the center of one sphere should not lie inside another sphere. As such, contact or even
moderate overlaps between adjacent spheres are allowed.

3 DRAINAGE MODEL

3.1 Local rules

The phenomena of multiphase flow in porous media can be divided into quasi-static
regime and dynamic ones. For two-phase flow, or referred as drainage and imbibition, in
the absence of gravity, the conventional immiscible displacement can be described by two
dimensionless numbers, the viscosity ratio M and the capillary number Ca,

M =
µinv

µ
,Ca =

µv

σ
(1)

where µinv is the viscosity of invading phase, µ is the viscosity of receding phase, v is the
receding phase average or macroscopic velocity and σ is the interfacial tension between
two fluid phases([13, 12]). The limit of “quasi-static” flow is defined by Ca closed to 0.

The model we propose is aiming to simulate the primary drainage phenomenon of
air-water system, or typically, more generally nonwetting-wetting (NW-W) systems. We
hypothesize the drainage process is in a quasi-static regime, in which dynamic effects is in
absent and the flow is dominated by capillary forces. Thus, we can neglect the effects of
phases viscosity during the process. The porous within a fluid phase is uniform in every
connected domain.
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Figure 2: Pore geometry. (a)A pore defined by tetrahedral element of the finite volume decomposition.
(b)Definition of pore throat geometry. rc is the curvature of meniscus; Lnw is the length of contact line
between nonwetting and wetting phases; Lns is the length of contact line between nonwetting and solid
phases.

The drainage process is controlled by the capillary pressure P c, i.e., the pressure dif-
ference between NW-phase and W-phase. The invasion of one pore is controlled by the
associated pore throats. Because the entry capillary pressure of pore body is smaller than
that of pore throat, after the invasion of throat, the body is filled by NW-phase spon-
taneously. In principle, the receding W-phase can be present in the involved domain in
the form of disconnected pendular rings left behind. The relationship between the capil-
lary pressure and volume of liquid bridge can be found in our previous research[20, 21].
However, in this model, we assume this volume is negligible. So there is no saturation
associated with corner W-phase. Thus the state of a local pore unit is in binary condition,
i.e., the pore is either filled with W-phase or with NW-phase.

A relationship between capillary pressure P c, interfacial tension, σ, and curvature of
the NW-W interface, C, is given by the Young-Laplace equation,

P c = σC (2)

The curvature C is fixed by the boundary conditions of NW-phase, W-phase and solid
particle surface. However, in a complex pore geometry, the curvature is difficult to define.
So a more clearly knowledge of connection among P c, C and pore geometry is required.

3.2 Determination of entry capillary pressure

The drainage process is assumed in quasi-static regime, so P c is applied into porous
media to result in from one equilibrium state to another. The NW-phase invasion is
locally controlled by entry capillary pressure P c

e of pore throat. The determination of P c
e
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is based on MS-P (Mayer-Stowe-Princen) method, which follows the balance of forces for
NW-W interface of pore throat [16, 18].

∑

F = F p + T σ = 0 (3)

where, F p is the capillary force acting on pore throat section domain; T σ is the total
tension force along multi-phase contact lines. The same strategy for solving P c

e can also
be found in [14] and [11]. For completeness, we recall the generic aspect of the MS-P
method hereafter.

As described in the previous section, the geometry of pore throat has a mixed cross-
sectional shape extending in the facet of tetrahedral pore. Fig.2b shows the schematic
cross section of a local pore throat formed by solid phase surface and NW-W interface. In
local drainage of pore unit, when NW-phase invades pore body, W-phase will remain in
the corners of throats along the fictious tube. The longitudinal curvature of the resulting
interface inside the tube is zero[11]. The critical curvature of three menisci extending
within throat section, i.e., the curvature of contact lines between NW-phase and W-
phase, are equal. Let that radius be denoted by entry capillary radius rc. Then, following
Young-Laplace equation, P c

e can be written:

P c
e = P n − Pw =

σnw

rc
(4)

in which, P n and Pw are pressure of NW-phase and W-phase; σnw is NW-W interface
tension.

According to the geometry of pore throat we defined in Fig.2b, the forces acting on
interface can be written:

F p = P c
eAn (5)

T σ = Lnwσ
nw + Lnsσ

ns − Lnsσ
ws (6)

where, An is the area of pore throat section; Lnw and Lns are total length of NW-W contact
lines and NW-Solid contact lines, respectively. The multiphase interfacial tensions, σns,
σws and σnw have a relationship with contact angle θ, defined by Young’s equation,

σns − σws = σnw cos θ (7)

Then Eq.6 will be read,

T σ = (Lnw + Lns cos θ)σ
nw (8)

In a local pore geometry, Eq.5 and Eq.8 can be expressed by the functions of rc (see
Appendix), so the equilibrium state in Eq.3 can be implicitly described by rc:

∑

F (rc) = F p(rc) + T σ(rc) = 0 (9)

Function of
∑

F (rc) is monotonic; the value boundary of rc can be obtained by following
the geometry of pore throat. Therefore, rc can be solved by numerical technique. Finally,
P c
e can be determined by Eq.4.
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Figure 3: Demonstration of NW-phase invasion and W-phase trapping in network (in 2D mapping for
clarify).

3.3 Drainage and entrapment of W-phase

Each tetrahedral pore has four neighboring pores, thus the coordination number in
3-D is four. In order to explain the invasion logic of our model, herein we project the
system of 3-D network to a 2-D lattice mapping (see Fig.3). Pore bodies and throats are
represented by squares and line bondings respectively. Different flags are assigned to the
pores for tracking the flow path, which can dynamically record the pore states and the
connectivity of different regions with the reservoirs. A search algorithm is employed for
updating those states during invasion.

Initially, the porous media is saturated, and the top and bottom boundaries are con-
nected to NW and W reservoirs, respectively. Drainage starts by increasing the capillary
pressure P c, in which we increase the local pressure of NW reservoir P n and keep local
pressure of W reservoir Pw constant. A search is executed on the pore throats which
are connecting with NW reservoir, to locate the easiest entrance for invasion. The first
displacement of an interface, also referred to as Haines jump, happens when local P c

surpasses the minimum threshold, e.g. the local entry capillary pressure P c
e (i) of pore

unit i. After pore i being drained, a recursion algorithm check whether the interface may
progress further to next adjacent pores. Such NW-phase percolation will be performed
until no more pores can be drained. Then a new equilibrium is achieved, and the state
flags are updated for next step of drainage. So the Haines jump events maybe not only
displace the W-phase pore-by-pore, but could also involve pore clusters. Such discontinu-
ous changes of the W-phase content can also be verified by experimental tests[6]. As the
NW-phase is invading, the W-phase may form clusters of pores which are disconnected
from the W reservoir. It is assumed that disconnected regions remain saturated by a fixed
amount of the W-phase throughout subsequence increase of P c. In order to identify this
entrapment events, a dynamic search rule is employed during each step of drainage by
assigning a Trapped Pore flag(as seen in Fig.3).
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3.4 Implementation

The network has been implemented in C++[5]. The C++ library CGAL [1] is used
for the regular triangulation procedure. Geometry for determination of entry capillary
pressure and local drainage rules are also implemented in this model with C++. This
pore-scale network is freely available in the open-source software Yade [22].

The CGAL library insures exact predicates and constructions of network. The only
nontrivial operation is the computation of entry phase curvature needed to define the
NW-W phase contact lines and pore throat areas to determine acting forces in Eq.9.

4 COMPARISON WITH EXPERIMENT

4.1 Numerical setup

In this section, we verify the pore-network model by comparing the simulation re-
sults with experimental data of quasi-static drainage experiment in a synthetic porous
medium[6]. The medium consisted of packed glass beads, with three size classes, 0.6, 0.85
and 1.0-1.4 mm in diameter. The glass beads are contained in a column of 70 mm in
length and 7 mm in diameter, with a porosity of 0.34. Drainage is carried out by pump-
ing water out of the porous medium with a certain flow rate to maintain the system to
equilibrate. A 5 mm section of the column is imaged by using X-ray micro-tomography
to obtain capillary pressure-saturation (P c − Sw) relationship.

In the simulation, it is unachievable to assign the pore-network (Regular Triangulation)
in geometry of circular column, so we compromise by implementing model in cuboid
packings. Following the experimental scene, the simulation packing is connected to the
NW reservoir on the top, and to the W reservoir at the bottom.

In the research, we couldn’t manage to achieve the original positioning data of glass
beads in benchmark experiment[6]. But the porous medium with target PSD and poros-
ity can be emulated by using our DEM software by the growth of spheres after randomly
positioning, using the radius expansion-friction decrease (REFD) growth algorithm, a
dynamic compaction method which lets one control the porosity of dense random pack-
ings [4]. So we compromise to simulate a series of repeated test on different randomly
positioning packings with the consistent PSD and porosity of the experiment. In order
to compare conveniently with all simulation cases, the simulation results and experiment
data are both normalized to be dimensionless quantities. We represent the capillary pres-
sure P c by,

P ∗ =
P cD̄

σnw
(10)

in which,D̄ =0.8675 mm is the average size for PSD, σnw = 7.28 × 10−2N/m is the W-
phase (water) surface tension in contact with NW-phase (air) in 20oC. We also assume
the material of solid particles is perfectly wetting, thus the contact angle θ in simulation
is 0.
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Figure 4: Comparison between simulation and experiment for primary drainage P c − Sw curves. The
No. of observations of simulation is 100.

4.2 Comparison results and discussion

Using the technique described above, we compute the primary drainage process of 100
random dense packings with the same PSD and porosity. Fig.4 presents the results of
these simulations, in which we gather all scattered (Sw, P ∗) points of each simulation in
one image. As shown in Fig.4, although all packings share the same macro-mechanics
parameters, the P c − Sw curves still have a distinct variety because of micro setup, i.e.,
sphere positioning. Especially, the residual saturation has a great difference. We compare
the average results from 100 repeating simulations with the experimental data. It shows
satisfactory agreement between predicated capillary curve and obtained experimentally by
Culligan et al.[6]. The unremarkable difference is mainly caused by the different specimen
shapes, i.e., the simulation using cuboid column packing and experiment using circular
column one. A more detailed discussion can be found in [23].

We capture one test from the series of simulation and cut a slice to observe the char-
acteristics of invasion as shown in Fig.5. By increasing P c, the invasion starts from the
pores with larger throat, in which the entry capillary pressure is smaller (see slice-a).
By comparing slices-b and c, we can find out that at certain circumstances even a slight
changing in P c can cause a notable NW-W interface movement. So such event, i.e., Haines
jump, can involve a cluster of pores, causing a obvious discontinuous decrease of W-phase
content. In slice-d showing the finish of test, even under a large P c, there is no changing
in saturation, which means such W-phase is entrapped by NW-phase.

5 CONCLUSIONS

A pore-scale network model of quasi-static two-phase flow in dense sphere packings
has been proposed. The model can satisfactorily replicate the phenomenon of primary
drainage in synthetic porous medium. The pore space is efficiently represented by means of
a Regular Triangulation and the entry pore throat geometry is mathematically determined
by the equilibrium of the pore system. The key methods of this model are the calculation
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Figure 5: The process of drainage, NW-phase invade from top. Brown (gray) is solid phase, blue (black)
is W-phase, and light cyan (white) is NW-phase, see color version of this figure in the HTML.

of the entry capillary pressure applied by the fluids and the prediction of the displacements
of phases. Expressions of the local capillary force and tension force induced on the NW-W
interface of pore throat have been derived, which are based on Young-Laplace equation
and local pore geometry. The definition of entry capillary pressure is based on MS-P
(Mayer-Stowe-Princen) method, which follows the balance of forces for NW-W interface
in quasi-static regime. The drainage process is represented by the invasion of NW-phase
when the threshold value is reached.

The key feature of the model is its capability to entrap the receding W-phase, indicating
the residual saturation. A dynamic search algorithm is applied to identify whether local
disconnection causes large clusters of wetting pores to get disconnected with wetting
phase reservoir. For validation purpose, the model has been used for simulating primary
drainage experiments carried out in a glass bead packing. The simulated curve is in
agreement with experiment one, which means the capability of the pore-scale network
model for simulating a real porous medium can be verified.

6 Appendix: Calculation of capillary force and tension force for a pore throat

In this appendix, we will explicitly solve the capillary force F p and tension force T σ

acting on pore throat by using pore throat radius.
In a given pore throat (see Fig.2b), the radii and positions of neighboring solid particles

are known. Let’s denote a possible pore throat radius by rc and suppose the porous media
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being in perfectly wetting condition, i.e., contact angle θ = 0. The contact line between
NW and W phases would be tangent with solid surface.

In triangulation domain ∆ABC, the area may be written as follows:

A∆ABC =
1

2
bc sinα (11)

Using laws of cosines, we can write the following equations to solve α, β and γ in ∆ABC,

a2 = b2 + c2 − 2bc cosα (12)

b2 = a2 + c2 − 2ac cos β (13)

c2 = a2 + b2 − 2ab cos γ (14)

Likewise, the areas and ϕij in ∆AO3B, ∆BO1C and ∆AO2C can be obtained.
To solve F p, the total area of liquid bridge Alb within pore throat section can be

calculated:

Alb = (A∆AO3B − 0.5R2
1ϕ31 − 0.5R2

2ϕ32 − 0.5r2cϕ33) (15)

+(A∆BO1C − 0.5R2
2ϕ12 − 0.5R2

3ϕ13 − 0.5r2cϕ11)

+(A∆AO2C − 0.5R2
1ϕ21 − 0.5R2

3ϕ23 − 0.5r2cϕ22)

The area of pore throat An may be written as:

An = A∆ABC − Alb − 0.5R2
1α− 0.5R2

2β − 0.5R2
3γ (16)

Combining Eq.4, 5 and 16, the explicit expression of F p would be obtained.
Because of the perfectly wetting assumption, T σ acting on multi-phase contact lines in

Eq.8 can be simplified by,

T σ(rc) = (Lnw + Lns)σ
nw (17)

The contact lines Lnw and Lns can be obtained as follows:

Lnw = rcϕ11 + rcϕ22 + rcϕ33 (18)

Lns = R1(α− ϕ21 − ϕ31) +R2(β − ϕ32 − ϕ12) +R3(γ − ϕ13 − ϕ23) (19)

Combining Eq.17, 18 and 19, the explicit expression of T σ would be calculated.

10



967

C. Yuan, B. Chareyre and F. Darve

REFERENCES

[1] J. Boissonnat, O. Devillers, S. Pion, M. Teillaud, and M. Yvinec. Triangulations in
cgal. Computational Geometry: Theory and Applications, 22:5–19, 2002.

[2] S. Bryant and M. Blunt. Prediction of relative permeability in simple porous media.
Phys. Rev. A, 46:2004–2011, Aug 1992.

[3] E. Catalano. A pore-scale coupled hydromechanical model for biphasic granular media.
PhD thesis, Grenoble INP, 2012.
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