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Abstract

We present a general mechanism to establish the existence of diffusing orbits in
a large class of nearly integrable Hamiltonian systems. Our approach is based
on following the “outer dynamics” along homoclinic orbits to a normally hyper-
bolic invariant manifold. The information on the outer dynamics is encoded by a
geometrically defined “scattering map.” We show that for every finite sequence
of successive iterations of the scattering map, there exists a true orbit that follows
that sequence, provided that the inner dynamics is recurrent. We apply this result
to prove the existence of diffusing orbits that cross large gaps in a priori unstable
models of arbitrary degrees of freedom, when the unperturbed Hamiltonian is
not necessarily convex and the induced inner dynamics is not necessarily a twist
map, and the perturbation satisfies explicit conditions that are satisfied generi-
cally.

We also mention several other applications where this mechanism is easy to
verify (analytically or numerically), such as the planar elliptic restricted three-
body problem and the spatial circular restricted three-body problem.

Our method differs, in several crucial aspects, from earlier works. Unlike the
well-known “two-dynamics” approach, the method we present here relies on the
outer dynamics alone. There are virtually no assumptions on the inner dynamics,
such as on existence of its invariant objects (e.g., primary and secondary tori,
lower-dimensional hyperbolic tori, and their stable/unstable manifolds, Aubry-
Mather sets), which are not used at all. © 2019 Wiley Periodicals, Inc.

1 Introduction
1.1 Brief Description of the Main Results

Understanding the long-term behavior of nearly integrable Hamiltonian systems
was viewed by Poincaré as the fundamental problem of dynamics. A major para-
digm that emerged from this problem is the Arnold diffusion problem [1], asserting
that “generic” integrable systems subjected to arbitrarily small, “generic” pertur-
bations, have orbits that travel a distance that is independent of the size of the
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perturbation, henceforth referred to as diffusing orbits. In this sense, such orbits
exhibit global instability, and their behavior is not captured by classical perturba-
tion theory. In Section 1.2 we provide a brief overview of the work on this problem.

Finding explicit mechanisms of diffusion that can be verified in concrete models
is of interest in applications, since it gives insights into how to produce large effects
by applying small forces.

In this paper we develop a general but simple method to show the existence of
diffusing orbits in nearly integrable Hamiltonian systems in any dimension. The
main requirement for the system is to have a normally hyperbolic invariant mani-
fold whose stable and unstable manifolds intersect transversally along a transverse
homoclinic manifold. In this setting, one can geometrically define a map on the
normally hyperbolic invariant manifold, referred to as the scattering map [32, 36],
which accounts for the “outer” dynamics along homoclinic orbits. The scattering
map assigns to the foot-point of an unstable fiber the foot-point of a stable fiber,
provided the two fibers meet at a unique point in the homoclinic manifold. On the
“inner dynamics,” defined by the restriction to the normally hyperbolic invariant
manifold, we only require that it satisfies Poincaré recurrence.

The main results of this paper can be summarized as follows:
(i) For every infinite pseudo-orbit1 generated by alternatively applying the

scattering map and the inner dynamics for sufficiently many times, there
exists a true orbit that shadows that pseudo-orbit. The statement is given in
Lemma 3.1.

(ii) For every finite pseudo-orbit obtained by successively applying the scatter-
ing map, under the assumption that the inner dynamics satisfies Poincaré
recurrence, there exists a true orbit that shadows it (its intermediate points
follow the pseudo-orbit). The statement is given in Theorem 3.6.

More precisely, every finite pseudo-orbit of the scattering map can be
interspersed with arbitrarily long orbit segments of the inner dynamics, so
that the previous shadowing lemma can be applied to obtain true orbits.

(iii) For a class of perturbed systems that satisfy some verifiable conditions,
there exist pseudo-orbits of the scattering map that travel a distance of order
O.1/ in the action variable; hence, by the previous shadowing result, there
exist true orbits that follow them. The specific class of systems is described
in Section 2.2, and the statement is given in Theorem 3.11.

(iv) For a class of a priori unstable, nearly integrable Hamiltonian systems,
as described in Section 4, the conditions that yield diffusing orbits occur
generically.

More precisely, there exists a vector field on the normally hyperbolic invariant
manifold whose integral curves are followed closely by pseudo-orbits of the scat-
tering map. If this vector field is nontrivial at some point, we then show that the

1 In this paper we use the term pseudo-orbit in the sense of an orbit of an iterated function system
or poly-system; see [74].
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corresponding integral curve travels a distance of order 1, and there is a pseudo-
orbit of the scattering map that goes along that curve.

The above results remain valid if one considers several transverse homoclinic
manifolds rather than a single one, and hence several scattering maps. They also
remain valid if one considers a sequence of manifolds (which may be of differ-
ent topologies) chained via different heteroclinic connections, which can also be
described via scattering maps.

For the purpose of establishing the existence of diffusing orbits, the assumption
that the inner dynamics satisfies Poincaré recurrence on some bounded domain can
be eliminated for Hamiltonian systems. If there is no such domain, then there exist
diffusing orbits determined just by the inner dynamics.

As a concrete application of this method we obtain a qualitative result on the
existence of diffusing orbits in a priori unstable Hamiltonian systems (see [24]) of
any dimension, under verifiable conditions on the perturbation that are generically
satisfied, and under some mild conditions on the unperturbed system.

In particular, the unperturbed Hamiltonian does not need to be convex, and it
does not need to induce a twist map for the inner dynamics. The main requirement
on the Hamiltonian system is that we can compute perturbatively the scattering
map.

The salient features of the mechanism outlined above are the following:

(1) We do not require any information on the inner dynamics. In particular, we
can obtain diffusing orbits whose action variable crosses resonant surfaces
of any multiplicity.

This is a significant departure from previous approaches that rely on a
detailed analysis of the invariant objects for the inner dynamics: primary
KAM tori, secondary tori, lower-dimensional hyperbolic tori and their sta-
ble and unstable manifolds, Aubry-Mather sets, etc. In fact, we do not need
the inner dynamics to satisfy a twist condition, which is a key assumption
in previous geometric and variational approaches. In particular, the present
mechanism does not present the large gap problem.

(2) The normally hyperbolic invariant manifold as well as its stable and unsta-
ble manifolds can be of arbitrary dimensions.

(3) We can take advantage of the existence of several scattering maps.
(4) Our method can be applied to concrete systems—e.g., the planar elliptic

restricted three-body problem, and the spatial circular restricted three-body
problem—and, further, can be implemented in computer-assisted proofs.
See the related papers [19, 40, 44].

(5) Although the main application in this paper is on diffusion in a priori un-
stable systems, we expect that this method can be useful when applied to
a priori stable systems, as well as to infinite-dimensional systems, once the
existence of suitable normally hyperbolic invariant manifolds (called nor-
mally hyperbolic cylinders in [6,68,69,75]) and their homoclinic channels
is established. See Remark 3.16.



4 M. GIDEA, R. DE LA LLAVE, AND T. SEARA

1.2 Related Works
We compare our method here with some previous approaches to the diffusion

problem for different types of Hamiltonian systems.
It is customary to distinguish between geometric methods and variational meth-

ods. The method in this paper is geometric, so we first compare it with some related
approaches.

For nearly integrable Hamiltonian systems of two-and-a-half degrees of free-
dom, the existence of diffusion has been established via geometric methods in
[32, 34] by using the existence of KAM tori, primary and secondary, along the
normally hyperbolic invariant manifold. The perturbation in [34] is assumed to be
a trigonometric polynomial in the angle variable, but [42] eliminates this assump-
tion. The integrable Hamiltonian is not assumed to be convex, which seems to be
the standard assumption in many variational approaches. A similar type of results
has been obtained in [53, 54] with the use of the method of correctly aligned win-
dows. This allows us to simplify the proofs and to obtain explicit estimates on the
diffusion speed.

The case of higher-dimensional Hamiltonian systems poses a difficulty that is
not present in the case of two-and-a-half degrees of freedom: there are points in
the normally hyperbolic invariant manifold where the resonances have higher mul-
tiplicity. The technique involved in [32, 34] uses heavily that in the neighborhood
of resonances of multiplicity 1 one can introduce a normal form that is integrable
and can be analyzed with great accuracy to obtain secondary tori. Unfortunately, it
is well-known that multiple resonances, that is, resonances of multiplicity greater
than or equal to 2, lead to normal forms that are not integrable and require other
techniques to be analyzed (see [63, 64]).

In [37] the authors adapted the methods used in two-and-a-half degrees of free-
dom to show instability in higher dimensions. Their approach relies on the basic
fact that multiple resonances happen in subsets of codimension greater than 1 in
the space of actions and therefore the diffusing trajectories can contour them.

A key idea of our paper is that our mechanism relies mostly on following the
outer dynamics, and it does not need any detailed information on the inner dy-
namics, such as invariant tori and resonance webs, as we only need that the inner
dynamics be recurrent. This is automatically satisfied in the Hamiltonian case.
Some other works in Hamiltonian dynamics in which recurrence property plays an
important role include [56, 57, 79].

A work closely related to ours is [52], in which the authors obtain a shadowing
lemma for finite pseudo-orbits and use it to show the existence of diffusing orbits in
a priori chaotic systems. Their shadowing lemma also does not use information on
the inner dynamics and relies on Poincaré recurrence. We note that their shadowing
lemma can alternatively be used to show the existence of true orbits that follow the
diffusing pseudo-orbits obtained in the proof of Theorem 3.11. There is a notable
difference: our shadowing lemma, Lemma 3.1, works for infinite pseudo-orbits,
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and can be used to show the existence of symbolic dynamics as well as of orbits
that escape to infinity.

Now we mention some other types of approaches to the diffusion problem.
Geometric methods based on normally hyperbolic invariant manifolds that use

the separatrix map rather than the scattering map appear in [15, 81, 82, 89–92].
Other geometric methods have been applied in [16,28,33,38,51,67,75,95]. These
geometric methods also work for systems with magnetic fields [73] and for dissi-
pative systems [61].

Several authors have used variational methods (either local variational methods
or global variational methods) alone or in combination with geometric methods, to
obtain results on diffusion. This is the case, for example, in [5–12, 20–23, 68–70,
77, 78]. We mention the paper [88], which suggests several other mechanisms that
should be at play. It seems to be a very challenging problem to make rigorous the
heuristic discussions on statistical and quantitative properties of different instability
mechanisms in the heuristic literature [25, 71, 88].

We also acknowledge that many of the methods and ideas that appear in the
works on the Arnold diffusion problem are owed to John Mather, whose influence
to the field cannot be overstated [76–78].

1.3 Structure of the Paper
In Section 2 we review some background on normally hyperbolic invariant man-

ifolds, the scattering map, and recurrent dynamics. In Section 3 we provide two
general results on the existence of diffusing orbits, Theorem 3.6 and Theorem 3.11,
as well as some corollaries. We also provide a general shadowing lemma, Lemma
3.1, that is used in proving these results. An application to establish the existence
of diffusing orbits in a class of nearly integrable a priori unstable Hamiltonian sys-
tems that are multi-dimensional both in the center and in the hyperbolic directions
is given in Section 4. A novelty is that the unperturbed system corresponds to a
Hamiltonian that is not necessarily convex, and that the inner dynamics does not
need to satisfy a twist condition. Section 5 contains the proofs of the results stated
in Section 3. In particular, for the shadowing result given by Lemma 3.1 we give
two proofs, one based on correctly aligned windows and the other on the obstruc-
tion argument; while the first one is more constructive, the second one is simpler.
The appendices contain definitions and tools that are utilized in the paper; they are
included for the convenience of the reader. We also present in Appendix D an ex-
ample communicated to us by D. Turaev showing that a uniform version of Lemma
3.1 is not possible.

2 Background
In this section, we cover some standard material that will be used in the state-

ment of the results. All the material will be well-known to experts.
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2.1 Normally Hyperbolic Invariant Manifolds and Scattering Maps
Consider a discrete-time dynamical system given by the action of a C r -smooth

map f on a C r -smooth manifold M of dimension m, where r � 1.
Assume that � is a normally hyperbolic invariant manifold (NHIM) in M , of

dimension nc : this means that the tangent bundle of M restricted to � splits as a
Whitney sum of subbundles TMj� D T��Eu�Es that are invariant under Df ,
and that .Df /jEu expands more than .Df /jT�, while .Df /jEs contracts more
than .Df /jT�. We also assume that � is compact or that f is uniformly C r

in a neighborhood of �. The rather standard definition of the NHIM is given in
Appendix A.

In the sequel we assume that the stable and unstable bundles associated to the
normally hyperbolic structure have dimensions nu; ns > 0, respectively, where
ncCnuCns D m. (In many applications concerning diffusion in nearly integrable
Hamiltonian systems, we have nu D ns D n and nc D even number, hence m D

even number.)

Remark 2.1. In the general theory of normally hyperbolic manifolds one does not
have the above restriction on dimensions, but for symplectic systems, this is natu-
ral. We also note that in the symplectic case, it is natural to assume that the stable
and unstable rates [49] and that the forward rates in the tangent direction are the
same. In such a case, one has automatically that the invariant manifold is symplec-
tic. See [36].

The normal hyperbolicity of � implies that there exist stable and unstable in-
variant manifolds, W s.�/ and W u.�/, of �. The exponential contraction and
expansion rates of Df along the stable and unstable bundles, and on T�, deter-
mine an integer ` with 0 < ` � r such that �, W s.�/, and W u.�/ are C `-smooth
manifolds. The stable and unstable manifolds W s.�/ and W u.�/ are foliated by
stable and unstable fibers W s.x/ and W u.x/, respectively, with x 2 �, which are
C r -smooth one-dimensional manifolds. The corresponding foliations are, how-
ever, only C `�1-smooth. See Appendix A.

From now on we assume that r and the normally hyperbolic structure are so that
` � 2.

Let � � W s.�/ \W u.�/ be a C `�1-smooth homoclinic manifold. Consider
the wave maps

��W � � W u.�/! ��.�/ � �; ��.x/ D x�;

�CW � � W s.�/! �C.�/ � �; �C.x/ D xC;

where x� is the unique point in � such that x 2 W u.x�/ and xC is the unique
point in � such that x 2 W s.xC/.

Under certain restrictions on � , which amount to the strong transversality condi-
tion (A.7) and choosing � sufficiently small (see Appendix A) , the wave maps ��

are C `�1-diffeomorphisms from � to their images. Such a homoclinic manifold �
is referred to as a homoclinic channel.
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Assuming that � is a homoclinic channel, one can define a C `�1 diffeomor-
phism

� W ��.�/! �C.�/ given by � D �C � .��/�1;

where ��.�/ and �C.�/ are open sets in �. That is, �.x�/ D xC for every
x� 2 ��.�/ defined as above. The mapping � is referred to as the scattering
map associated to the homoclinic channel � . For details on this setup and general
properties of the scattering map, see Appendix A.

We shall note that there is no actual orbit of the system that goes from x� to
�.x�/ D xC. Rather, the geometric object that corresponds to �.x�/ D xC is
the heteroclinic orbit ff n.x/gn2Z of x, which approaches asymptotically f n.x�/

backwards in time as n ! �1 and f n.xC/ forward in time as n ! C1. We
remark that, if we denote by �� the scattering map associated to the homoclinic
channel � , then for each k 2 Z, f k.�/ is also a homoclinic channel, and the
corresponding scattering map �f

k.�/ is related to �� by the invariance relation

(2.1) �f
k.�/ D f k � �� � f �k :

While �� and �f
k.�/ are technically different scattering maps, they are geometri-

cally the same, as they are defined via the same homoclinic channel (up to iterations
by the map f ). Of course, homoclinic channels that are not obtained from one an-
other via iteration yield, in general, two scattering maps that are geometrically
different.

In many examples, the scattering map can be computed explicitly via perturba-
tion theory [31, 34, 35] or numerically [18, 19, 39, 40].

2.2 Normally Hyperbolic Invariant Manifolds and Scattering Maps
in a Symplectic Perturbative Setting

Assume now that .M;!/ is a symplectic manifold and f"W M ! M is a C r -
family of symplectic maps, where " 2 ."0; "0/ for some "0 > 0.

As an example, f" can be the time-1 map associated to the Hamiltonian flow
�t;" corresponding to a Hamiltonian H"W M ! R of the form

(2.2) H" D H0 C "H1:

In this case, the maps f" with " ¤ 0 can be viewed as "-perturbations of the map
f0, the time-1 map for the unperturbed Hamiltonian flow of H0.

Going back to the general setting, assume that there exists a normally hyperbolic
invariant manifold �" � M for f", of even dimension nc , for all " 2 .�"0; "0/,
and that dimW u.�"/ D nc C nu D dimW s.�"/ D nc C ns . Assume that �" is
symplectic and denote by J the linear operator associated to !j�"

by the metric.
Then the map f" is also symplectic on �".

Assume for each " 2 .�"0; "0/ there exists a homoclinic channel �" for f" that
depends C `�1-smoothly on ". Then the scattering map �"W ��.�"/! ��.�"/ is
also symplectic and C `�1 (see [36, 38]).
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Now we assume that �" can be parametrized via a symplectic C `-diffeomor-
phism k"W �0 ! �" for " 2 .�"0; "0/, where �0 is the normally hyperbolic
manifold for the unperturbed map f0, and k0 D Id�0

. This happens, for exam-
ple, when the �"’s are obtained by the persistence of normal hyperbolicity under
sufficiently small perturbations (see [34]).

Via the parametrizations k", each map f" induces a map zf" on �0 by

zf" D k�1" � .f"/j�"
� k":

The scattering map �"W ��.�"/ � �" ! �C.�"/ � �" can also be expressed
in terms of the reference manifold �0 by

z�"W k
�1
" .��.�"// � �0 ! k�1" .�C.�"// � �0

given by

z�" D k�1" � �" � k":

We will refer to the map z�" also as the scattering map.
In this setting, one also has an unperturbed scattering map �0 on the unperturbed

manifold �0, associated to the homoclinic channel �0 contained in the intersection
between the stable and unstable manifolds of �0. Of course, in the unperturbed
case one has z�0 D k�10 � �0 � k0 D �0. Expressing both the perturbed and the
unperturbed scattering map as maps on the same (unperturbed) manifold is quite
advantageous, as one can compare them relative to the same coordinate system.

For a Hamiltonian system H" as in (2.2), [36] provides a perturbative formula
for the scattering map:

(2.3) z�" D z�0 C "JrS � z�0 CO."2/

where S is a real-valued C `-function on �0 that can be computed explicitly in
terms of convergent integrals of the perturbation evaluated along homoclinic tra-
jectories of the unperturbed system (see [36, 55]):

(2.4)

S.x/ D lim
T!C1

Z 0

�T

�
dH"

d" j"D0
� �t �

�
��0
�

��1
� ��10 .x/

�
dH"

d" j"D0
� �t � �

�1
0 .x/

�
dt

C lim
T!C1

Z T

0

�
dH"

d" j"D0
� �t �

�
�
�0
C

��1
.x/

�
dH"

d" j"D0
� �t .x/

�
dt:

Here �t D �t;0 is the flow corresponding to the unperturbed Hamiltonian H0.
Note that, by definition, there exists ´ 2 �0 such that �t .´/ is a heteroclinic

orbit, or, equivalently, ´ 2 W u..�0/
�1.x//\W s.x/. Therefore, the formula (2.4)
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can also be written as

S.x/ D lim
T!C1

Z 0

�T

�
dH"

d" j"D0
� �t .´/ �

dH"

d" j"D0
� �t .�

�1
0 .x//

�
dt(2.5)

C lim
T!C1

Z T

0

�
dH"

d" j"D0
� �t .´/ �

dH"

d" j"D0
� �t .x/

�
dt:

The normal hyperbolicity of�0 ensures that �t .´/��t .��10 .x// and �t .´/��t .x/
converge to 0 exponentially fast as t !�1, respectively. This makes the integral
in (2.5) absolutely convergent with its derivatives.

In some cases it is possible that, when " D 0, the stable and unstable man-
ifolds of �0 coincide, i.e., W u.�0/ D W s.�0/; see, e.g., Section 4. In these
cases, one usually uses first-order perturbation theory to establish the splitting of
the manifolds. Using an adapted Melnikov method, in [34, 55] it is shown that,
under appropriate conditions, for 0 < j"j � 1, one can find a transverse intersec-
tion of W u.�"/ with W s.�"/ along a manifold �", which extends smoothly to a
homoclinic manifold �0 as " ! 0. While the limiting manifold �0 is not a trans-
verse intersection, the scattering map �" depends smoothly on ", and thus extends
smoothly to a well-defined map �0 associated to �0.

The special case when �0 D Id, which occurs in many examples, will be con-
sidered in Section 4, where a more explicit formula for the function S.x/ is given
in terms of the so-called Melnikov potential.

2.3 Recurrence
We briefly recall here the definition of recurrent points and the Poincaré recur-

rence theorem, which will be needed later.

DEFINITION 2.2. A point x 2 � is said to be recurrent for a map f on � if for
every open neighborhood U � � of x, f k.x/ 2 U for some k > 0 large enough.

THEOREM 2.3 (Poincaré recurrence theorem). Suppose that � is a measure on
� that is preserved by f , and D � � is f -invariant with �.D/ < 1. Then
�-almost every point of D is recurrent.

Instead of recurrent points, in the arguments below we can use nonwandering
points.

PROPOSITION 2.4. Suppose that � is a measure on � that is preserved by f , and
D � � is f -invariant with �.D/ <1. Then every point x 2 D is nonwandering;
that is, for every open neighborhood U of x in D, there exists n � 1 such that
f n.U / \ U ¤ ¿; moreover, n can be chosen arbitrarily large.

3 Main Results
The aim of this section is to provide a master theorem, Theorem 3.6, that will be

used to yield, in Theorem 3.11 and Corollary 3.12, the existence of diffusing orbits
in a general framework.
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3.1 Shadowing of Pseudo-orbits Obtained by Interspersing
the Inner Dynamics with Scattering Maps

In this section we provide a rather general-shadowing-lemma type of result that
is needed for the proof of Theorem 3.6.

Let � be an NHIM as in Section 2.1. There are two maps defined acting on �:
the scattering map � , the outer dynamics, which is typically defined on some sub-
domain of �, called ��.�/ in Section 2.2, and the restriction of f to �—the inner
dynamics. In principle, one can act on � by applying either map in any succession;
however, this does not yield true orbits of the system but only pseudo-orbits.

The shadowing lemma below says that for every pseudo-orbit obtained by al-
ternately applying a single scattering map and some sufficiently high power of the
inner map, there exists a true orbit of the system that shadows that pseudo-orbit.
The pseudo-orbits that we consider are of the form yiC1 D f mi � � � f ni .yi /.
The resulting shadowing orbits are of the form ´iC1 D f miCni .´i /, where ´i is
�-close to yi for all i . We point out that we do not claim that all points of the orbit
ff n.´0/gn�0 are close to those of the pseudo-orbit, but only some points corre-
sponding to some intermediate times, and this is the sense in which we understand
shadowing orbits here.

The orders of the iterates ni and mi are required to satisfy certain conditions.
Each power ni is required to be larger than some threshold value n�, which depends
on �, and each power mi is required to be larger than some threshold value m�i ,
which depends on the history of the pseudo-orbit up to that point, that is, on all
previous powers n0; : : : ; ni�1; ni ; m0; : : : ; mi�1 that were utilized in the previous
segments of the pseudo-orbit from y0 to yi . Intuitively, mi ; ni quantify the lengths
of time for which we follow a homoclinic trajectory associated to the scattering
map forward and backward in time, respectively, from � to a neighborhood of �.

LEMMA 3.1 (Shadowing lemma for pseudo-orbits of the scattering map and the
inner dynamics). Assume that f W M ! M is a C r -map, r � r0, � � M is
a normally hyperbolic invariant manifold, � � M is a homoclinic channel, and
�� W ��.�/! �C.�/ is the scattering map associated to � . Assume that � and
� are compact.

Then, for every � > 0 there exists n� 2 N depending on � and a family of
functions m�i W N

2iC1 ! N, i � 0, depending on �, such that, for every pseudo-
orbit fyigi�0 in � of the form

(3.1) yiC1 D f mi � �� � f ni .yi /;

for all i � 0, with ni � n� and mi � m�i .n0; : : : ; ni�1; ni ; m0; : : : ; mi�1/, there
exists an orbit f´igi�0 of f in M such that, for all i � 0,

´iC1 D f miCni .´i / and d.´i ; yi / < �:

The proof of Lemma 3.1 is given in Section 5.1.
Notice that the functions n� and m�i are defined only after we choose �, so they

depend on �. We emphasize that the sequence yi in (3.1) is contained in � so that
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the map f that appears in the definition of yi can be taken to be f j�. The reason
why we refer to the sequence fyig in (3.1) as a “pseudo-orbit” is that yiC1 and yi
are close to the endpoints of a segment orbit of the full map.

Indeed, if we consider the point pi D .��
�/
�1f ni .yi /, we see that f �ni .pi /

and f �ni .f ni .yi // D yi would be close since they are in the same unstable fiber
and ni is large. We also see that ��f ni .yi / D ��

C.pi /. Therefore, f mi .pi / and
f mi � �� � f ni .yi / will be close since they are in the same stable fiber.

Therefore, the sequence fyig is approximated by a concatenation of segments
of orbits Oi D ff j .pi /g

mi

jD�ni
. The mismatches at the ends of these segments of

orbits are clearly small.
It would be natural to try to use a hyperbolic shadowing theorem to follow this

pseudo-orbit. Unfortunately, with the present hypothesis, we do not have any infor-
mation on the expanding or contracting properties of the map along the directions
tangent to �, and standard hyperbolic shadowing theorems do not seem to apply.
We have to give a different proof and introduce the condition that the mi ’s grow.

Lemma 3.1 can be immediately extended to the case of countably many scatter-
ing maps. Suppose that there exists an infinite collection of homoclinic channels
�j �M , for j 2 N, and let

�j W �
�.�j /! �C.�j /

be the scattering map associated to �j for j 2 N.

LEMMA 3.2. Assume that f W M ! M , � � M , �j � M , and �j are as above
for j 2 N. Assume that � and �j are compact.

Then, for every � > 0 there exist two families of functions, n�i W N
i ! N and

m�i W N
2iC1 � NiC1 ! N, both depending on �, for i � 0, such that, for every

pseudo-orbit fyigi�0 in � of the form

yiC1 D f mi � ��i � f
ni .yi /;

where ni � n�.�0; : : : ; �i�1/, mi � m�.n0; : : : ; ni ; m0; : : : ; mi�1; �0; : : : ; �i /

for all i � 0, there exists an orbit f´igi�0 of f in M such that, for all i � 0,

´iC1 D f miCni .´i / and d.´i ; yi / < �:

Remark 3.3. Even if it is not explicitly written in Lemma 3.1, n� and m�i also
depend on the hyperbolic structure, and in particular on the angle of intersection
between W u.�/ with W s.�/ along � .

Remark 3.4. Note that Lemma 3.1 does not use any symplectic structure. It is
valid for general maps. Hence, the results obtained from it remain valid for dis-
sipative perturbations of Hamiltonian systems. Of course, when the perturbations
are Hamiltonian we can obtain stronger results.

Remark 3.5. We note that results related to Lemma 3.1 appear in [39, 52, 60]. In
comparison to our lemma, [39,60] make some geometric assumptions on the inner
dynamics, and [52] considers only finite pseudo-orbits.
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3.2 Shadowing of Pseudo-orbits of the Scattering Map
The main result of this section is the following:

THEOREM 3.6 (Shadowing Lemma for Orbits of the Scattering Map). Assume
that f W M ! M is a sufficiently smooth map, � � M is a normally hyperbolic
invariant manifold with stable and unstable manifolds that intersect transversally
along an homoclinic channel � �M , and � is the scattering map associated to � .

Assume that f preserves a measure absolutely continuous with respect to the
Lebesgue measure on�, and that � sends positive measure sets to positive measure
sets.

Let fxigiD0;:::;n be a finite pseudo-orbit of the scattering map in �, i.e., xiC1 D
�.xi /, i D 0; : : : ; n � 1, n � 1, which is contained in some open set U � � with
almost every point of U recurrent for fj�. (The points fxigiD0;:::;n do not have to
be themselves recurrent.)

Then, for every � > 0 there exists an orbit f´igiD0;:::;n of f in M , with ´iC1 D
f ki .´i / for some ki > 0, such that d.´i ; xi / < � for all i D 0; : : : ; n.

The proof of this result, given in Section 5.2, uses the given pseudo-orbit of
the scattering map and the recurrence property of the inner dynamics to produce
another pseudo-orbit that intertwines the scattering map and the inner dynamics.
Then, the shadowing lemma, Lemma 3.1, yields a true orbit of the system.

To apply Theorem 3.6, one needs to find orbits of the scattering map that fol-
low desired itineraries. For example, one may wish to find a pseudo-orbit of the
scattering map that travels a “long distance” in �. If such a pseudo-orbit is found,
Theorem 3.6 yields a true orbit that also travels the same large distance.

We emphasize that Theorem 3.6 is very general, as the requirements on the
scattering map and on the inner dynamics are automatically satisfied in many sit-
uations. If M is endowed with a symplectic form !, !j� is symplectic, and f is
also symplectic, then fj� is symplectic and the scattering map � is also symplectic
(see [36]). Thus, f and � are volume preserving, and Theorem 3.6 applies.

We have the following remarkable dichotomy. Either:
I. The inner map fj� has an invariant open set U containing the domain of the

scattering map and on which there is Poincaré recurrence. Under generic
conditions, the scattering map has a pseudo-orbit that travels a long dis-
tance within U . Applying Theorem 3.6 yields the existence of a true orbit
that travels a long distance as well. Therefore we obtain diffusion by inter-
twining the inner and outer dynamics.

II. There is no open set of finite measure in � that is invariant under fj�.
Hence there are orbits of f that leave every open set in �, thus traveling
long distances. Therefore we obtain diffusion by the inner map fj� alone.

In both alternatives we obtain diffusing orbits.
A precise formulation of this dichotomy is given in Corollary 3.12.
Note that in Theorem 3.6 we do not require that f satisfy a twist condition,

which seems to be essential in many other works. In general, nontwist maps of
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the annulus have regions where standard methods such as KAM theory and Aubry-
Mather theory do not apply (see [30, 31]).

Indeed, in Theorem 3.6, we do not need to make any qualitative assumption
about the map f . In particular, we do not care whether the map has KAM tori that
are close enough. That is, the mechanism presented here does not present the large
gap problem.

Theorem 3.6 extends naturally to the case of finitely many scattering maps
rather than a single one. Suppose that there exists a finite collection of homo-
clinic channels �j � M , for j 2 f1; : : : ; Lg, for some positive integer L. Let
�j W �

�.�j /! �C.�j / be the scattering map associated to �j for j D 1; : : : ; L.
Using many scattering maps in arbitrary order rather than just one is very advan-

tageous in proving diffusion. Iterating a single map has obstructions for large-scale
motions (e.g., KAM tori). Having several maps, it is very hard to find objects that
are invariant for all of them. See [13, 14, 32, 54, 56, 59, 74].

THEOREM 3.7. Assume that f W M ! M , � � M , �j � M , and �j , j D

1; : : : ; L, are as above. Assume that f preserves a measure absolutely continuous
with respect to the Lebesgue measure on� and that each �j sends positive measure
sets to positive measure sets. Let fxigiD0;:::;n be a finite sequence of points of the
form xiC1 D ��i .xi / in �, where �i 2 f1; : : : ; Lg for i D 0; : : : ; n � 1, which
is contained in some open set U � � with the property that almost every point
of U is recurrent for fj�. Then, for every � > 0 there exists an orbit f´igiD0;:::;n
of f in M , with ´iC1 D f ki .´i / for some ki > 0, such that d.´i ; xi / < � for all
i D 0; : : : ; n.

Remark 3.8. In general situations, one has an abundance of homoclinic orbits. By
the Smale-Birkhoff homoclinic orbit theorem the existence of a single transverse
homoclinic orbit implies the existence of infinitely many transverse homoclinic
orbits that are geometrically distinct. Thus one is able to define many scattering
maps.

In applications, using several scattering maps rather than a single one can be
very advantageous. In astrodynamics, for example, the existence of multiple ho-
moclinic intersections can be exploited to obtain diffusion [43, 47] and to increase
the versatility of space missions; see, e.g., [19, 40].

Remark 3.9. Using several scattering maps can also be useful to prove diffusion in
generic systems. In some perturbative problems, e.g., as in Section 4, the scattering
map can be computed in terms of convergent integrals of the perturbation evaluated
along a homoclinic of the unperturbed system. One can ensure that the scattering
map has nontrivial effects by verifying that such an integral is nonzero. Thus, given
a perturbation, one can slightly modify it, using a bump function supported in some
tubular neighborhood of the homoclinic, to obtain a nearby perturbation for which
the corresponding scattering map exhibits the desired nontrivial effects. Having
available multiple homoclinics, one can use bump functions supported in disjoint
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tubular neighborhoods of each of these homoclinics to obtain multiple scattering
maps that exhibit different types of nontrivial behaviors; see, e.g., [22, 23, 55, 56].

Remark 3.10. The results above also generalize to the case of several NHIMs. If

�1;2 � W u
�1
\W s

�2

is a heteroclinic channel between two NHIMs �1 and �2, we can define a scatter-
ing map

�1;2W �
�.�1;2/ � �1 ! �2

in a similar fashion to the case of a single NHIM. If we are given a chain of mani-
folds �i , i D 1; : : : ; n, and scattering maps

�i;iC1W �
�.�i;iC1/ � �i ! �iC1; i D 1; : : : ; n � 1;

then we can shadow orbits of the form yiC1 D �i;iC1.yi /, with yi 2 �i and
yiC1 2 �iC1, for i D 1; : : : ; n � 1. Such scattering maps appear in the study of
double resonances [6, 68, 69, 77]. We hope to come back to this problem.

Another problem where one has scattering maps between two different normally
hyperbolic invariant manifolds is the problem of two rocking blocks under periodic
forcing [62].

3.3 A Qualitative Mechanism of Diffusion
in a Perturbative Symplectic Setting

We now describe several situations when we can construct pseudo-orbits of the
scattering map that travel a significant distance within the normally hyperbolic
invariant manifold, and so Theorem 3.6 can be applied to obtain true orbits nearby.
More concrete conditions that yield such orbits in some concrete examples appear
in Section 4.

We consider the perturbative setting described in Section 2.2, where f"W M !

M is a symplectic map, �" �M is a normally hyperbolic invariant manifold (not
necessarily compact) for f", �" is a homoclinic channel for f", and �"W ��.�"/!
�C.�"/ is the corresponding scattering map for " 2 ."0; "0/. We assume that �"

is described via a symplectic parametrization k"W �0 ! �", and let . zf"/j�0
D

k�1" � .f"/j�"
� k", z�" D k�1" � �" � k".

Below, in Theorem 3.11, we will use the perturbative formula for the scattering
map (2.3) with z�0 D Id, and with a slightly more general first-order perturbation
term of the scattering map. This allows us to apply the result of Theorem 3.11
to more degenerate cases, where second-order perturbation theory is necessary to
detect the transversality between the stable and unstable manifolds, or to the so-
called “a priori stable” case, where the Melnikov potential can be exponentially
small in "; see Remark 3.16.

THEOREM 3.11. Assume that for all " 2 .�"0; "0/, there exists a scattering map
�", defined in a domain U ´ k�1" .��.�"// � �0, such that

(3.2) z�" D IdC �."/JrS C g.�."//; g.�."// D o.�."//;



A GENERAL MECHANISM OF DIFFUSION IN HAMILTONIAN SYSTEMS 15

where S is some real-valued C `-function on U � �0, and g.�."// and �."/ are
some C `-functions, being defined on .�"0; "0/ with �.0/ D 0; by g.�."// D

o.�."// we mean that lim"!0 g.�."//=�."/ D 0:

Suppose that

(3.3) JrS.zx0/ ¤ 0 at some point zx0 2 U � �0:

Let z
 W �0; 1� ! �0 be an integral curve through zx0 for the vector field JrS .
Suppose that there exists a neighborhood Uz
 � U of z
.�0; 1�/ in �0 such that a.e.
point in Uz
 is recurrent for zf"j�0

. Let 
" D k" � z
 be the corresponding curve in
�".

There exists "1 > 0 sufficiently small and a constant K > 0 such that for every
" 2 .�"1; "1/, " ¤ 0, and every � > 0, there exists an orbit f´igiD0;:::;n of f"
in M , with n D O.�."/�1/, such that for all i D 0; : : : ; n � 1,

´iC1 D f ki
" .´i / for some ki > 0;

and for all i D 0; : : : ; n, we have

d.´i ; 
".ti // < � CK.�."/C jg.�."//=�."/j/ for ti D i � �."/;

where 0 D t0 < � � � < tn � 1.

The proof of this theorem is given in Section 5.3.
We will refer to a solution curve z
 in �0 as in the statement of Theorem 3.11, or

to its corresponding curve 
" D k".z
/ in �", as a “scattering path,” as it represents
an approximation of an orbit of the scattering map; see Figure 5.3. So the previous
result can be stated that, given any scattering path, there exits a true orbit of the
system that shadows it.

In applications, it is often the case that �0 D Bd � Td , and we have a system
of action-angle coordinates .I; �/ on �0 with I 2 Bd and � 2 Td , where Td D

Rd=Zd and Bd � Rd is a disk in Rd or Bd D Rd . Since one can typically find
a scattering path for which the action variable changes by some positive distance
independent of ", implicitly one can find a true orbit for which the action variable
changes by O.1/; this is stated precisely in the following corollary.

There exists a sufficiently small neighborhood V�"
of �" in M such that for

every point ´ 2 V�"
there exists a unique point ´0 2 �" that is the closest point

to ´. The point ´0 is the image of some unique point ź 2 �0 via k", i.e., ´0 D
k".ź/. We denote by I.´/ the I -coordinate of the corresponding point ź 2 �0,
i.e., I.´/´ I.ź/.

COROLLARY 3.12. Assume that a scattering map �" as in Theorem 3.11 is given.
If JrS is transverse to some level set fI D I�g in �0 at some point .I�; ��/ � U ,
then there exist 0 < "1 < "0 and � > 0 such that for every 0 < " < "1 there exists
an orbit f´igiD0;:::;n of f" such that

kI.´n/ � I.´0/k > �:
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The proof of Corollary 3.12 is given in Section 5.4.

Remark 3.13. The key assumptions for Theorem 3.11 are the existence of a nor-
mally hyperbolic invariant manifold, the recurrence property of the inner dynamics,
and the existence of transverse homoclinic intersections yielding scattering maps.
In the perturbative setting that we consider, the existence of a normally hyperbolic
invariant manifold for some range of "’s follows from the standard theory of nor-
mally hyperbolic invariant manifolds; see, e.g., [49, 66]. The recurrence property
of the inner dynamics is automatically satisfied in the symplectic setting that we
consider. The transversality conditions (A.6) and (A.7) are necessary to ensure
by our method the existence of a scattering map (of course, there may be other
methods).

Since these conditions play an important role, let us discuss somewhat infor-
mally their abundance in the space of dynamical systems. Both conditions (A.6)
and (A.7) are transversality conditions. The existence of manifolds satisfying both
of them is a C 1-open condition.

Of course, like all transversality conditions, (A.6) and (A.7) can fail in a persis-
tent way. There are examples where the transversality is lost in a codimension 1

manifold in such a way that all the perturbations will still have another such mani-
fold. (Intuitively, transversality amounts to some determinant of a matrix of deriva-
tives being away from 0. If it happens to change sign in some neighborhood, all
perturbations will have some sign change). Note, however, that small perturbations
can create the desired transversality at one point.

The condition (A.6) has been very well studied in dynamical systems. If it
holds, we have also infinitely many other intersections satisfying (A.6) obtained by
iteration, and under mild conditions there are also secondary intersections. It could
very well be that the secondary intersections satisfy (A.6) in some appreciable
region.

It is important to remark that the application of the results only requires the
existence of one channel satisfying the two conditions.

Let us mention that in many cases of practical interest, when the existence of
transverse homoclinic intersections can be established via Melnikov theory (in-
cluding systems with small dissipation, as in [55]), the conditions (A.6) and (A.7)
are generically satisfied on open sets of order O.1/. This is also the case for the
a priori unstable, nearly integrable Hamiltonian systems considered in Section 4,
in which case the existence of a homoclinic manifold satisfying (A.6) and (A.7) is
a generic condition; i.e., it is satisfied by a C 1-open and C1-dense set of perturba-
tions. In particular, the homoclinic manifold turns out to be a graph over the center
variables. Moreover, for this class of Hamiltonian systems, the condition (3.3) on
the corresponding scattering map, which ensures the existence of orbits that travel
O.1/, is generically satisfied.

We shall also mention that there are some special classes of systems (symplectic,
volume preserving) for which the existence of homoclinics always holds (see, e.g.,
[41, 46, 72, 87, 93]).
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Remark 3.14. Let us note that the diffusion orbit f´igiD0;:::;n obtained in Corollary
3.12 does not necessarily follow a given pseudo-orbit of the scattering map. If
the dynamics given by f" has diffusing orbits, these are the ones obtained in the
corollary. In case the dynamics of f" remains in a bounded set, we need to follow
the pseudo-orbits of the scattering map �" to obtain the diffusing ones.

Besides this corollary, later in Section 4, where we will have more details of the
construction of the perturbed normally hyperbolic manifold �", we will be able to
prove that one can always follow any orbit of the scattering map or combinations
of orbits of several scattering maps while they stay in a compact subset of �". This
will allow us to obtain stronger results on diffusion to travel predesigned itineraries
in the actions.

Remark 3.15. We note that, in order to obtain a trajectory that achieves a change
in the I -variable of order O.1/, the scattering map needs to be applied n D

O.�."/�1/ times. However, the true orbit that achieves the O.1/-change in the
I -variable follows not only the scattering map but also some recursive orbit seg-
ments of the inner dynamics, as in the proof of Theorem 3.6. Since these recursive
orbit segments of the inner dynamics are obtained by invoking the Poincaré recur-
rence theorem, the above result does not yield an estimate for the time required to
follow the inner dynamics, and hence does not directly lead to an estimate on the
diffusion time.

Remark 3.16. The condition that the unperturbed scattering map is the identity,
i.e., z�0 D Id, is naturally satisfied in some examples, e.g., in the a priori unstable
system in Section 4. The function �."/ is associated to the size of the splitting of
W u.�"/ and W s.�"/.

In the example in Section 4, we have �."/ D " and g.�."// D O."2/ in the
generic case. Nevertheless, in some degenerate cases, it can happen that, up to first
order in ", the perturbed stable and unstable invariant manifolds of �" coincide. In
these cases it is necessary to go to second-order perturbation theory to distinguish
them and therefore �."/ D "2 and S in (2.5) has a different expression (not given
here) in terms of the second-order variationals along the unperturbed homoclinic
orbit.

Another special situation occurs in the so-called a priori stable systems, where
the unperturbed system is completely integrable without any hyperbolic structure.
In those cases, the a priori unstable structure appears after some first-order partial
averaging near simple resonances, giving rise to a system of the form �H 0

" C
�H 1
" .

Therefore the analogue of the unperturbed homoclinic orbit �t .´/, which appears
in the formulas of the scattering map (2.5), is "-dependent, i.e., �t;".´/. The split-
ting between the stable and unstable manifolds behaves differently from the a priori
unstable case with respect to the perturbation parameter. Concretely, we have:

z�" D IdC JrS C g.�."//;
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where

S.x; "/ D lim
T!C1

Z 0

�T

� �H 1
" � �t;".´/ �

�H 1
" � �t;".x/

�
dt

C lim
T!C1

Z T

0

� �H 1
" � �t;".´/ �

�H 1
" � �t;".x/

�
dt:

and S and g satisfy

S.x; "/ D O.�."//; g.�."// D o.�."//:

If the system is analytic, there is an exponentially small splitting of the separatrices
and therefore �."/ D O."p exp.�q"�r// for some p; q; r 2 Q, as in [2]. Nev-
ertheless, to obtain the behavior of the error function g.�."// in general analytic
a priori stable systems is still an open and difficult question. If the system is only
smooth, one usually has �."/ D "p for p � 2.

Besides the above comments, we want to stress that, once a formula like (3.2) is
established, the results of Theorem 3.11 remain true.

4 Existence of Diffusing Trajectories in Nearly Integrable
A Priori Unstable Hamiltonian Systems

As an application, we show the existence of diffusing orbits in a large class of
nearly integrable a priori unstable Hamiltonian systems that are multi-dimensional
both in the center and in the hyperbolic directions. The model below is an extension
of those considered in [34, 37, 42].

Let

H".p; q; I; �; t/ D h0.I /C

nX
iD1

�

�
1

2
p2i C Vi .qi /

�
C "H1.p; q; I; �; t I "/:

(4.1)

where .p; q; I; �; t/ 2 Rn � Tn �Rd � Td � T1.
We make the following assumptions:
(A1) The functions h0, H1, and Vi , i D 1; : : : ; n, are uniformly C r for r � r0.
(A2) Each potential Vi W Tn ! R, i D 1; : : : ; n, is 1-periodic in qi and has a

nondegenerate (in the sense of Morse) global maximum at 0; hence each
“pendulum” �

�
1
2
p2i C Vi .qi /

�
has a homoclinic orbit to .0; 0/, parame-

trized by .p0i .t/; q
0
i .t//, t 2 R.

To formulate the next assumption (A3), which has two parts (A3.a) and (A3.b),
we need to introduce some other tools.

� Let z�0 D f.p; q; I; �; t/ jp D q D 0g. By (A2) there is a family of
homoclinic orbits for the whole system of pendula given by�

p0.� C tx1/; q0.� C tx1/
�
D�

p01.�1 C t /; : : : ; p0n.�n C t /; q01.�1 C t /; : : : ; q0n.�n C t /
�
;
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where � D .�1; : : : ; �n/ 2 R
n and x1 D .1; : : : ; 1/ 2 Rn.

� Let z�0 � f.p0.�/; q0.�/; I; �; t/ j � 2 Rn; I 2 Rd ; � 2 Td ; t 2 T1g be
a homoclinic channel for which we can define a scattering map z�0 on z�0.

� Let the Poincaré function (or Melnikov potential) associated to the homo-
clinic manifold z�0 be:
L.�; I; �; s/

D �

Z 1

�1

�
H1.p

0.� C tx1/; q0.� C tx1/; I; � C !.I /t; s C t I 0/

H1.0; 0; I; � C !.I /t; s C t I 0/
�
dt:

(4.2)

where !.I / D @h0=@I .
The first part of assumption (A3) is the following:
(A3.a) The perturbation H1 is 1-periodic in t and satisfies some explicit nonde-

generacy conditions as described below. Assume that there exists a set
U� ´ I � J � Rd � TdC1 such that I is an open ball in Rd , and for
any values .I; �; s/ 2 U�, the map

� 2 Rn ! L.�; I; �; s/ 2 R

has a nondegenerate critical point ��, which is locally given, by the im-
plicit function theorem, by

�� D ��.I; �; s/:

To formulate the next assumption we need to introduce some other tools.
� Define the auxiliary functions

(4.3) L.I; �; s/ D L.��.I; �; s/; I; �; s/; L�.I; �/ D L.I; �; 0/:
We regard L�.I; �/ as a function on the set

Dom.L�/ D f.I; �/ 2 Rd � Td j 9s 2 T1 s.t. .I; � C !.I /s; s/ 2 U�g:

The second part of assumption (A3) is:
(A3.b) Assume that the reduced Poincaré function L�.I; �/ satisfies that JrL�.I; �/

is transverse, relative toRd �Td , to the level set fI D I�g at some point
.I�; ��/ D .I�; �� � !.I�/s/, with .I�; ��; s/ 2 U�. That is,

(4.4)
@L�

@�
.I�; ��/ ¤ 0:

We note that the integral in (4.2) is similar to that in (2.4) and (2.5), as it concerns
the average effect of the perturbation H1 on a homoclinic orbit of the unperturbed
system.

The result below states that, for all small enough regular perturbations satisfying
(4.4), there exist trajectories that travel O.1/ with respect to the I -coordinate; that
is, they travel a distance relative to the I -coordinate that is independent of the size
of the perturbation. This phenomenon is referred to as Arnold diffusion.
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THEOREM 4.1. Assuming conditions (A1)–(A3), there exists "0 > 0 and � > 0

such that, for each " 2 .0; "0/, there exists a trajectory x.t/ of the Hamiltonian
flow of Hamiltonian (4.1) and T > 0 such that

kI.x.T // � I.x.0//k > �:

Remark 4.2. We emphasize some advantages of Theorem 4.1 in comparison to the
main results of [34, 37, 42, 60]:

� Both the phase space of h0 and that of the system of pendula are multidi-
mensional.

� We do not assume a convexity condition on the unperturbed Hamiltonian
H0.I; �; p; q/ D h0.I /C

P
iD1;:::;n�.p

2
i =2CVi .qi //, which is typically

required when using variational methods.
� We do not assume that h0 satisfies a nondegeneracy condition that I 7!

@h0=@I is a diffeomorphism, or a convexity condition that @2h0=@Ii@Ij is
strictly positive/negative definite. In the lack of such conditions, one can-
not apply the KAM theorem, and hence cannot construct transition chains
of KAM tori. Also, Aubry-Mather theory cannot be applied.

� We do not assume that H1 is a trigonometric polynomial. Moreover, we
note that condition (A3) is satisfied by a C r open and dense set of pertur-
bations H1.

In the method of [37] one needs to check a different condition (which
is clearly generic) around every first-order resonance. In concrete sys-
tems, when one is interested in a practical problem (e.g., in the three-body
problem) and not in generic statements, the verification of the mechanism
of [37] is possible, albeit tedious. With the present method, the verifi-
cation in concrete systems of interest is much more straightforward; see,
e.g., [19].

From now on, we use the following notation: When we say that some error term
is bounded by a constant, or by O."a/, or by O."a ln."b//, we mean uniformly on
some compact set.

PROOF OF THEOREM 4.1. We describe the geometric structures that organize
the dynamics, following [34, 37]. We emphasize that, once the geometric setup is
laid out, the dynamics argument to show the existence of diffusing orbits is very
different.

The time-dependent Hamiltonian in (4.1) is transformed into an autonomous
Hamiltonian by introducing a new variable A, symplectically conjugate with t ,
obtaining the .nC d C 1/-degrees-of-freedom Hamiltonian system

�H".p; q; I; �; A; t/ D h0.I /C

nX
iD1

�

�
1

2
p2i C Vi .qi /

�
C A

C "H1.p; q; I; �; t I "/:

(4.5)
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The variable A does not play any dynamical role, as it does not appear in any of
the Hamiltonian equations for any of the variables, including itself.

With an abuse of notation, we denote

z�0 ´ f.p; q; I; �; A; t/ jp D q D 0; I 2 I; A 2 R; .�; t/ 2 TdC1g:

This is a normally hyperbolic invariant manifold for the extended Hamiltonian
flow; z�0 is diffeomorphic to .Rd � Td / � .R � T /.

We fix an energy manifold f �H" D zhg for some zh, and restrict to a Poincaré
section ft D sg for the Hamiltonian flow. The resulting manifold is a .2nC 2d/-
dimensional manifold, which we denote by M". The first return map to M" of the
Hamiltonian flow is a C r -differentiable map denoted f�.

The manifold

�0 ´ f.p; q; I; �/ jp D q D 0; I 2 I; � 2 Td g �M0

is a normally hyperbolic invariant manifold for f0, which is independent of the
section ft D sg. Note that �0 is diffeomorphic to Rd � Td .

Thus, both z�0 and �0 are noncompact.
Note that the restriction of f0 to �0 is an integrable map, as f0.0; 0; I; �/ D

.0; 0; I; � C !.I //, and �0 is foliated by invariant d -dimensional tori given by
fI D ctg.

Choose a closed ball xBR.I�/ in the action space Rd such that JrL�.I; �/ is
transverse, relative to Dom.L�/, to each action level set fI D I0g, which is an
invariant torus, with I0 2 xBR.I�/. Choose 0 < � < R.

Denote

z�00 ´ f.p; q; I; �; A; t/ jp D q D 0; I 2 xBR.I�/; A 2 R; .�; t/ 2 TdC1g;

�00 ´ f.p; q; I; �/ jp D q D 0; I 2 xBR.I�/; � 2 T
d g;

which are normally hyperbolic invariant manifolds with boundary for the flow and
for the map, respectively, corresponding to I 2 xBR.I�/.

Consider now the perturbed Hamiltonian system. Using a C r -differentiable
bump function we can modify the Hamiltonian �H" to another Hamiltonian �H"

that coincides with the original one for all .p; q; I; �; A; t/ with I 2 xBR.I�/,
and coincides with H0 for all .p; q; I; �; A; t/ with I outside of some open ball
BR0.I�/ � xBR.I�/, with R0 > R. For all " sufficiently small, there exists a nor-
mally hyperbolic invariant manifold z�" for the flow of the modified Hamiltonian�H". The manifold z�" is diffeomorphic to z�0 via a C `-smooth parametrization
zk"W z�0 ! z�", with zk0 D Id. Using this parametrization, we can describe z�" in
terms of the coordinates .I; �; A; t/ 2 z�0. Similarly, there exists a C ` smooth
parametrization k"W �0 ! �", with k0 D Id, and we can then describe �" in
terms of the coordinates .I; �/ 2 �0.

The manifold z�" is not unique, as it depends on the modified Hamiltonian vec-
tor field of �H", but what is important for us is that the extended Hamiltonian �H"
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coincides with �H" at the points with I 2 xBR.I�/. Therefore, if we find an orbit of�H" whose action I stays in xBR.I�/, this orbit will also be a real orbit of �H". Let
us denote by z�0t;" the flow of �H", and by f 0" the corresponding first return map.

Let

z�0" WD fzk".p; q; I; �; A; t/ jp D q D 0; I 2 xBR.I�/; A 2 R; .�; t/ 2 TdC1g;

�0" WD fk".p; q; I; �/ jp D q D 0; I 2 xBR.I�/; � 2 T
d g;

be the normally hyperbolic manifolds for the perturbed flow and for the perturbed
map, respectively, corresponding to I 2 xBR.I�/. They are not invariant, but only
locally invariant. The local invariance means, in the case of �0", that there exists a
neighborhood V of �0" in M" such that any orbit of f 0" that stays in V for all time
is actually contained in �0". The neighborhood V can be chosen independent of ".
The manifold �0" is compact and symplectic (see [36]).

Condition (A3) allows one to define a scattering map �"W ��.�"/ ! �C.�"/,
with ��.�"/, �C.�"/ � �0". We will restrict to a homoclinic channel �" that is
compact.

As mentioned before, it is more convenient to express the scattering map �" as a
map on�0 via z�" D k�1" ��"�k". By hypothesis (A.3), we haveU� � dom.z�"/ D
k�1" .��.�"//. In a similar fashion, we consider zf" D k�1" � f"j�"

� k" on �0.
The papers [36, 38, 53] show that condition (A3.a) implies that the scattering

map can be expressed as

z�".I; �/ D .I; �/C "JrL�.I; � � !.I /s/CO."2/;

which is of the form (3.2) with �."/ D " and g.�."// D "2. Of course, both the
scattering map z�" and the Poincaré map zf" depend on the chosen section ft D sg.

The function L� involved in condition (A3) plays the role of the function S

in Theorem 3.11 and Corollary 3.12. Condition (4.4) amounts to JrL� being
transverse to one level set of the variable I . Therefore we can apply Corollary
3.12 for the normally hyperbolic invariant manifold �" and the scattering map z�",
obtaining an orbit .´i /iD0;:::;n of f 0" with I.´0/ D I� and kI.´n/ � I.´0/k > �

for some T > 0. Either the resulting orbit is so that the action I along it stays in
xBR.I�/ and hence this orbit is a real orbit of f" along which the action changes by
at least �, or the orbit is so that the action I along it leaves xBR.I�/, in which case
the action changes by at least R > �. In either case, we obtain a trajectory of �H"

along which the action I changes by at least � > 0, which is independent of ". �

Below, we consider the case when the Melnikov potential (4.2) has l distinct
nondegenerate critical points ��1 ; �

�
2 ; : : : ; �

�
l

of L.�; I; �; s/. Each critical point
determines a scattering map � i" for which there exists a corresponding scattering
path 
i that is a solution curve of the Hamiltonian flows Px D JrL�i .x/ on �",
where L�i is defined by (4.3) for i D 1; : : : ; l . Further, we assume that these
scattering paths can be concatenated. The following result says we either have
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orbits that escape every compact set in �", or we have orbits that follow any such
prescribed sequence of paths.

COROLLARY 4.3. Assume hypotheses (A1) and (A2) of Theorem 4.1 hold and that
(A3) is satisfied for finitely many nondegenerate critical points of L.�; I; �; s/.
Let � i" W �

�.� i
"/ ! �C.� i

"/ be the corresponding scattering maps, with ��.� i
"/,

�C.� i
"/ � �", for i D 1; : : : ; l . Suppose that ��.� i

"/ \ ��.� iC1
" / ¤ ¿ for

i D 1; : : : ; l � 1. Let U D
S

iD1;:::;l �
�.� i

"/. Then, either

� for every compact set K in �" containing U , there exists x0 2 U , an orbit
x.t/ of the Hamiltonian �H", and a time T > 0 such that x.0/ D x0 and
x.T / 62 K

or

� for every sequence of scattering paths 
 i" W �Ti�1; Ti � ! ��.� i
"/, with


 i".Ti / D 
 iC1" .Ti / for i D 1; : : : ; l � 1, and for every � > 0, there
exists an orbit x.t/ of the Hamiltonian �H" and a time T > 0 such that
x.0/ 2 B�.


0
" .T0// and x.T / 2 B�.


l
".Tl//.

Papers where the authors combine several scattering maps to obtain scattering
paths are, for instance [44, 45], where this corollary can be applied, and also [43]
in a different setting.

Remark 4.4. For the above results, we do not require the nondegeneracy condition
that I 7! !.I / D @h0=@I is a diffeomorphism. Note that in the case when d D 1

such a nondegeneracy condition implies that zf" is a monotone twist map relative
to the .I; �/ coordinates. In our case, we allow zf" to be a nontwist map, which
happens, for instance, if h0.I / D In with n � 3 odd. It is well-known that
nontwist maps arise in many concrete models, e.g., in magnetic fields of toroidal
plasma devices (such as tokamaks, which have reversed magnetic shear), models of
transport by traveling waves in shear flows with zonal flow, and models of satellite
orbits near critical inclination. Unlike twist maps, nontwist maps have regions
where the KAM theorem and the Aubry-Mather theory do not apply; see [30, 31]
and the references listed therein.

5 Proofs of the Main Results
5.1 Proof of Lemma 3.1

We provide two proofs of Lemma 3.1.
The first proof uses the topological method of correctly aligned windows (see

Appendix C) and is constructive in the sense that it provides an explicit algorithm to
detect orbits with prescribed itineraries. It can also be used to provide quantitative
estimates for the diffusion time (see Remark 3.3 and Remark 5.5).

The second proof uses the obstruction argument and is shorter.
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5.1.1 A Proof Using Correctly Aligned Windows

5.1.1.A Outline. We will construct windows that are correctly aligned and utilize
them in two different ways: first, to define the integers n� and m�i that appear in
the statement of the lemma, and second, to show that, for a given pseudo-orbit as
in the statement of the lemma, there exists a true orbit that shadows it.

For the first part, starting with a homoclinic point, we define a pair of “proto-
type” windows that are correctly aligned, with one window in a neighborhood of
some negative iterate of the homoclinic point, and another window in a neighbor-
hood of some positive iterate of the homoclinic point. There are conditions on the
number of such iterates that provide us with the integer n�. Then we consider a
second homoclinic point and construct a second pair of “prototype” windows, in a
similar fashion. To make the second window from the first pair correctly aligned
with the first window from the second pair, we need to apply a sufficiently large
number of iterates that is no less than some integer m�. When this construction
is repeated i times, it provides us with an integer m�i that depends on all previous
windows.

For the second part, there is given a pseudo-orbit generated by alternatively
applying the scattering map and the inner dynamics; the orders of the iterates of
the inner map are required to satisfy conditions that depend on the integers n� and
m�i . Then, the above-mentioned windows can be used to construct a sequence of
correctly aligned windows along the pseudo-orbit. The existence of an orbit that
follows these windows, and, in particular, shadows the given pseudo-orbit, follows
from the shadowing property of correctly aligned windows (Theorem C.4).

We proceed in several steps.

5.1.1.B Choice of balls. We choose a system of linearized coordinates (see Ap-
pendix B), given by hW U� ! V�, so that V� is contained in a �-neighborhood
of �.

By the compactness of � or the uniform regularity of f , there exists �1 > 0

such that, whenever xc 2 �, kvuk; kvsk < �1, and 0 < �c ; �u; �s < �1, the image
of

(5.1) B�c .xc/ � B�u.vu/ � B�s .vs/ � U�

under h is contained in V� and has diameter less than �=2.
We choose and fix �c ; �u; �s as in (5.1).
By the normal hyperbolicity of �, there exist 0 < �� < �C < ��1C < ��1� < 1

such that for each pair of balls B�u.vu/ � Eu
x and B�s .vs/ � Es

x , with x 2 �, we
have

B�u��.DfjEu.vu// � DfjEu.B�u.vu// � B�u�C.DfjEu.vu//;

B�s��.DfjEs .vs// � DfjEs .B�s .vs// � B�s�C.DfjEs .vs//:
(5.2)
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5.1.1.C Lambda lemma. Consider a homoclinic channel � and the corresponding
scattering map � ´ �� W ��.�/! �C.�/.

Let p 2 � and let p�; pC 2 � be the unique points for which W u.p�/ \

W s.pC/ \ � D fpg. For given k�; kC, denote:

f �k
�

.p�/ D h.x�c ; 0; 0/; f �k
�

.p/ D h.x�c ; v
�
u ; 0/;

f kC.pC/ D h.xCc ; 0; 0/; f kC.p/ D h.xCc ; 0; v
C
s /:

Due to the compactness of � and the exponential contraction of the unstable
(stable) fibers under negative (positive) iterates of f , there exists n� > 0 suffi-
ciently large such that for every k� � n� and kC � n� we have the following:

(i) The point f �k
�

.p/ 2 W u.f �k
�

.p�// satisfies kv�u k < �u < �1. This
implies f �k

�

.p/ 2 V� and is .�=2/-close to f �k
�

.p�/.
(ii) The point f kC.p/ 2 W s.f kC.pC// satisfies kvCs k < �s < �1. This

implies f kC.p/ 2 V� and is .�=2/-close to f kC.pC/.

Since � is an homoclinic channel, W s.pC/ is transverse to W u.�/ at p, and
W u.p�/ is transverse to W s.�/ at p.

We apply two versions of the lambda lemma [26, 27, 50, 65, 85], and derive
two transversality properties. The first version is concerned with the asymptotic
behavior of the backwards iterates of an .ns/-dimensional manifold transverse to
W u.�/. The second version is concerned with the asymptotic behavior of the
forward iterates of an .nuC nc/-dimensional manifold transverse to W s.x/ where
x 2 �.

5.1.1.C.I First application of the Lambda Lemma. First we apply the lambda
lemma to the .ns/-dimensional manifold W s.pC/ passing through the point p.
There exists a family of .ns/-dimensional compact disks

Ds
k�.p/ � W s.pC/

centered at p such that f �k
�

.Ds
k�
.p// C 1-approaches as k� ! 1, a disk of

fixed radius in W s.f �k
�

.p�// and centered at f �k
�

.p�/. Denote

(5.3) Ds.f �k
�

.p//´ f �k
�

.Ds
k�.p// � W s.f �k

�

.pC//;

the disk centered at f �k
�

.p/ that is asymptotic to a moving disk of fixed size in
W s.f �k

�

.p�//.
Choose k� large enough and Ds

k�
.p/ sufficiently small so that Ds.f �k

�

.p//

is contained in h.B�c .x
�
c /�B�u.0/�B�s .0// and is �=2-close to W s.f �k

�

.p�//

in the C 1-topology.
Due to the compactness of � and � , the size of the disk Ds.f �k

�

.p// can be
chosen independently of p 2 � and of k�.



26 M. GIDEA, R. DE LA LLAVE, AND T. SEARA

5.1.1.C.II First transversality property. Since Ds
k�
.p/ is transverse to W u.�/

at p:

(5.4) Ds.f �k
�

.p// is transverse to W u.�/ at f �k
�

.p/ for any k� � n�:

5.1.1.C.III Second application of the Lambda Lemma. We now apply the lambda
lemma to the .nc C nu/-dimensional manifold W u.�/ at the point f �k

�

.p/,
which is transverse to W s.f �k

�

.pC// at f �k
�

.p/. In particular, it is transverse
to Ds.f �k

�

.p//.
There exists a family of .nc C nu/-dimensional disks

Dcu
k�;kC

.f �k
�

.p// � W u.�/;

centered at f �k
�

.p/, with each disk being a neighborhood of f �k
�

.p/ inW u.�/,
such that each f kCCk�.Dcu

k�;kC
.f �k

�

.p/// approaches, in the C 1-topology as
kC ! 1, a disk of fixed size in the unstable directions contained in W u.�/ and
centered at f kC.pC/ as kC !1.

If we choose k� and kC large enough and fixed, for every disk

(5.5) Dcu.f �k
�

.p//´ h.B��c .x
�
c / � B��u .v

�
u / � f0g/ � Dcu

k�;kC
.f �k

�

.p//

with ��c > 0 and ��u > 0 small enough, we have that f kCCk�.Dcu.f �k
�

.p/// is
�=2-close, in the C 1-topology, to some disk of the form h.B

�
C
c
.xCc // � B

�
C
u
.0/ �

f0g/ contained in W u.�/ for some �Cu > 0; �Cc > 0. Define

(5.6) Dcu.f kC.p//´ f kCCk�.Dcu.f �k
�

.p///:

We have that �Cu > 0 depends on ��u and ��c but is independent of k� and kC

provided they are large enough, and �Cc > 0 depends on ��u ; �
�
c ; k

�; kC. For
k�; kC fixed, the smaller ��u ; �

�
c , the smaller �Cu > 0; �Cc > 0.

Here we should note that, whileDcu.f �k
�

.p// is defined via the h-coordinates,
which are onlyC 0, it is in fact contained inW u.�/, so it is embedded in aC 1-disk.
Hence we can measure its distance away fromW u.�/ in terms of theC 1-topology.
Also, note that Dcu.f kC.p// t W s.f kC.pC//. We derive the following:
5.1.1.C.IV Second transversality property. For kC sufficiently large and fixed,
there exist �Cu > 0 and �Cc > 0 such that for each ´Cc 2 B

�
C
c
.xCc /, w

C
u 2 B

�
C
u
.0/,

(5.7) Dcu.f kC.p// is topologically transverse to h.f´Cc g � fw
C
u g � B�s .0//;

where �s is defined in (5.1).
See [58] for a definition of topological transversality. Since the linearized coor-

dinates h are C 0, the ns-disks h.f´Cc g�fw
C
u g�B�s .0// in (5.7) are only C 0. This

is why we have to use the notion of topological transversality rather than the dif-
ferentiable one. Property (5.7) holds true for the following reasons. The ns-disks
h.f´Cc g � fw

C
u g � B�s .0// depend in a C 0-fashion on ´Cc and wCu . For ´Cc D xCc
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and wCu D 0 the corresponding ns-dimensional disk is a part of the stable fiber
W s.f kC.pC//, which is differentiably transverse to the .nc C nu/-dimensional
disk Dcu.f kC.p//. Differentiable transversality implies topological transversal-
ity, and topological transversality is C 0-stable.

Property (5.7) implies that

(5.8) �c;u
�
h�1.Dcu.f kC.p///

�
� B

�
C
c
.xCc / � B

�
C
u
.0/;

where �c;u is the projection onto the .c; u/-subspace of .Eu � Es/� relative to
the h-coordinate system.

Due to the compactness of � and � , �Cu can be chosen independently of p 2 �

and of k�; kC, provided they are large enough, but will depend on ��u ; �
�
c , whereas

�Cc can be chosen independently of p 2 � , but will depend on ��u ; �
�
c ; k

�; kC.
5.1.1.D Choice of n�. Fix � > 0, and let n� > 0 be sufficiently large so that the
conditions in Section C hold. We impose additional conditions on n�.

Since � is compact, we can choose n� > 0 such that for every k� � n� and ev-
ery p 2 � , the ns-dimensional compact disk Ds.f �k

�

.p// given in (5.3) always
satisfies the transversality condition (5.4). In other words, k� can be chosen uni-
formly with respect to p 2 � . This n� is the number that appears in the statement
of Lemma 3.1.

Fix such an n� depending on � and independent of p 2 � .
For a fixed choice of p 2 � and of k� > n�, let Dcu.f �k

�

.p// be the disk
attached to f �k

�

.p/ described in (5.5) for some ��c > 0, ��u > 0. For every
kC � n�, the .k� C kC/th iterate of Dcu.f �k

�

.p//, denoted by Dcu.f kC.p//

in (5.6), satisfies (5.7) and (5.8) for some �Cu and �Cc . The power kC can be
chosen uniformly with respect to p 2 � , and for kC fixed, the parameters �Cu and
�Cc depend on ��c and ��u .

It is also important to note that kC, �Cu , �Cc also depend on the angle of the
intersection between W u.�/ and W s.�/ at p 2 � . When the angle of intersection
is small, the radii �Cu and �Cc need to be chosen sufficiently small. However, our
argument is only qualitative, and making quantitative estimates on the dependence
of this product of disks on the angle of intersection is beyond the purpose of this
paper. Since � is compact, there exists a positive lower bound for the angle of
intersection, and thus we can make the choices of k� and kC uniform for all points
p 2 � .
5.1.1.E Prototype windows. For � > 0 fixed, choose and fix n� > 0 as in Sec-
tion C. Consider a point p in the homoclinic channel � . For fixed k�; kC � n�

consider a pair of disks: the ns-dimensional Ds.f �k
�

.p// as in (5.3) and the
.nc C nu/-dimensional Dcu.f kC.p// as in (5.6).

We make the following claim:
5.1.1.E.I Claim on m�. There exists m� � 0 depending on the size of the disks
Ds.f �k

�

.p// and Dcu.f kC.p// such that for every m � m� and every k0� �
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n�, if p0 2 � is such that

p0� D f k0�Cm.pC/;

then there exists a triplet of windowsW �, W C, W 0� with the following properties:

� W � is contained in a �=2-neighborhood of f �k
�

.p/ and therefore in a
�-neighborhood of f �k

�

.p�/;
� W C is contained in a �-neighborhood of f kC.pC/;
� W 0� is contained in a �=2-neighborhood of f �k

0�

.p0/ and therefore in a
�-neighborhood of f �k

0�

.p0�/;
� W � is correctly aligned with W C under f k�CkC ;
� W C is correctly aligned with W 0� under f m�kC ;
� the sizes of the windows W �, W C, W 0� do not depend on the points
p; p0 2 �; the size of W C depends only on the size of W � and on k�; kC;
the size of W 0� depends only on the size of W C and on m and kC.

In the above, p�, pC satisfy W u.p�/ \ W s.pC/ \ � D fpg, and p0�, p0C

satisfy W u.p0�/ \ W s.p0C/ \ � D fp0g. We will refer to W �, W C, W 0� as
prototype windows as we will use them in the next section to construct an infinite
sequence of correctly aligned windows, as described in the outline.

5.1.1.E.II Construction of W �. We construct the window W � about f �k
�

.p/ D

h.x�c ; v
�
u ; 0/, where kv�u k < �1 (see (5.1)). Consider the .ns/-dimensional disk

Ds.f �k
�

.p// through f �k
�

.p/ given in (5.3), and the .nc C nu/-dimensional
disk Dcu.f kC.p// through f kC.p/ given in (5.6).

We attach the .nc C nu/-dimensional disk

Dcu.f �k
�

.p// D f �k
C�k�.Dcu.f kC.p///

of fixed size independent of p, to the point f �k
�

.p/; see (5.6).
Then choose a C 0-family of ns-dimensional disks Ds.q/ D Ds.f �k

�

.p// of
fixed size independent of p, with q 2 Dcu.f �k

�

.p// satisfying the following
conditions:

� for q D f �k
�

.p/ the disk Ds.q/ is contained in Ds.f �k
�

.p//;
� for each q 2 Dcu.f �k

�

.p//, we have

f kCCk�.Ds.q// � h
�
f´Cc g � fw

C
u g � B�s .0/

�
;

where ´Cc 2 B
�
C
c
.xCc / and wCu 2 B

�
C
u
.0/ are defined as in (5.7).

Observe that, by construction, for each q 2 Dcu.f �k
�

.p//, Ds.q/ is topologi-
cally transverse to Dcu.f �k

�

.p//.
Summarizing, the .nc C nu/-dimensional disk Dcu.f �k

�

.p// is contained in
W u.�/, the ns-dimensional disk Ds.f �k

�

.p// is .�=2/-close in the C 1-topology
to W s.f �k

�

.p�//, and each disk f kCCk�.Ds.q// is topologically transverse to
Dcu.f kC.p//.
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We define the window W � and its exit and entry sets .W �/exit and .W �/entry,
respectively, by

W � D
[

q2Dcu.f �k
�
.p//

Ds.q/;

.W �/exit D
[

q2@Dcu.f �k
�
.p//

Ds.q/;

.W �/entry D
[

q2Dcu.f �k
�
.p//

@Ds.q/:

(5.9)

We choose the sizes of Dcu.f �k
�

.p// and of Ds.q/, for q 2 Dcu.f �k
�

.p//,
such thatW � is contained in a .�=2/-neighborhood of f �k

�

.p/; hence every point
in W � is �-close to f �k

�

.p�/.
We note that W � is a window; see Remark C.2.
We will impose additional conditions on the sizes of Dcu.f �k

�

.p// and Ds.q/

in Section 5.1.1.E.III.
We take a forward iterate f kCCk�.W �/ ofW �. The point f �k

�

.p/ is mapped
by f kCCk� onto f kC.p/. For kC � n� we have f kC.p/ 2 V�. The set
f kCCk�.W �/ is still a window, since it is a homeomorphic copy of W � under
f kCCk� , with the exit and entry sets being defined by transporting the exit and
entry sets of W �, respectively, through f kCCk� .

In fact, by construction

f k�CkC.W �/ D
[

q2Dcu.f �k
�
.p//

f k�CkC.Ds.q//:(5.10)

5.1.1.E.III Construction of W C. We construct a new window W C � V� about
f kC.pC/ D h.xCc ; 0; 0/ such that f kCCk�.W �/ is correctly aligned with W C

under the identity map, or, equivalently, W � is correctly aligned with W C under
f kCCk� . This new window will be a product of disks in the linearized coordi-
nates h. The construction follows below.

The image set Dcu.f kC.p// ´ f kCCk�.Dcu.f �k
�

.p/// is a .nc C nu/-
dimensional disk through f kC.p/ that is .�=2/-close to W u.�/; see (5.6). This
disk is transverse to W s.f kC.pC//. Also denote

Ds.f kC.q//´ f kCCk�.Ds.q//; q 2 Dcu.f �k
�

.p//:

For a given choice of the size of Dcu.f �k
�

.p//, we require �Cc > 0 and
�Cu > 0 to be sufficiently small, so that (5.7) and (5.8) hold. We also require
that �Cc ; �

C
u < �1.

Then we choose 0 < �Cs < �1 and require that all disks Ds.q/ be small enough
so that

(5.11) �s
�
h�1

�
Ds.f kC.q//

��
� int

�
B
�
C
s
.0/
�
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for all q 2 Dcu.f �k
�

.p//.
For future reference, we also have to set a lower bound for the sizes of the disks

Ds.q/, q 2 Dcu.f �k
�

.p//. There exist �2 > 0 defined by the property that

(5.12) int
�
�s
�
h�1.Ds.q//

��
� B�2.0/

for all q 2 Dcu.f �k
�

.p//.
We now define the second “prototype” window W C around f kC.pC/ to be

given in the h-coordinates by

W C D h
�
B
�
C
c
.xCc / � B

�
C
u
.0/ � B

�
C
s
.0/
�
;

.W C/exit D h
�
@B

�
C
c
.xCc / � B

�
C
u
.0/ � B

�
C
s
.0/

[ B
�
C
c
.xCc / � @B

�
C
u
.0/ � B

�
C
s
.0/
�
;

.W C/entry D h
�
B
�
C
c
.xCc / � B

�
C
u
.0/ � @B

�
C
s
.0/
�
:

By the product property of correct alignment, Lemma C.5, the choices that we
made imply that W � is correctly aligned with W C under f kCCk� .

It is useful at this point to summarize the interdependence of the parameters
involved in the construction of the windows W � and W C so that they are correctly
aligned under f k�CkC .

� The quantities �Cc , �Cu , �Cs from above can be chosen independently of the
point p 2 � , but they depend on k�; kC on the sizes of the disks involved
in the definition of the window W �.

� The powers k�; kC can be chosen arbitrarily large with k� � n� and
kC � n�, where n� depends only on � and not on p 2 � .

� The disks Dcu.f �k
�

.p// and Dcu.f kC.p//, and implicitly the parame-
ters �Cc and �Cu , depend on k� and kC. In particular, for fixed k� and kC,
the parameters �Cc and �Cu depend on the size of the disk Dcu.f �k

�

.p//;
the smaller the disk Dcu.f �k

�

.p// is, the smaller �Cc and �Cu need to be
chosen. This is due to the coupling of the center and hyperbolic dynamics,
which mixes the center and unstable directions when iterated along the ho-
moclinic orbit. That is, the center and unstable directions of a disk are not
preserved when the disk is iterated along a homoclinic orbit, as they “get
mixed,” therefore, the image of a center-unstable rectangle iterated along
the stable manifold of a point does not remain a rectangle anymore, as the
rectangle “gets distorted.”

� The disks Ds.q/, q 2 Dcu.f �k
�

.p//, and implicitly the parameter �2
in (5.12) depend on k� and kC. The sizes of these disks can be chosen
independently of the size of the disk Dcu.f �k

�

.p// provided this is suf-
ficiently small. That is, if Dcu.f �k

�

.p// is replaced by a smaller disk
zDcu.f �k

�

.p// � Dcu.f �k
�

.p//, then we simply restrict the family of
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disks Ds.q/ to those q 2 zDcu.f �k
�

.p// without having to modify the
size of the disks Ds.q/.

� Parameter �Cs can be chosen independently of k� and kC provided that the
disks Ds.f �k

�

.q//, q 2 Dcu.f �k
�

.p//, are chosen small enough,

5.1.1.E.IV Choice of m�. Now we show that there exists a number m� with the
property that for every m � m� and every k0� � n�, and for every point p0 2 �

with p0� D f mCk0�.pC/, we can construct a window W 0� near f �k
0�

.p0/ in a
similar way to which we have constructed W � such that W C is correctly aligned
with W 0� under f m�kC .

Since the power m � kC should be nonnegative, we first require m� � kC. We
also fix k0C D kC � n�.

A key observation is that, since W C is a window of product type relative to
the h-coordinates, the image f m0.W C/ is also a window of product type relative
to the h-coordinates, for any iterate f m0 , provided that f k.W C/ remains in the
domain V� of the map h for 0 � k � m0. This is due to the fact that, relative to
the linearized coordinates, the map f is conjugate to Nf (see Appendix B).

Even in the case when f m0.W C/ does not entirely remain in V� (e.g., it “es-
capes” in the unstable directions), f m0.W C/\V� contains a subwindow of prod-
uct type, say �W . If this window �W is correctly aligned with W 0� under the identity
map, it immediately follows that f m0.W C/ itself is correctly aligned with W 0�.
So for all practical purposes we can assume that f m0.W C/ stays in V�.

We now take �1 from (5.1) and �2 from (5.12). By (5.2), there exists m� � kC

large enough so that for m0 � m� � kC, f m0.h.fxCc g �B�
C
u
.0/� f0g// contains a

disk in W u.h.ff m0.xCc /g � f0g � f0g// of radius �1 relative to the h-coordinates,
that is:

(5.13) int�f m0.h.fxCc g � B
�
C
u
.0/ � f0g//� � h

�
ff m0.xCc /g � B�1.0/ � f0g

�
;

and f m0.h.fxCc g � f0g � B
�
C
s
.0/// is contained in a disk in W s.h.ff m0.xCc /g �

f0g � f0g// of radius �2, that is,

(5.14) f m0
�
h.fxCc g � f0g � B

�
C
s
.0//

�
� int�h.ff m0.xCc /g � f0g � B�2.0//�:

Observe that the parameter �2 in (5.12) depends on k0� and k0C D kC.
Fix m� with these properties. Note that m� depends, in particular, on the size

of the unstable component B
�
C
u
.0/ of the previous window W C, which in turn

depends on the size of the disk Dcu.f �k
�

.p// that is used in the construction of
the first windowW �; the smaller the radius �Cu is, the largerm� needs to be chosen
in order to satisfy (5.13).
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5.1.1.E.V Construction of W 0�. Let m � m� and let m0 D m� kC. Assume that
p0 2 � is such that p0� D f mCk0�.pC/. We construct a third window W 0� near
f �k

0�

.p0/ in a similar way to the construction of W � such that W C is correctly
aligned under f m0 with W 0�.

Consider the point f �k
0�

.p0/ 2 W u.f �k
0�

.p0�//. Choose a sufficiently small

.nc C nu/-dimensional disk zDcu.f �k
0�

.p0// � Dcu
k0�;k0C

.f �k
0�

.p0// in W u.�/

such that it contains the point f �k
0�

.p0/ and satisfies the following condition:

(5.15) �c;u
�
h�1

�
zDcu.f �k

0�

.p0//
��
�

int
�
h�1 � f m0 � h.B

�
C
c
.xCc / � B

�
C
u
.0/ � f0g/

�
:

The size of the disk zDcu.f �k
0�

.p0// can be chosen to depend only on the win-
dow W C, on m0 and �1 in (5.1), and independently of the point p0 2 � . Then we
choose a C 0-family of ns-dimensional disks �Ds.q0/, with q0 2 zDcu.f �k

0�

.p0//,
such that for �2 in (5.12)

(5.16) int
�
�s.h

�1
� �Ds.q0//

��
� B�2.0/

for all q0 2 zDcu.f �k
0�

.p0//, and when q0 D f �k
0�

.p0/,

�Ds.f �k
0�

.p0// � W s.f �k
0�

.p0C//:

As noted earlier, �2 is independent of the choice of the disk zDcu.f �k
0�

.p0//

provided this is sufficiently small, and only depends on k0� and k0C D kC. For
fixed k0�, k0C, and �2 sufficiently small, a family of disks �Ds.q0/ satisfying (5.16)
can always be constructed.

Conditions (5.14) and (5.16) imply that the projection of each �Ds.q0/ for q0 2
zDcu.f �k

0�

.p0// onto the stable coordinates contains the stable component of
f m0.W C/ inside it, that is,

(5.17) int
�
�s
�
h�1.�Ds.q0//

��
� h�1 � f m0 � h.f´Cc g � f0g � B

�
C
s
.0//;

for all ´Cc 2 B
�
C
c
.xCc /.

The window W 0� is then defined similarly to W �, by

W 0� D
[

q02 zDcu.f �k
0�
.p0//

�Ds.q0/;

W 0exit
D

[
q02@ zDcu.f �k

0�
.p0//

�Ds.q0/;

W 0entry
D

[
q02 zDcu.f �k

0�
.p0//

@�Ds.q0/:

(5.18)

Conditions (5.15) and (5.17) imply that the product property of correct align-
ment applies (Lemma C.5), and hence we obtain that W C is correctly aligned
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FIGURE 5.1. Construction of windows.

under f m0 with W 0�. An important point to keep in mind is that we have no con-
trol on the size of the .nc C nu/-dimensional disk zDcu.f �k

0�

.p0// involved in
the construction W 0�. We choose this disk so that its center-unstable part is con-
tained in the center-unstable component of f m0.W C/. Thus, the size of the disk
zDcu.f �k

0�

.p0// utilized in the construction W 0� may be smaller than the size of
the disk Dcu.f �k

0�

.p// utilized in the construction of W �.
A schematic representation of the construction of the triplet of windows W �;

W C; W 0� constructed so far is shown in Figure 5.1.
We anticipate that, in order to continue this construction of triplets of correctly

aligned windows starting from W 0�, the number of iterates m0� that we need to
choose at the next step, in order to satisfy (5.13), may need to be larger than m�.
Without further conditions on the dynamics, we cannot guarantee a uniform choice
ofm� to work for all steps of the construction. In Appendix D we show an example,
which was kindly communicated to us by Dmitry Turaev, showing that a “uniform”
version of this shadowing lemma is not true in general.

5.1.1.F Definition of m�i . Let p0 2 � be an arbitrary homoclinic point, and
let n0 � n�. We construct a pair of windows W �

0 in a �=2-neighborhood of
f �n0.p0/, and W C

0 in a �-neighborhood of f kC.pC0 /, where kC � n� is fixed,
such that W �

0 is correctly aligned with W C
0 under f n0Ck

C

. Then, the procedure
in Section 5.1.1.E.IV provides an m�0 D m�0.n0/ that depends on W �

0 and W C
0 ,

and implicitly on n0, and is independent of p0 2 � . Inductively, if m�0; : : : ; m
�
i�1
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have been defined, let

n0 � n�; : : : ; ni�1 � n�; ni � n�;

m0 � m�0.n0/;

:::

mi�1 � m�i�1.n0; : : : ; ni�1; m0; : : : ; mi�2/:

(5.19)

Let
p0; : : : ; pi 2 �

such that f njCmj�1.pCj�1/ D p�j for j D 1; : : : ; i .
Let

W �
0 ; W C

0 ; W �
1 ; : : : ; W �

i ; W C
i ;

be a sequence of correctly aligned windows, constructed as above, such that
� W �

j�1 is in a �=2-neighborhood of f �nj�1.pj�1/,

� W C
j�1 is in a �-neighborhood of f kC.pCj�1/,

� W �
j�1 is correctly aligned with W C

j�1 under f nj�1Ck
C

, and

� W C
j�1 is correctly aligned with W �

j under f mj�1�k
C

, for j D 1; : : : ; i .

Then the procedure in Section 5.1.1.E.IV provides an

m�i D m�i .n0; : : : ; ni�1; ni ; m0; : : : ; mi�1/

as in the statement of Lemma 3.1, that depends onW �
0 ; : : : ; W C

i ; hence on n0; : : : ;
ni�1; ni , m0; : : : ; mi�1, but is independent of p0; : : : ; pi�1 2 � .
5.1.1.G Construction of an infinite sequence of correctly aligned windows.

Take a pseudo-orbit fyigi�0 as in the statement of Lemma 3.1. We implicitly
assume that f ni .yi / is in the domain ��.�/ of � , and hence � � f ni .yi / is in the
range �C.�/ of � . Thus W u.f ni .yi // \W s.�.f ni .yi // \ � D fpig for some
uniquely defined homoclinic point pi 2 � . Fix kC � n�.

Starting with the homoclinic point p0 we construct inductively an infinite se-
quence of correctly aligned windows along the pseudo-orbit,

W �
0 ; W C

0 ; W �
1 ; : : : ; W �

i ; W C
i ; W �

iC1; W
C
iC1; : : : ;

such that for each i � 0 we have (choosing p�i D f ni .yi /, pCi D �.f ni .yi //,
k�i D ni , and kC fixed)

� W �
i lies within a �-neighborhood of yi ;

� W C
i lies within a �-neighborhood of f kC � � � f ni .yi /, where ni � n�;

� W �
i is correctly aligned with W C

i under f kCCni ;
� W �

iC1 lies within a �-neighborhood of yiC1 D f mi � � � f ni .yi /;

� W C
i is correctly aligned with W �

iC1 under f mi�k
C

, where mi � m�i .
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The shadowing property of correctly aligned windows, Theorem C.4, implies
that there exists a point ´0 2 W �

0 whose forward orbit visits all windows in the
prescribed order. In particular, the orbit points given by ´iC1 D f miCni .´i /

satisfy ´i 2 W �
i for all i � 0. Since eachW �

i is contained inside a �-neighborhood
of yi , it follows that d.´i ; yi / < � for all i � 0.

5.1.2 A Proof Using the Obstruction Property
In this section we give an alternative proof of Theorem 3.1.

5.1.2.A Outline. The proof is based on the construction of a nested sequence of
closed balls BiC1 � Bi in a neighborhood of the first point of the pseudo-orbit y0
such that taking ´0 2 Bk D

T
0�i�k Bi one has that ´0 2 B�.y0/ and ´iC1 D

f miCni .´0/ 2 B�.yiC1/ for i D 0; 1 : : : ; k, for any k 2 N. Moreover, taking
´0 2 B1 D

T
i�0Bi ¤ ¿, one has that ´iC1 2 B�.yiC1/ for any i 2 N.

The argument will be done by induction.
We will define the values of n� and m� at every step of the induction process.

We will see that n� can be taken once and for all butm� will depend on the previous
choices.
5.1.2.B Choice of n� and m�. Consider the homoclinic channel � and the corre-
sponding scattering map � W ��.�/! �C.�/. We will choose � > 0 and consider
V� and V� contained in neighborhoods of size � of the compact manifolds � and
� , respectively.

We define n� D n�.�/ to be the same number as in Section 5.1.1.C. In particular,
given any point p 2 � , for any n 2 N with n � n�, one has that f �n.p/ 2 V�.
Moreover, this property also holds for points in W u;s.�/\V� when iterating them
backwards or forward, respectively.

Moreover, we will modify n� to have the following additional property. Assume
we have p 2 � and let p�; pC 2 � be the unique points for which W u.p�/ \

W s.pC/ \ � D fpg.

(1) Let a point x 2 W s.f �k
�

.p�// and B � B�.f
�k�.p�// be any ball

centered at x of fixed radius � > 0 small enough. Then we have that

B � V�; x 2 B \W s.f �k
�

.p�// ¤ ¿:

As W s.pC/ intersects transversally W u.�/ at the homoclinic point p,
by the lambda lemma, there exists a point xx 2 W s.pC/ \ V� such that
f �k

�

.xx/ 2 B if k� > n�. The value of n� depends on �, which is fixed
once and for all, and also on the angle of intersection of the stable and
unstable manifolds of � along � which, by the hypothesis of compactness,
is bounded below by a fixed quantity.

(2) By continuity, a ball V � V� exists centered at xx such that f �k
�

.xx/ 2

f �k
�

.V / � B .
The value of n� will be fixed from now on. Now we explain how we choose m�

at every step of the process.
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Assume that we also have p0 2 � and p0�, p0C with the same properties as p
and p�, pC, and such that f mCk0�.pC/ D p0�. Equivalently,

(5.20) pC D f �.k
0�Cm/.p0�/:

Take the point xx 2 W s.pC/ and the ball xx 2 V � V� centered at xx . Then choose
kC � n�. The value of kC will be fixed along the process.

(1) We know that f kC.xx/ 2 B�.f
kC.pC//\V�\W

s.f kC.pC//, and there
exists a ball U centered at f kC.xx/ such that

U � B�.f
kC.pC// � V�;

f kC.xx/ 2 U \W s.f kC.pC// ¤ ¿;

f �k
C

.U / � V:

(2) As, by (5.20), f kC.pC/ D f �.k
0�Cm�kC/.p0�//, the ball U satisfies

f kC.xx/ 2 U \W s.f �.k
0�Cm�kC/.p0�/// ¤ ¿:

(3) Now we apply the lambda lemma to U ; we know that W s.p0C/ intersects
W u.�/ transversally at p0, and therefore, if k0� Cm � kC > m� is large
enough (depending on the size of U ), there exists xx0 2 W s.p0C/ such that
f �.k

0�Cm�kC/.xx0/ 2 U .
(4) By continuity, there exists a ball centered at xx0 2 V 0 � V� such that

f �.k
0�Cm�kC/.V 0/ � U .

In summary, given a point x 2 W s.f �k
�

.p�// and a ball B centered at x of fixed
radius � > 0 small enough with the property that

B � B�.f
k�.p�// � V�;

x 2 B \W s.f �k
�

.p�// ¤ ¿;

we have produced the following:
(1) for k� � n�, a ball V � V� , centered at a point xx 2 W s.pC/ \ V� such

that f �k
�

.V / � B;
(2) for kC � n� and fixed, a ball U � B�.f

kC.pC// � V� centered at the
point f kC.xx/ 2 W s.f kC.pC// \ U such that f �k

C

.U / � V ;
(3) for k0� C m � kC � m�, a ball V 0 � V� , centered at a point xx0 2

W s.p0C/ \ V� such that f �.k
0�Cm�kC/.V 0/ � U ;

(4) moreover, as k0� � n�, we can also ensure f �k
0�

.V 0/ � B�.f
k0�.p0�//.

The values of kC; k�; k0� are taken bigger than n�, which is already fixed, but
the value of m� depends on the size of U and m� > n�, but it is independent of
the points p; p0; p�; .p0/�. As the balls U and V will decrease in size during the
induction process, the value of m� will increase depending on the previous iterates.
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5.1.2.C Inductive construction. Now we begin the construction of the shadowing
orbit f´ig once the pseudo-orbit fyig is given. The required values of n�and kC

are fixed (one can use, for instance, kC D n�), and m�i does not depend on the
given pseudo-orbit, but only on the numbers ni and mj .

The first step in the induction procedure is done separately because it requires a
slightly different reasoning. In this first step, p� D f n0.y0/, pC D �.f n0.y0//,
and k� D n0.

(1) Choose x0 2 W s.y0/, and let B0 be any ball centered at x0 of fixed radius
� > 0 such that

B0 � B�.y0/ � V�;

x0 2 B0 \W s.y0/ ¤ ¿:

As W u.�/ t W s.�.f n0.y0/// at an homoclinic point that we call p0, by
the lambda lemma there exists a point xx0 2 W s.�.f n0.y0/// \ V� such
that f �n0.xx0/ 2 B0 if n0 � n�.

(2) By continuity, there exists a ball V0 � V� centered at xx0 such that

(5.21) f �n0.V0/ � B0 � B�.y0/ � V�:

Now we proceed with the second step of the induction procedure:
(1) By the definition of n�, as xx0 2 W s.�.f n0.y0/// \ V� , as kC � n�, we

know that

f kC.xx0/ 2 W s
�
f kC.�.f n0.y0///

�
\ B�

�
f kC.�.f n0.y0///

�
� V�:

(2) By continuity, there is a ball U1 centered at f kC.xx0/ such that

(5.22)

U1 � B�

�
f kC.�.f n0.y0///

�
� V�;

f kC.xx0/ 2 U1 \W s
�
f kC.�.f n0.y0///

�
;

f �k
C

.U1/ � V0:

(3) Recall that y1 D f m0.�.f n0.y0///, and therefore f kC.�.f n0.y0/// D

f kC�m0.y1/.
(4) The next step is to apply the lambda lemma. Now p0� D f n1.y1/, p0C D

�.f n1.y1//, and k0� D n1. As W u.�/ intersects W s.�.f n1.y1/// trans-
versally at an homoclinic point p1, if we take n1 > kC � n� and m0 >

m�0 , where m�0 is the value m� given in the general step and depends on
the size of U1 and therefore on n0, one has that n1 C m0 � kC > kC C

m0 � kC D m0 > m�0 , and there exists x1 2 W s.�.f n1.y1/// and a ball
V1 centered at x1 such that

f �n1.x1/ 2 f �n1.V1/ � B�.y1/;(5.23)

f �.n1Cm0�k
C/.x1/ 2 f �.n1Cm0�k

C/.V1/ � U1:(5.24)
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FIGURE 5.2. The construction in the obstruction argument.

(5) If we now take B1 D f �.n0Cn1Cm0/.V1/, we have, using (5.24), (5.22),
and (5.21), that

(5.25)
B1 D f �.n0Cn1Cm0/.V1/ D f �n0�k

C

� f �n1�m0Ck
C

.V1/

� f �n0�k
C

.U1/ � f �n0.V0/ � B0:

Moreover, if we take ´0 2 B1 it satisfies, by (5.25) and (5.23) and using
that B0 � B�.y0/,

´0 2 B�.y0/;

f n0Cm0.´0/ 2 f �n1.V1/ � B�.y1/:

A schematic illustration of the first step in the induction construction above is
shown in Figure 5.2.

Once we have done the two first steps, we can proceed with the general induction
step.

Assume we have built the sequence xxi 2 W s.�.f ni .yi ///\V� , a ball Vi � V�

centered at xxi , i D 0; : : : ; j , and UiC1 a ball centered at f kC.xxi / for ni > kC �

n�, and mi � m�i for i D 0; : : : ; j , with the following properties:

� f �ni .Vi / � B�.yi /,
� f �.niCmi�1�k

C/.Vi / � Ui ,
� UiC1 � B�.f

kC.�.f ni .yi ////,
� f kC.xxi / 2 UiC1,
� f �k

C

.UiC1/ � Vi .

We also assume that we have xxjC1 2 VjC1 \W s.�.f njC1.yjC1/// such that

� f �njC1.VjC1/ � B�.yjC1/,
� f �.njC1Cmj�k

C/.VjC1/ � UjC1.
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Let

BjC1 D f �njC1 � f �
Pj

iD0
miCni .VjC1/;

and we have that BjC1 � Bj � Bj�1 � � � � � B0.
To proceed, first we look for a ball UjC2 centered at f kC.xxjC1/ such that

UjC2 � B�

�
f kC.�.f njC1.yjC1///

�
;

f kC.xxjC1/ 2 UjC2 \W s
�
f kC�.f njC1.yjC1//

�
;

f �k
C

.UjC2/ � VjC1:

The value of kC and n� are fixed, but the size of UjC2 depends on the size of
VjC1 and therefore on the previous steps. Then, applying the lambda lemma, us-
ing yjC2 D f mjC1.�.f njC1.yjC1// and W u.�// t W s.�.f njC2.yjC2/// at
a point pjC2, we will find xxjC2 2 W s.�.f njC2.yjC2/// and a ball VjC2 � V�
centered at xxjC2 such that, if njC2 > kC � n� and mjC1 > m�jC1, then

� f �njC2.VjC2/ � B�.yjC2/,
� f �.njC2CmjC1�k

C/.VjC2/ � UjC2.

Observe that the value m�jC1 is the general value m� that now depends on the
size of UjC2, and therefore of all the previous steps.

Finally, define

BjC2 D f �
Pj

kD0
mkCnk � f �njC2�mjC1�njC1.VjC2/:

Then we have

f �njC2�mjC1�njC1.VjC2/ D f �njC1�n
�

� f �njC2�mjC1Cn
�

.VjC2/

� f �njC1�n
�

.UjC2/ � f �njC1.VjC1/:
(5.26)

Therefore

BjC2 � f �
Pj

kD0
mkCnk � f �njC1.VjC1/ D BjC1:

This finishes the induction procedure. Observe that if ´0 2
T

0�i�j Bj and we
consider the orbit ´iC1 D f miCmi .´i /, we have that

� ´0 2 B0 � B�.y0/, and
� for all i D 0; : : : ; j , ´0 2 Bi , and therefore, by the definition of Bi ,

´i D f n0Cm0C���Cni�1Cmi�1.´0/ 2 f �ni .Vi / � B�.yi /:

To finish the proof we just point out that the definition of m�jC1 depends on the
size of the balls UjC1 but not on the points yj themselves. Therefore, if another
pseudo-orbit is given with the same indexes ni and mj , the same choices of n� and
m�i will work.
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5.1.3 Remarks
Remark 5.1. In the proof of Lemma 3.1 given in Section 5.1.1, we have constructed
windows W �

i ; W C
i ; W �

iC1 in V� so that f t .W C
i / � V�, 0 � t � mi � kC, so the

corresponding segment of the shadowing orbit of ´i stays in V� for this entire time.
Thus, the construction in the proof of the lemma enables one to find shadowing
orbits that stay close to � for any sufficiently long time intervals between two
consecutive homoclinic excursions.

Remark 5.2. Lemma 3.1 provides a true forward orbit that shadows a given forward
pseudo-orbit. The current proofs do not allow for immediately extending this result
for bi-infinite orbits. We remark that there is no assumption on the inner dynamics
given by fj�. In the proof given in Section 5.1.1, the alignment of windows in
the center directions was achieved by defining, at each step of the construction,
the center component of W �

iC1 as a ball inside some forward image of the center-
component of W C

i . Thus, the consecutive balls in the center direction can get
smaller and smaller in size as i increases. So if we try to continue the procedure in
backwards time, the center-components of the windowsW C

i , i � 0, may get bigger
and bigger in size. Thus, we may lose control on the shadowing trajectory; that is,
the resulting shadowing orbit does not follow �-closely the prescribed pseudo-orbit.

Remark 5.3. Statements related to Lemma 3.1 appear in [39,40,60]. The main dif-
ference is that the statements in these papers assume certain geometric conditions
on the inner dynamics.

There is also a related version of the shadowing lemma in [52], but only for finite
pseudo-orbits; moreover, those pseudo-orbits are subject to certain conditions that
are very different from ours.

Remark 5.4. It is interesting to note that the geometric proof of Lemma 3.1 given
in Section 5.1.2 works in infinite dimensions. One only needs to substitute the
compactness assumptions by the assumption that the regularity of the maps—and
hence of the manifolds—are uniform.

Indeed, infinite-dimensional versions of the theory of normally hyperbolic man-
ifolds appear in [4, 86]. An infinite-dimensional version of the inclination lemma
appears in [29]. Note also that the nested-balls arguments also work in infinite di-
mensions when the space we consider is reflexive (or the dual of Banach space).
It suffices to note that by the Banach-Alaoglu theorem, balls are compact in the
weak-� topology.

5.2 Proof of Theorem 3.6
Denote by � the measure referred to in the statement of the theorem, which

is absolutely continuous with respect to the Lebesgue measure on �. Then f

preserves �, and � takes positive measure sets onto positive measure sets.
Choose a small open disk B0 of x0 in �, with B0 � U such that Bi ´

� i .B0/ � U and diam.Bi / � �=2 for all i D 0; : : : ; n. For the given pseudo-orbit
fxig of � , with xiC1 D �.xi /, we have that xi 2 Bi for all i . We will use Poincaré
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recurrence to produce a new pseudo-orbit fyig, with yiC1 D f mi � � � f ni .yi /,
where mi and ni are as in Lemma 3.1 such that yi 2 Bi for all i , and hence
d.yi ; xi / � �=2. Invoking Lemma 3.1 will provide us with a true orbit f´ig with
´iC1 D f miCni .´i / such that d.´i ; yi / � �=2, hence d.´i ; xi / < �.

We first establish some basic facts about recurrent points.

5.2.1 First Recurrence Property
For an open set B � U � �, a subset A � B of positive measure in B , and

k� > 0, we define

P k�.A;B/ D fx 2 A j .f k�/t .x/ 2 B for some t � 1g:

The set P k�.A;B/ � A consists of the recurrent points of A that return to B

under some positive iteration of f k� . Since �-a.e. point in U is recurrent, and
B � U , Poincaré recurrence for the map f k� implies that P k�.A;B/ � A has
full measure in A, and hence is of positive measure itself.

For each x 2 P k�.A;B/ let tmin.x/ be the smallest positive integer t � 1 with
.f k�/t .x/ 2 B . Let

� D f� � 1 j 9x 2 P k�.A;B/ s.t. tmin.y/ D �g

be the set of the return times to B . For each � 2 �, let

(5.27) P k�

� .A;B/ D fx 2 P k�.A;B/ j tmin.y/ D �g

be the set of points with a prescribed return time � 2 � under f k� .
Since Pk�.A;B/ D

S
��1 P

k�

� .A;B/, with the sets P k�

� .A;B/ mutually dis-
joint, there exists �� � 1 such that �.P k�

�� .A;B// > 0. Since f k� is area preserv-
ing, �.f k���.P k�

�� .A;B// D �.P k�

�� .A;B// > 0.
Thus, every point in P k�

�� .A;B/ � A � B will return to a point in B under
f k��� . The set

(5.28) Qk�

�� .B;A/´ f k���
�
P k�

�� .A;B/
�
� B

has positive measure in B . In terms of f , every point in P k�

�� .A;B/ � A � B will
return to a point in Qk�

�� .A;B/ � B in exactly k��� � k� iterates.

5.2.2 Second Recurrence Property
Consider now two open sets B � U and B 0 D �.B/ � U . Let A be a subset

of B of positive measure. By the above, P k�

�� .A;B/ and Qk�

�� .A;B/ are positive
measure subsets of B . Since the scattering map � sends positive measure sets onto
positive measure sets, it follows that

(5.29) A0 ´ �
�
Qk�

�� .A;B/
�
� B 0

is a positive measure subset of B 0.
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5.2.3 Inductive Construction of Pseudo-orbits
Starting with B0, we construct inductively a nested sequence of subsets �i �

B0 of positive measure of B0 such that each set is carried onto a positive measure
subset of Bi , i D 1; : : : ; n, via successive applications of some large powers of f
interspersed with applications of � .

Use Lemma 3.1 for �=2, and consider the value n� depending on �=2 as provided
by this lemma. Let A0 ´ B0, let �0 � 1 such that P n�

�0
.A0; B0/ � A0 (see (5.27))

has positive measure, and

�0 ´ P n�

�0
.A0; B0/ � A0:

Consider the set Qn�

�0
.A0; B0/ � B0 (see (5.28)), which has positive measure.

Then consider the set A01 ´ �.Qn�

�0
.A0; B0// � B1 (see (5.29)), which has pos-

itive measure in B1. Let n0 ´ n��0 and consider the value m�0 D m�0.n0/ given
by Lemma 3.1 for �=2. There exists � 00 � 1 such that the set

P
m�
0

� 0
0

.A01; B1/ � A01 � B1

(see (5.27)) has positive measure. Then the set Q
m�
0

� 0
0

.A01; B1/ � B1 (see (5.28))
also has positive measure in B1.

Each point y1 2 Q
m�
0

� 0
0

.A01; B1/ is of the form y1 D f m�
0
� 0
0.x0/, for some x0 2

Pm�

� 0
0

.A01; B1/ and � 00 � 1; each such x0 is of the form x0 D �.x/ for some x 2

Qn�

�0
.A0; B0/; and each such x is of the form x D f n��0.y0/ for some y0 2

P n�

�0
.A0; B0/ D �0 and �0 � 1. Denote m0 ´ m�0�

0
0 and A1 ´ Q

m�
0

� 0
0

.A01; B1/ �

B1. Thus, each y1 2 A1 can be written as

(5.30) y1 D f m0 � � � f n0.y0/

for some y0 2 �0, n0 � n�, and m0 � m�, where m0 D m�0�
0
0 and n0 D n��0.

Denote by �1 the set of points y0 2 �0 that correspond, via (5.30), to some
point y1 2 A1. We obviously have �1 � �0. The preliminary facts established
above show that �1 is a positive measure subset of B0.

Assume that at the j th step we have constructed a subset Aj � Bj , which has
positive measure in Bj , such that each point yj 2 Aj is of the form

(5.31) yj D f mj�1 � � � f nj�1 � � � � � f m0 � � � f n0.y0/;

for some y0 2 A0 � B0, with n0 � n�; : : : ; nj�1 � n� and m0 � m�0; : : : ; mj�1

� m�j�1, where n� and the m�
k

’s are as in Lemma 3.1. Let �j be the set of points
y0 for which the corresponding yj given by (5.31) is in Aj . We assume that �j �

�j�1 � � � � � �0, and that �j is a positive measure subset of B0.
It follows from the above preliminaries that, for some �j � 1, the sets

P n�

�j
.Aj ; Bj / � Bj and Qn�

�j
.Aj ; Bj / � Bj D f n��j .P n�

�j
.Aj ; Bj //
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have positive measure. Each point y 2 P n�

�j
.Aj ; Bj / returns to a point in

Qn�

�j
.Aj ; Bj / � Bj

after exactly n��j iterates of f . Denote nj ´ n��j . Since � is measure preserv-
ing, the set A0jC1 ´ �.Qn�

�j
.Aj ; Bj // � BjC1 has positive measure in BjC1. Let

m�j , depending on �=2 and on n0; : : : ; nj ; m0; : : : ; mj�1, be as in the Lemma 3.1.
There exists � 0j � 1 such that

P
m�
j

� 0
j

.A0jC1; BjC1/ � A0jC1 � BjC1

and Q
m�
j

� 0
j

.A0jC1; BjC1/ � BjC1 have positive measure. Each point

y 2 P
m�
j

� 0
j

.A0jC1; BjC1/

returns to a point in Q
m�
j

� 0
j

.A0jC1; BjC1/ � BjC1 after exactly m�j �
0
j iterates of

f . Denote AjC1 D Q
m�
j

� 0
j

.A0jC1; BjC1/, which is of positive measure. Then each

point yjC1 2 AjC1 is of the form

(5.32) yjC1 D f mj � � � f nj .yj /

for some yj 2 Aj , where nj D n��j � n� andmj D m�j �
0
j � m�j , with �j ; � 0j � 1.

Since yj is of the form (5.31), then

(5.33) yjC1 D f mj � � � f nj � � � � � f m0 � � � f n0.y0/

for some y0 2 �0, with n0 � n�; : : : ; nj�1 � n� and m0 � m�0; : : : ; mj � m�j .
Denoting by�jC1 the set of points y0 2 �0 that yield points yjC1 given by (5.34),
we obtain that �jC1 � �j is of positive measure. This completes the induction
step.

5.2.4 Shadowing of Pseudo-orbits
At the nth step we obtain a nested sequence of sets �0 � �1 � � � � � �n such

that each set �j , j D 0; : : : ; n, has positive measure in B0. Each point y0 2 �n

generates a pseudo-orbit of the form

(5.34) yjC1 D f mj � � � f nj .yj /

for j D 0; : : : ; n � 1, where nj and mj are as in Lemma 3.1. By construction,
each point yj is inside Bj , hence d.yj ; xj / < �=2. Then Lemma 3.1 provides the
existence of an orbit f j́ gjD0;:::;n with j́C1 D f mjCnj . j́ / such that d. j́ ; yj / <

�=2. Hence d. j́ ; xj / < � for all j .

Remark 5.5. In the proof of Theorem 3.6, instead of using the Poincaré recurrence
theorem we can use the nonwandering property given by Proposition 2.4. Starting
with B 00 D B0, there exists n0 � n� such that f n0.B 00/ \ B 00 ¤ ¿. The set
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zB 00 D f n0.B 00/\B
0
0 is an open set in B 00, and �. zB 00/ � B1. There exists m0 � m�0

such that f m0.�. zB 00// \ �. zB 00/ ¤ ¿. The set B 01 ´ �.f m0.�. zB 00// \ �. zB 00//

is an open set in B1. The construction can be continued recursively as before.
Given the open set B 0j � Bj obtained at the end of the .j � 1/th step, at step j

we construct zB 0j D f nj .B 0j / \ B 0j for nj � n�, �. zB 0j / � BjC1, and B 0jC1 ´

f mj .�. zB 0j //\ �. zB 0j / ¤ ¿ for mj � m�j . The initial points y0 2 B0 that generate
pseudo-orbits of the form (5.34) for j D 0; : : : ; n � 1 form an open set �n � B0.

This approach yields explicit estimates of the return times to B 0j and �. zB 0j /,

given by O.1=�.B 0j // and O.1=�.�. zB 0j ///, respectively. These estimates on the
return time, together with the data on the hyperbolic expansion/contraction rates
and on the angle of intersection between the stable and unstable manifolds (see
Remark 3.3) can be used to obtain explicit—but far from optimal—estimates on
the diffusion time.

5.3 Proof of Theorem 3.11
We notice that (3.2) is reminiscent of the forward Euler method with step �."/

for ordinary differential equations.
As JrS.zx0/ ¤ 0 at some point zx0 2 U � �0, we know that the solution

(5.35)
d

dt
z
.t/ D JrS � z
.t/

with z
.0/ D zx0 is not a constant solution. Let’s denote z
.t/ D �.t; zx0/ where
�.t; x/ is the flow of (5.35). Consider n D b��1c, where � D �."/ is the parame-
ter that appears in (3.2), and b�c denotes the floor function. Define two sequences:

zyi D z
.ti / D �.�t; zyi�1/; zxi D z�".zxi�1/; i D 1; 2; : : : ; n; zx0 D zy0;

where ti D i� and �t D �. We will use two facts.
On one hand, if we apply Gronwall’s lemma to the vector field (5.35), there

exists a constant K1 > 0 such that

(5.36) k�.�t; zy/ � �.�t; zy0/k � eK1�kzy � zy0k for zy; zy0 2 Uz
 :

On the other hand, also by (3.2), calling

zg.�/ D jg.�/j=� D o.1/;

there exists a constant K2 > 0 that is independent of � and " such that

(5.37) kz�".zx/ � �.�t; zx/k � K2�.�C zg.�// for zx 2 Uz
 :

Now one easily obtains that, by (5.37),

kzx1 � zy1k D kz�".zx0/ � �.�; zx0/k � K2�.�C zg.�//;

and, consequently, zx1 2 Uz
 .
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Now, using again (5.36) and (5.37), we get

kzx2 � zy2k D kz�".zx1/ � �.�; zy1/k

� kz�".zx1/ � �.�; zx1/k C k�.�; zx1/ � �.�; zy1/k

� K2�.�C zg.�//C eK1�kzx1 � zy1k � K2�.�C zg.�//.1C c/;

where we denote c D eK1� > 1.
Consequently, zx2 2 Uz
 . Now we proceed by induction. We assume that, for

some 0 � i � n, one has that

kzxi � zyik � K2�.�C zg.�//.1C c C c2 C � � � C ci�1/:

Using again (5.36) and (5.37) we obtain

kzxiC1 � zyiC1k D kz�".zxi / � �.�; zyi /k

� kz�".zxi / � �.�; zxi /k C k�.�; zxi / � �.�; zyi /k

� K2�.�C zg.�//C eK1�kzxi � zyik

� K2�.�C zg.�//.1C c C c2 C � � � C ci /:

Therefore, using that c D eK1�, that c � 1 D eK1� � 1 � K1�, and that n D
b��1c, for i D 0; 1; : : : ; n, we have that

kzxi � zyik � K2�.�C zg.�//
ci � 1

c � 1
�
K2

K1
.�C zg.�//eiK1�

�
K2

K1
.�C zg.�//eK1 :

(5.38)

As � D �."/ D o."/, there exists "1 such that if 0 < " � "1, we obtain that
the sequence zxi of the scattering map is also in Uz
 and is .�C zg.�//-close to the
orbit z
 :

zxiC1 D z�".zxi / 2 Uz
 � �; d.z
.ti /; zxi / < K.�."/C zg.�."///; i D 0; : : : ; n;

where zK D K2

K1
eK1 , and n D b��1c depends on ", for the increasing sequence

of parameters ti D i� 2 �0; 1�, i D 0; : : : ; n. The points zxi represent an orbit of
z�" in �; therefore the points xi D k".zxi / represent an orbit of �" in �" satisfying
d.xi ; 
".ti // < K.�."/C zg.�."///, where 
" D k" � z
 and K is a new constant.
This orbit zxi lies inside the set U
" D k".Uz
 / � �", where a.e. point is recurrent
for .f"/j�"

. See Figure 5.3.
We now apply Theorem 3.6 for the orbit .xi /iD0;:::;n of the scattering map �"

on �", where xi D k".zxi /, and we obtain that, for any � > 0 there exists an orbit
´iC1 D f

ki
" .´i / of f", which satisfies d.´i ; xi / < �, i D 0; : : : ; n. Therefore we

obtain that
d.´i ; 
".ti // < � CK.�."/C zg.�."///:
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FIGURE 5.3. A scattering path and a nearby orbit of the scattering map.

5.4 Proof of Corollary 3.12
By continuity, since JrS is transverse to one level set of the variable I in �, it

is transverse to a O.1/-family of level sets of the variable I . More precisely, there
exist two compact disks Dd � Bd , Ed � Td , of radii independent of ", such that
JrS is transverse to each level set fI D Iag at z�0.Ia; �a/ for Ia 2 Dd , �a 2 Ed .

Let � D Dd �Ed and let

�1 D
[
n�0

zf n
" .�/:

Note that � � �1 and that �1 is positively invariant, i.e., zf".�1/ � �1.
We have the following two possibilities:

I. Either �.�1/ D1

II. or �.�1/ <1.

Case I implies right away that for every N > 0, there exists an orbit . zf n
" .zx//n�0

of zf" in � for which kI. zf kN .zx// � I.zx/k > N for some kN � 0. It follows
immediately that there exist orbits of f" as in the statement of the corollary. Notice
that in this case we obtain diffusing orbits only by applying the inner dynamics;
we do not have to use the scattering map.

Now we consider Case II. Since �.�1/ <1 we can apply the Poincaré recur-
rence theorem, so for every open set U � �, almost every point of U is recurrent.

By the assumption on the scattering map, we have that for each .I0; �0/ 2 Dd �

Ed , the curve z
.t/, t 2 �0; 1�, obtained by integrating the vector field JrS with
initial condition at .I0; �0/ is transverse to every level set fI D Iag at a point
z
.t/ D .I.t/; �.t//, where .I.t/; �.t// 2 Dd � Ed D � for all t 2 �0; 1� and all
0 < " < "1. Thus, there exists �0 > 0, independent of ", such that

kI.z
.1// � I.z
.0//k > �0:

Choose an "1 as in Theorem 3.11 and fix an " 2 .0; "1/. Choose 0 < � < �0=4

and restrict "1 if necessary in such a way thatK.�."/Cjg.�."//j=�."// � � and let
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� D �0�4� > 0. Theorem 3.11 implies that there is an orbit .´i /iD0;:::;n of f" such
that d.´0; 
".0// < 2� and d.´n; 
".1// < 2�. Thus, we have kI.´n/ � I.´0/k >

�0 � 4� D �.

Appendix A Normally Hyperbolic Invariant Manifolds
and the Scattering Map

In this section we recall the background on normally hyperbolic invariant man-
ifolds and the definition of the scattering map and its geometric properties.

The main references for normally hyperbolic manifolds are [48,49,66,80]. Even
if the definitions of [48, 49, 66] are not completely equivalent, the results that we
use are very basic and appear in both treatments as well as in several subsequent
treatments [3,4]. The properties of the scattering map appear in [36]. Let f W M !

M be a C r map on a C r -differentiable manifold M . Assume that there exists a
manifold � � M that is a normally hyperbolic invariant manifold for f . We will
assume that the derivatives of f are uniformly continuous and uniformly bounded
in a neighborhood of �. This is, of course, automatic if � is a compact manifold,
and many of the results are stated only for compact manifolds, but as remarked
in [3,4,66], only the uniform continuity and uniform boundedness of derivatives is
needed.

We recall that, following [48, 49, 66, 80], we say that a � � M is a hyperbolic
manifold if there exists a splitting of the tangent bundle of TM into Df -invariant
subbundles

TM D Eu �Es � T�;

and there exist a constant C > 0 and rates

(A.1) 0 < �C < �� � 1 � �C � ��

such that for all x 2 � we have

(A.2)

v 2 Es
x , kDf k

x .v/k � C�kCkvk for all k � 0;

v 2 Eu
x , kDf k

x .v/k � C��k� kvk for all k � 0;

v 2 Tx�, kDf k
x .v/k � C�kCkvk;

kDf �kx .v/k � C��k� kvk for all k � 0:

If Df.x/ and Df �1.x/ are uniformly bounded, we have that there are opposite
inequalities; namely, there exist �� � �C and �C � �� such that

(A.3)
v 2 Es

x H) kDf k
x .v/k � C�k�kvk for all k � 0;

v 2 Eu
x H) kDf k

x .v/k � C��kC kvk for all k � 0:

Note that, of course, if the inequalities (A.2) and (A.3) hold for some rates, they
also hold for other rates z��, z��, and z�� satisfying (A.1) such that

(A.4) ���; �C� � �z��; z�C�; ���; �C� � �z��; z�C�; ���; �C� � �z��; z�C�:
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Clearly, the bounds for z��; z��:z�� are less sharp than those for the original values.
If we change the metric in the manifold M by an equivalent metric, the rates

��; ��; �� are not altered, but the constant C can be modified. A standard con-
struction [66] shows that, for any rates that satisfy (A.4) with strict inclusions, we
can find a metric (called an adapted metric) equivalent to and as smooth as the
original one in such a way that C D 1 both in (A.2) and in (A.3). See [17] for a
discussion of adapted metrics for (A.3). Hence, for theoretical purposes (including
in this paper) one can assume that C D 1 in both (A.2) and (A.3).

In the case when f is symplectic, it is natural to consider hyperbolic manifolds
with the property that

(A.5) �� D 1=�C; �C D 1=��; and also �� D 1=�C:

As shown in [36], normally hyperbolic invariant manifolds for symplectic maps
with the restricted exponents as in (A.5) enjoy many geometric properties (e.g.,
the map restricted to the manifold is symplectic). Note, however, that even for
symplectic maps, there are normally hyperbolic invariant manifolds that satisfy
the general definition but not (A.5). A notable example is the stable manifold of a
NHIM, which is normally hyperbolic according to the general definition (this plays
an important role in [48]) but does not satisfy (A.5), and, indeed, the map restricted
to it is not symplectic.

Assume that there exists an integer ` > 0 such that

` � min.r; log��1� = log ��1C ; log ��= log�C/:

Then � is C `-differentiable, and its stable and unstable manifolds W s.�/ and
W u.�/ are C `-differentiable manifolds. See [84].

The manifolds W s.�/ and W u.�/ are foliated by stable and unstable mani-
folds of points W s.´/ and W u.´0/, respectively, with ´; ´0 2 �, which are C r -
differentiable manifolds. The foliations are C `�1-differentiable. For each x 2

W s.�/ there exists a unique xC 2 � such that x 2 W s.xC/, and for each
x 2 W u.�/ there exists a unique x� 2 � such that x 2 W u.x�/. We define
the wave maps

�CW W s.�/! � by �C.x/ D xC;

��W W u.�/! � by ��.x/ D x�:

The maps �C and �� are C `�1-smooth.
We assume that there exists a transverse homoclinic manifold � �M , which is

C `�1-differentiable. This means that � � W u.�/ \W s.�/ and, for each x 2 � ,
we have

TxM D TxW
u.�/C TxW

s.�/;

Tx� D TxW
u.�/ \ TxW

s.�/:
(A.6)
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We assume the additional conditions that for each x 2 � we have
TxW

s.�/ D TxW
s.xC/� Tx�;

TxW
u.�/ D TxW

u.x�/� Tx�;
(A.7)

where x�; xC are the uniquely defined points in � corresponding to x; in this
case we say that � is transverse to the foliations. Following [36], we call � a
homoclinic channel if it is transverse to the foliation, and ��; �C restricted to �
are diffeomorphisms. Hence, we can define a scattering map

� W ��.�/! �C.�/; � D �C � .��/�1;

which is a diffeomorphism from ��.�/ to �C.�/.
If �.x�/ D xC, then there exists a unique x 2 � such thatW u.x�/\W s.xC/\

� D fxg. Note that the backwards orbit f �n.x/ of x in M is asymptotic to
the backwards orbit f �n.x�/ in �, and the forward orbit f m.x/ of x in M is
asymptotic to the forward orbit f m.xC/ in �.

Appendix B Linearized Coordinates
We will construct all windows used in Section 5.1.1 in linearized coordinates,

which will be recalled below, following [83].
Let � be a normally hyperbolic invariant manifold for f in M . There exists an

open neighborhood V� of � in M , an open neighborhood U� of the zero section
of .Eu � Es/j�, and a homeomorphism h from U� to V� such that for every
.xc ; vu; vs/ 2 .Eu �Es/j�

.h�1 � f � h/.xc ; vu; vs/ D Nf .xc ; vu; vs/

D .fj�.x
c/;Df .xc/jEu�Es .vu; vs//:

Via this coordinate system, each point p 2 V� can be written uniquely through
.xc ; vu; vs/ for some xc 2 �, vu 2 Eu, vs 2 Es , as p D h.xc ; vu; vs/.

In the linearized coordinates, the map f is conjugate with the normal mapping
NfjEu�Es of f in a neighborhood of �. Hence, iterating a rectangle in these
coordinates by the map f for an arbitrary number of times is equivalent to iterating
the rectangle by the normal mapping Nf .

Appendix C Correctly Aligned Windows
We review briefly the topological method of correctly aligned windows. We

follow [94] (see also [54, 58]).

DEFINITION C.1. An .m1; m2/-window in an m-dimensional manifold M , where
m1 C m2 D m, is a a C 0-homeomorphism � from some open neighborhood
dom.�/ of �0; 1�m1��0; 1�m2 inRm1�Rm2 to an open subset im.�/ ofM , together
with the homeomorphic image W D �.�0; 1�m1 � �0; 1�m2/, and with a choice of
an “exit set”

W exit D �.@�0; 1�m1 � �0; 1�m2/
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and of an “entry set”

W entry D �.�0; 1�m1 � @�0; 1�m2/:

Remark C.2. Alternatively, we can define a window as a C 0-family of m1-dimen-
sional disks attached to an m2-dimensional disk, i.e.,

W D
[

q2Dm1

Dm2.q/;

with Dm1 being some fixed m2-dimensional disk, and Dm2.q/ being m1-dimen-
sional disks depending in a C 0-fashion on q 2 Dm1 , in which case

W exit D
[

q2Dm1

@Dm2.q/ and W entry D
[

q2@Dm1

Dm2.q/:

In the sequel, when we refer to a window we mean the set W together with the
underlying local parametrization �.

DEFINITION C.3. Let W1 and W2 be .m1; m2/-windows, and let �1 and �2 be
the corresponding local parametrizations. Let f be a continuous map on M with
f .im.�1// � im.�2/, and let f� D ��12 � f � �1. We say that W1 is correctly
aligned with W2 under f if the following conditions are satisfied:

(i) There exists a continuous homotopy hW �0; 1� � .�0; 1�m1 � �0; 1�m2/ !

Rm1 �Rm2 , such that the following conditions hold true:

h0 D f�;

h.�0; 1�; @�0; 1�m1 � �0; 1�m2/ \ .�0; 1�m1 � �0; 1�m2/ D ¿;

h.�0; 1�; �0; 1�m1 � �0; 1�m2/ \ .�0; 1�m1 � @�0; 1�m2/ D ¿:

(ii) There exists y0 2 �0; 1�m2 such that the map Ay0 W �0; 1�
m1 ! Rm1 defined

by Ay0.x/ D �m1
.h1.x; y0// satisfies

Ay0.@�0; 1�
m1/ � Rm1 n �0; 1�m1 ; deg.Ay0 ; 0/ ¤ 0;

where �m1
W Rm1�Rm2 ! Rm1 is the projection onto the first component,

and deg. � ; 0/ is the Brouwer degree of a map at 0.

The following is a shadowing-lemma type of result for correctly aligned win-
dows.

THEOREM C.4. Let f W M ! M be a homeomorphism, Wi be a collection of
.m1; m2/-windows in M , and ftig be a collection of positive integers, where i 2 Z.
If Wi is correctly aligned with WiC1 under f ti for each i , then there exists a point
p 2 W0 such that

.f ti � � � � � f t0/.p/ 2 WiC1 for all i:

Moreover, if for some k > 0 we have tiCk D ti and WiCk D Wi for all i , then the
point p can be chosen periodic with period t0 C � � � C tk�1.



A GENERAL MECHANISM OF DIFFUSION IN HAMILTONIAN SYSTEMS 51

The correct alignment satisfies a natural product property. Given two windows
and a map, if each window can be written as a product of window components, and
if the components of the first window are correctly aligned with the corresponding
components of the second window under the appropriate components of the map,
then the first window is correctly aligned with the second window under the given
map. The details can be found in [54].

We describe the product property in a special case, which corresponds to the
situation considered in the paper.

Let f W M ! M be a homeomorphism of the m-dimensional manifold M .
Denote by Bk

� .x/ the k-dimensional closed ball of radius � centered at the point
x in Rk . Assume that c; u; s 2 N are such that c C u C s D m, and write each
x 2 Rm as x D .xc ; xu; xs/, with xc 2 Rc , xu 2 Ru, and xs 2 Rs . Let p1, p2 be
two points in M , and let �1; �2 be two systems of local coordinates about p1; p2,
respectively. Relative to these coordinate systems, we write p1 D .pc1; p

u
1 ; p

s
1/

and p2 D .pc2; p
u
2 ; p

s
2/.

LEMMA C.5. Given two sets, W1 in the local chart around p1, and W2 in the local
chart around p2 such that, in the corresponding local coordinates, we have

W1 D Bc
�c
1
.pc1/ � Bu

�u
1
.pu1 / � Bs

�s
1
.ps1/;

W2 D Bc
�c
2
.pc2/ � Bu

�u
2
.pu2 / � Bs

�s
1
.ps2/;

for some �c1; �
u
1 ; �

s
1; �

c
2; �

s
2; �

u
2 > 0. Let

W exit
1 D @Bc

�c
1
.pc1/ � Bu

�u
1
.pu1 / � Bs

�s
1
.ps1/

[ Bc
�c
1
.pc1/ � @Bu

�u
1
.pu1 / � Bs

�s
1
.ps1/;

W
entry
1 D Bc

�c
1
.pc1/ � Bu

�u
1
.pu1 / � @Bs

�s
1
.ps1/;

W exit
2 D @Bc

�c
2
.pc2/ � Bu

�u
2
.pu2 / � Bs

�s
2
.ps2/

[ Bc
�c
2
.pc2/ � @Bu

�u
2
.pu2 / � Bs

�s
2
.ps2/;

W
entry
2 D Bc

�c
2
.pc2/ � Bu

�u
2
.pu2 / � @Bs

�s
2
.ps2/:

Assume that the map f , written in local coordinates, satisfies the following
conditions relative to W1 and W2:

�c � f .B
c
�c
1
.pc1/ � fp

u
1 g � fp

s
1g/ � Bc

�c
2
.pc2/;

�u � f .fp
c
1g � Bu

�u
1
.pu1 / � fp

s
1g/ � Bu

�u
2
.pu2 /;

�s � f .fp
c
1g � fp

u
1 g � Bs

�s
1
.ps1// � Bs

�s
2
.ps2/;

where �c ; �u; �s denote the standard projections onto Rc , Ru, Rs , respectively.
Then W1 and W2 are .c C u; s/-windows, and W1 is correctly aligned with W2

under f .

This lemma is an immediate consequence of proposition 3 in [54].
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Appendix D An Example of D. Turaev
We are very grateful to Dmitry Turaev who provided to us an example that shows

that a “uniform-time” version of the shadowing lemma analogue of Lemma 3.1 is
not true in general.

This example shows that the requirement that

mi � m�i .n0; : : : ; ni�1; m0; : : : ; mi�1/

in Lemma 3.1 cannot be replaced by mi � m�, where m� is a constant.

Example D.1. Let M D R3, f W M !M be a C 1-map, and � be a straight line in
M that is a normally hyperbolic invariant manifold for f as follows. There exists
a system of coordinates .x; u; v/ in a neighborhood V of � in M , with x 2 R

representing the coordinate on �, and u 2 R and v 2 R the contracting and
expanding directions, respectively, and a corresponding open set U � R3 of the
form

U D f.x; u; v/W x 2 R; juj < 3=2; jvj < 3=2g

such that for p D .x; u; v/ 2 U , the map f is of the form f .x; u; v/ D .x0; u0; v0/

where

(D.1) x0 D x C .uv/2; u0 D u=2; v0 D 2v:

Thus � corresponds to u D v D 0, and for each point p D .x; 0; 0/ 2 �,
W s.p/ D f.x; u; 0/g, and W u.p/ D f.x; 0; v/g. Moreover, fj� D Id, and
f .W s;u.p// D W s;u.p/ for every p 2 �, that is, f leaves invariant the stable
and unstable fibers.

Assume that W u.�/ and W s.�/ intersect transversally along a homoclinic
manifold

�� D f.x; u; v/W u D 0; v D 1g;

which is a line, and that for some power q > 0 the map f q is of the form
f q.x; u; v/ D .x00; u00; v00/,

(D.2) x00 D x C 1; u00 D 1C u; v00 D v � 1:

Thus f q.��/ D �C D f.x; u; v/W u D 1; v D 0g, and the corresponding scatter-
ing map � W �! � is of the form

(D.3) �.x; 0; 0/ D .x C 1; 0; 0/:

Assume that for every � > 0 there exists n� such that for every pseudo-orbit
yiC1 D f ni � �.yi / with ni � n� there exists a true orbit ´iC1 D f ni .´i / such
that d.´i ; yi / < � for all i . Take � > 0 small and a corresponding n� sufficiently
large. Choose and fix a pseudo-orbit yiC1 D f ni ��.yi / with ni D n D n� for all
i � 0. Let yi D .xi ; 0; 0/. Since fj� D Id and � shifts the x-coordinate by 1 unit,
we have

(D.4) xiC1 D xi C 1:
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Assume that there is an orbit ´iC1 D f n.´i / whose points are �-close to the
corresponding points yi . Let ´i D .x0i ; ui ; vi /. Shadowing would imply that for
all i � 0 we have

(D.5) jx0i � xi j < �; jui j < �; jvi j < �:

First we show that one of the iterations f k.´i / with 0 < k < n must lie outside
the neighborhood U of � (i.e., the orbit between ´i and ´iC1 makes an excursion
along the homoclinic). Indeed, note that as long as the orbit of ´i lies in the neigh-
borhood U , the product uv stays constant by (D.1), so if the orbit between ´i and
´iC1 stays in U for all time, then

x0iC1 D x0i C n.uivi /
2:

Also, by (D.1), we must have jvi j < 3
2nC1

, so jx0iC1 � x0i j <
9n

4nC1
u2i , which

contradicts (D.4) and (D.5) if � is small. Thus, the orbit between ´i and ´iC1 must
leave at some point f kC1.´i / the neighborhood U .

Thus, for each i � 0 there exists a positive integer ki < n � q such that the
first ki iterations of ´i stay in U , the next q iterations stay outside U following
the homoclinic and returning to U , and the last n � q � ki iterations stay in U

again. For the first ki iterations the product uv stays equal to uivi , and for the last
n � q � ki iterations the product stays constant and equals uiC1viC1 (see (D.1)).
Thus, by (D.1) and (D.2),

(D.6) x0iC1 D x0i C 1C ki .uivi /
2 C .n � q � ki /.uiC1viC1/

2

Using (D.1), since ´i leaves U after ki < n � q forward iterations, we have

jvi j > 3=2n�qC2 for all i;

and since ´i leaves U after n � q � ki � n � q negative iterations,

jui j > 3=2n�qC2 for all i:

Therefore,
.uivi /

2 > 1=24n for all i;

hence (D.6) implies

x0iC1 > x0i C 1C .n � q/=24n � x0i C 1C 1=24nI

thus
x0iC1 > x00 C i C i.1=24n/:

By (D.4)
xi D x0 C i;

the distance between x0i and xi grows without bound as i grows, for any choice of
x0 and x00, so the shadowing property will be broken after finitely many iterations
for any choice of the constant n.
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Remark D.2. The idea of this counterexample is that the dynamics off � differs
from the dynamics restricted to � by some fixed amount of shift that depends
on the u- and v-coordinates of a point. Thus the shift between the points of the
pseudo-orbit (which lie on �) and the points of a shadowing orbit that takes the
same number of iterates between successive points keeps increasing by the fixed
amount of shift at every step, and the pseudo-orbit and the shadowing orbit end
up being far apart. If we allow that the number of iterates between successive
points of the pseudo-orbit to vary, as is the case in Lemma 3.1, we can arrange that
the shadowing orbit gets closer and closer to �, which makes the amount of shift
between its points in �and the points of the pseudo-orbit smaller and smaller at
every step. More precisely, in the above example where we consider a shadowing
orbit ´iC1 D f ni .´i / with ni sufficiently large and depending on i , the above
estimates yield an error term between x0iC1 and xiC1 of the order

iX
kD0

ni=2
4ni ;

which can be made arbitrarily small by choosing, for instance, n0 sufficiently large
and ni increasing at a linear rate.

Remark D.3. The proof of Lemma 3.1 uses the existence of a linearized system of
coordinates h in a neighborhood of � (cf. [83]). In Example D.1, such a system of
coordinates is given by

h.x; u; v/ D

8���<
���:

�
x C ln juj�ln jvj

2 ln2 .uv/2; u; v
�
; for u; v ¤ 0;

.x; u; 0/; for v ¤ 0;

.x; 0; v/; for u ¤ 0;

.x; 0; 0/; for u D v D 0.

Indeed, note that

h � f .x; u; v/ D h.x C .uv/2; u=2; 2v/

D

�
x C .uv/2 C

�
ln juj � ln jvj

2 ln 2
� 1

�
.uv/2; u=2; 2v

�

D

�
x C

�
ln juj � ln jvj

2 ln 2

�
.uv/2; u=2; 2v

�

D Nf � h.x; u; v/:
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