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Abstract. Aluminium and magnesium based metal matrix nano-composites (MMNC) with 

ceramic nano-reinforcements promise low weight with high durability and superior strength, 
desirable properties in aerospace, automobile and other applications. However, due to the small 
size of the particles, adhesion force between becomes significant which leads to particle 
agglomeration. Large clusters of nano-particles are detrimental for the final properties of the 
MMNC. To prevent agglomeration and to break up clusters, ultrasonic processing is used via 
an immersed sonotrode, or alternatively via electromagnetic vibration. The collapse of the 
cavitation bubbles as a result of ultra-sonication is believed to be the main mechanism of 
breaking up the clusters of nano-particles. The complex interaction of flow and co-joint 
particles subjected to the shockwave induced by cavitation is addressed in detail using a 
discrete-element method (DEM) code. Adhesive, elastic and frictional forces between the 
particles are incorporated and various models of adhesion are compared. 

1. INTRODUCTION 
Metal matrix composites (MMC) form a class of advanced materials typically based on light 

metals such as Al and Mg and ceramic reinforcements including but not limited to Al2O3, AlN, 
SiC etc. Combining the light weight and ductility of Al and Mg with high strength and high 
modulus of ceramic materials makes MMC desirable for applications in aerospace and 
automotive industries. A good review of the development of MMCs is given in [1]. Metal 
matrix nano-composites (MMNC) is a recently developed subclass of MMCs based on nano-
particle reinforcements.  

MMNCs are manufactured by mixing the nano-particles into the metal melt. Recent papers 
showed a clear increase in the Young’s modulus (by up to 100%) and in hardness (by up to 
50%) of the matrix metal with the addition of carbon or ceramic nano-particles [[2]-[4]]. These 
studies however indicate that the nano-particles tend to form large clusters and that an even 
distribution of nanoparticles is needed to achieve the beneficial properties of MMNCs. The 
effect of the distribution of particles on the final properties of MMNCs is explained by the fact 
that large-size clusters no longer act as dislocation anchors, but instead become defects. 

The agglomeration of particles in MMNCs is related to the fact that nano-sized inclusions 
have a larger ratio of surface area to the volume than e.g. micro-sized particles. This causes 
surface forces such as van der Waals interaction and adhesive contact to dominate over the 
volume forces such as e.g. inertia or elastic repulsion in the case of nano-particles. 
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Various mechanisms of detachment of adhered particles have been reported in the literature 
[5], which includes turbulent flow. It is expected that drag and shear forces in turbulent flow 
can improve separation of the particles and thus contribute to de-agglomeration. However, the 
drag force alone is not sufficient to de-agglomerate the nano-particles. This can be qualitatively 
illustrated by comparing the Stokes equation for the drag force with the force required to break 
two spherical particles apart, known as the pull off force, given by e.g. Bradley [5]:  

6𝜋𝜋𝜇𝜇𝑓𝑓𝑅𝑅𝑢𝑢𝑓𝑓 = 4𝜋𝜋𝑅𝑅𝑝𝑝𝛾𝛾𝑠𝑠𝑠𝑠                                                                    (1) 

where μf and uf are the velocity and dynamic viscosity of the melt, and γsl is the solid-liquid 
interfacial energy. For the case of aluminium melt the dynamic viscosity is μf=0.0013 Pa•s. 
Assuming the interfacial energy γsl =0.2-2.0 J/m2, equation (1) yields uf =100-1000 m/s. Such 
fluid velocity values can be locally achieved as a result of the collapse of cavitation bubbles 
induced by ultrasonic field. Indeed, applying an electro-magnetic stirring in combination with 
ultrasonic vibrations was found beneficial for nano-particle dispersion in metal melt [[2][5], 
[8]-[8]].  

This paper concerns the investigation of forces causing the agglomeration of nano-particles 
and the conditions favouring breaking up of these agglomerations. A numerical model has been 
developed that simulates the response of the cluster of nano-particles to the shockwave induced 
by the collapse of cavitation bubbles. The collisions of the particles are treated individually 
using the DEM approach, as opposed to the population balance methods where collisions are 
using the kinetic theory of granular flow as in e.g. [8]. It is proposed to investigate the behaviour 
of NPs in metal melts subjected to electro-magnetic [8] and other external fields using a coupled 
CFD-DEM model similar to that developed by Goniva et al [9] and Hager et al [11]. Whilst a 
fully coupled CFD-DEM solver is under development, this paper presents results obtained at 
the scale of a single nano-particle. Authors of this paper reported the results earlier [12], 
however some theoretical aspects of the modelling are explained in more details in this paper. 

2. REVIEW OF ADHESION THEORIES 
Bradley [5] first described the van der Waals force acting between two rigid spheres in 

contact and calculated the pull off force as Pc=4πγR, where γ is interfacial energy of the 
contacting materials 1 and R is the radius of the sphere.   

Derjaguin [13] pointed out that elastic deformations of the spheres need to be accounted for 
as well as the adhesive interactions. He presented the first attempt to consider the problem of 
adhesion between elastic spheres: calculating the deformations of the spheres using Hertzian 
contact theory, he evaluated the work of adhesion assuming only the pair-wise interactions of 
the closest surface elements. The interaction energy between small elements of curved surfaces 
was assumed the same as for parallel planes which is known as the Derjaguin approximation.  

On the other hand, Johnson [14] made an attempt to solve the adhesive contact problem by 
combining the Hertzian spherical contact problem and the problem of a rigid flat-ended punch. 
Johnson et al. [15] applied Derjaguin’s idea to equate the work done by the surface attractions 
against the work of deformation in the elastic spheres to Johnson’s [14] combined stress 
superposition. This resulted in the creation of the famous JKR (Johnson, Kendall, and Roberts) 
                                                  
1   The formulae for the pull off force of adhered particles are often used with the notation Δ which is the work of adhesion. 
For spheres of the same material Δ ≈ /2, therefore Pc=2 ΔR 
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theory of adhesive contact. According to them the attractive adhesion force is acting only over 
the contact area and significantly affects the shapes of the contacting spherical bodies. The pull 
off force calculated using JKR model is Pc=3πγR. The contact area is a circle with radius a, 
defined as follows: 

𝑎𝑎3 = 3𝑅𝑅
4𝐸𝐸 [𝑃𝑃 + 6𝜋𝜋𝜋𝜋𝜋𝜋 + √12𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 36𝜋𝜋2𝛾𝛾2𝑅𝑅2],                                        (2) 

where P is the applied normal load and E is the combined Young’s modulus. Hertzian theory 
evaluates the contact radius simply as a3=3PR/4E, therefore JKR theory is reduced to Hertzian 
if adhesion is neglected, i.e γ=0. 

Derjaguin et al [16] developed a contact theory (DMT – Derjaguin, Müller, Toporov) that 
combined Bradley’s adhesion force with Hertz elastic contact theory. The attractive 
intermolecular force is assumed applicable in the contact area as well as in the surrounding 
annulus zone. The resulting profile of the deformed spheres remains Hertzian and the pull off 
force is equal to the one derived by Bradley, Pc=4πγR. The contact radius is then given by 

𝑎𝑎3 = 3𝑅𝑅
4𝐸𝐸
[𝑃𝑃 + 4𝜋𝜋𝜋𝜋𝜋𝜋]                                                                      (3) 

Qualitative analysis of both JKR and DMT models performed by Tabor [17] as well as more 
detailed analysis based on the Lennard-Jones potential conducted by Muller et al [18] showed 
that the contradiction between the models lies in the physical principles of adhesive contact 
assumed by the authors. Both Tabor and Muller concluded that the adhesive contact of larger, 
softer bodies with stronger surface interaction can be described by the JKR model, while the 
DMT model is applicable to the smaller, harder bodies with weaker surface interaction.  
Parameters τ, μ were introduced in [17] and [18] to determine which model is more appropriate:  

𝜏𝜏 ≅ [ 𝑅𝑅𝛾𝛾
2

𝐸𝐸2𝑧𝑧03
]
1/3

, 𝜇𝜇 = 32
3𝜋𝜋 [

2𝑅𝑅𝛾𝛾2
𝜋𝜋𝜋𝜋2𝑧𝑧03

]
1/3

,                                                          (4) 

where z0 is the equilibrium separation distance, typically 0.16-0.4 nm [19]. According to Muller 
if <1 then DMT is applicable whereas if >>1 it is JKR.  

Maugis [20] suggested a smooth transition model between JKR and DMT approaches which 
exploits the principles of fracture mechanics. For simplicity, Lennard-Jones interaction 
potential is replaced by the step-function, which is known as Dugdale approximation. 
Greenwood and Johnson [21] suggested an alternative model to Maugis based on a combination 
of two Hertzian profiles that also connect both the JKR and DMT models in one general theory. 
These two models use a parameter, which defines the area where the adhesion force is 
applicable. The necessity to evaluate this parameter at every time step during particle collision 
makes it impractical to use either Maugis [20] or Greenwood and Johnson [21] theories in a 
DEM solver. Therefore in the present paper the JKR and DMT models are implemented and 
the Müller parameter μ is used to determine which one is more applicable.  

3. CONTACT MECHANICS 

3.1. Oblique loading without adhesion. 
The most commonly used particle contact model was first introduced by Cundall and Strack 

[22] in attempt to predict the complex behaviour of sand specimens under loading and 
unloading. They suggested treating sand particles as spheres which can move individually and 
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interact only at the contact spots. The contact model consisted of linear spring elements as well 
and viscous damping elements in both normal and tangential directions, as shown schematically 
in Figure 1a. The modifications of this model are reviewed in e.g. [23] [24]. The developments 
of this approach can include addition of rolling and twisting resistance [25] which are neglected 
in this paper.  

 

Figure 1 (a) Commonly used spring-dashpot and sliding element model; (b) contact traction distribution of two 
contacting spherical bodies according to the Mindlin and Deresiewicz model.  - indicates circular zone with 
radius a0 where elastic tangential force is applicable,  - indicates the ring-shaped micro-slip area with external 
radius a1.. 

While being extensively used in CFD-DEM simulation codes such as developed by Goniva, 
Kloss, Hager, Wierink and colleagues [9], [11], this model has a number of disadvantages. 
Firstly, accurate description of the contact between spherical bodies given by Hertz predicts 
non-linear normal elastic stiffness as kn=2E*a, where E* is the combined Young’s modulus and 
a is the radius of the (circular) contact area. It is noted in [25] that for small deformations 
Cundall and Strack model works well, although it is not obvious how to correlate the constant 
elastic stiffness values knorm, ktan and viscous damping coefficients cnorm, ctan with properties of 
the materials involved. In addition to that, this paper considers nano-particles of sizes 50 nm to 
1 μm, and therefore adhesion force must be incorporated. All of the adhesion models mentioned 
in the Section 2 of this paper are based on Hertz elastic theory. For these reasons, Hertz theory 
is used in this paper to evaluate the relationships between normal force and displacement as 
well as contact area.  

The tangential contact forces are implemented in this paper by means of the Mindlin and 
Deresiewicz theory [26]. It is assumed that two elastic spheres in tangential contact experience 
a partial-slip, where the total force is a combination of elastic tangential force in the circular 
area in the centre of the contact zone and sliding friction force in the ring shaped exterior of the 
contact zone. Once the partial-slip tangential force exceeds the total sliding friction force, the 
bodies slide relative to each other. The tangential force in this case is then equivalent to the 
sliding friction force Fs=P, where  is the friction coefficient, P is the normal load. The 
distribution of contact traction is illustrated in Figure 1b. 
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Thornton and Yin [27] combined all the major cases of the loading/unloading conditions 
described by Mindlin & Deresievicz [26] and derived the following expression for the 
tangential stiffness during oblique loading:  

𝑘𝑘𝑡𝑡 = 8𝐺𝐺∗𝑎𝑎𝑎𝑎 ± 𝜂𝜂(1 − 𝜃𝜃) Δ𝑃𝑃
Δ𝛿𝛿𝑡𝑡

                                                             (5) 

where G* is the combined shear modulus, a is the contact radius,   is the friction coefficient, 
ΔP is the increment of the normal load, Δδt is the increment of the tangential displacement and 
is a parameter defining the ratio of the elastic force to the micro slip friction force. The 
parameter depends on the loading history and is defined as follows: 

𝜃𝜃3 = 1 − 𝑇𝑇 + 𝜂𝜂Δ𝑃𝑃
𝜂𝜂𝜂𝜂 ; 𝜃𝜃3 = 1 − 𝑇𝑇∗ − 𝑇𝑇 + 2𝜂𝜂Δ𝑃𝑃

2𝜂𝜂𝜂𝜂 ; 𝜃𝜃3 = 1 − 𝑇𝑇 − 𝑇𝑇∗∗ + 2𝜂𝜂Δ𝑃𝑃
2𝜂𝜂𝜂𝜂 , 

(6) 
for loading for unloading for reloading 

where T is current value of the tangential force and T* and T** are the load reversal points. 
Normal elastic stiffness is defined as kn=2E*a according to Hertz theory; see [27] for details. 

3.2. Oblique contact with JKR adhesion 
Savkoor and Briggs [28] extended the JKR contact theory to consider the effect of adhesion 

in the case of oblique loading. It was suggested that applying the tangential force reduces the 
potential energy by an amount of Tδt/2. Adding this term to the JKR energy balance equation 
modified the contact radius (1) as:  

𝑎𝑎3 = 3𝑅𝑅
4𝐸𝐸 [𝑃𝑃 + 6𝜋𝜋𝜋𝜋𝜋𝜋 ± √12𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 36𝜋𝜋2𝛾𝛾2𝑅𝑅2 − 𝑇𝑇2𝐸𝐸

4𝐺𝐺 ]                                     (7) 

It was concluded that in the presence of tangential force, the contacting spheres peel off each 
other thus reducing the contact area. The peeling process continues until T reaches the critical 
value of 

𝑇𝑇𝑐𝑐 = 4√(3𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 9𝜋𝜋2𝛾𝛾2𝑅𝑅2)G/E.                                                    (8) 

For the normal load Thornton and Yin [21] have adopted the JKT theory. The stiffness is 
then evaluated as 

𝑘𝑘𝑛𝑛 = 2𝐸𝐸∗𝑎𝑎 [3 − 3 (𝑎𝑎𝑐𝑐𝑎𝑎 )
3
2] / [3 − (𝑎𝑎𝑐𝑐𝑎𝑎 )

3
2]                                                 (9) 

where ac=9πγR is the JKR contact radius at the moment of separation (pull off radius). 
In the case of oblique loading Thornton and Yin [27] followed [28] in what concerns the 

peeling process. They however assumed that once the peeling process is complete, the 
contacting bodies operate in the partial slip regime as described before with the difference that 
the normal force P is replaced with P+6πγR.  

3.3. Oblique contact with DMT adhesion. 
 In this paper it is suggested to combine the Thornton and Yin [27] partial slip no adhesion 

model with DMT adhesion. The DMT theory assumes that the deformed shapes of the 
contacting bodies remain within Hertzian elastic theory. Therefore a no-adhesion model [27] 
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was adopted where the normal force P is replaced with P+4πγR to account for the adhesion 
force. This approach considers instantaneous separation of the particles, as opposed to the JKR 
theory, where particles stretch elastically prior to pulling off. The maximum stretching in the 

JKR case is evaluated as 𝛿𝛿𝑐𝑐 = (3𝜋𝜋2𝛾𝛾2𝑅𝑅
16𝐸𝐸2 )

1/3
whereas δc=0 in the DMT case. The effect of the 

stretching prior to separation is illustrated in the results section. 

4. VISCOUS DRAG  
The momentum of the fluid is transferred on the particles via the drag force. Di Felice’s [29] 

theory is used to account for the effect of presence of other particles. Drag force on a single 
particle in a flow with relative velocity 𝑣𝑣 = 𝑣𝑣𝑓𝑓 − 𝑣𝑣𝑝𝑝, where vf, vp are the velocities of the fluid 
and the particle, can be evaluated as follows: 

𝐹𝐹𝑑𝑑 = 1
2 𝜌𝜌𝑓𝑓𝑣𝑣2C𝑑𝑑𝜋𝜋𝑅𝑅𝑝𝑝

2𝜀𝜀−𝛽𝛽

Cd = (0.63 + 4.8
√Rep )

2

𝑅𝑅𝑅𝑅𝑝𝑝 = 𝜌𝜌𝑓𝑓
𝜇𝜇𝑓𝑓

𝛼𝛼𝑓𝑓𝑅𝑅𝑝𝑝|𝑣𝑣𝑓𝑓 − 𝑣𝑣𝑝𝑝|

                                                        (10) 

where Rep is the particle Reynolds number, μf and ρf are dynamic viscosity and density of the 
fluid, ε is the void fraction value, Cd is the drag coefficient for spherical particles, and function 
𝑔𝑔(𝜀𝜀) = 𝜀𝜀−𝛽𝛽 is a measure of how much the drag force is affected by the presence of other 
particles. Empirical parameter β was evaluated to fit the experimental data for a wide range of 
Reynolds numbers (10-2 to 104) and void fraction values (0.4 to 1):  

𝛽𝛽 = 3.7 − 0.65𝑒𝑒−0.5(1.5−𝑙𝑙𝑙𝑙𝑙𝑙10 𝑅𝑅𝑅𝑅𝑝𝑝)2
                                                      (11) 

In the literature, modifications of g(ε) are used, such as 𝑔𝑔(𝜀𝜀) = 𝜀𝜀1−𝛽𝛽 [24],  𝑔𝑔(𝜀𝜀) = 𝜀𝜀2−𝛽𝛽[9][11], 
[23], or 𝑔𝑔(𝜀𝜀) = 𝜀𝜀−1−𝛽𝛽 [30]. Di Felice noted however that in the case of the flow through random 
packed spheres (ε≈0.4), Ergun’s equation predicts 𝑔𝑔(0.4) = 14.6

𝐶𝐶𝑑𝑑
(1 + 51.4

𝑅𝑅𝑒𝑒𝑝𝑝
). For a wide range 

of Reynolds numbers 𝑔𝑔(0.4) is best predicted by 𝑔𝑔(𝜀𝜀) = 𝜀𝜀−𝛽𝛽. In e.g. [25] Stokes drag formula 
is used multiplied by 𝑔𝑔(𝜀𝜀) = 𝜀𝜀−𝛽𝛽.  

The void fraction value ε is typically evaluated based on the density of particles in a mesh 
cell (see e.g. [9], [9][11]). In the present model the CFD mesh is not defined, therefore the void 
fraction is evaluated based on the cubic cell 10Rp×10Rp×10Rp centred at the particle centre.  

5. MODELLING THE BREAKING UP OF NANO-PARTICLE AGGLOMERATES 
Two-dimensional densely packed agglomerates of 36 and 37 mono-sized spherical particles 

were considered as shown in Figure 2. For simplicity, all the forces were assumed acting in the 
X and Z direction only, and the problem was modelled in two dimensions. Mass, volume, void 
fraction and contact area were however evaluated assuming that particles are spherical rather 
than circular. Both normal and tangential contact forces were modelled based on [27] and both 
JKR and DMT models of adhesion were adopted. The particle material properties are those of 
SiC and fluid properties are those of liquid aluminium. These and other parameters used in the 
simulations are provided in Table 1. 
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Table 1 Particle and fluid properties used in the simulations 

Property  Value(s) Units 
Radius R 50 to 1000 nm 
Young’s modulus E 450 GPa 
Poison’s raito ν 0.185 - 
Particle density ρp 3160 kg/m3 
Friction coefficient η 0.3 - 
Fluid density ρf 2375 kg/m3 
Dynamic viscosity μf 0.0013 Pa·S 
Interfacial energy γ 0.02 to 2.0 J/m2 

 
Figure 2 (a) Cluster of 36 particles subjected to the spherical velocity pulse Vr originating in the centre of the cluster. 
(b) Cluster of 37 particles subjected to lateral velocity pulse Vx. 

5.1. Collapsing of Gas Bubbles.  
It is known from various sources that ultrasound has a beneficial effect on de-agglomeration 

of the nano-particle clusters [[2][5], [8]-[8]]. This is explained by the phenomenon of acoustic 
cavitation, which includes the formation, growth, pulsation and collapse of gas bubbles. These 
processes are accompanied by the creation of “hotspots” – zones of high temperature and 
pressure which explain the beneficial effect of ultrasonic vibrations on breaking the clusters 
and the dispersing of nano-particles [4]. As a result of the implosive collapse of the bubbles 
high amplitude shockwaves are generated. In [7] authors compare the pressure peak occurring 
as a result of the collapse with the pressure required to separate two individual nano-particles 
held together by van der Waals and capillary forces. It is however expected that due to complex 
pair-wise contact interactions between the particles in a cluster, it is more difficult to de-
agglomerate a cluster of particles rather than two individual particles. For this reason the 
behaviour of a cluster of nano-particles subjected to the shockwave is investigated in this paper.  

5.2. Lateral And Spherical Pulses.  
In this paper a possibility is also investigated that the agglomerates of nano-particles contain 

gas bubbles inside (typically hydrogen), originating due to poor wettability of the nano-particles 
and the specifics of the manufacturing process. In the case of collapsing of a bubble inside of 
the agglomerate a spherical shockwave is considered radiating from the centre of the cluster as 
shown in Figure 2a. In [12] authors have also considered lateral pulse originating on the side of 
the cluster Figure 2b. It was however shown, that lateral pulse causes the cluster to move as a 
whole, which makes it more difficult to study the de-agglomeration mechanisms. 
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The behaviour of the gas bubbles in the presence of the ultrasonic waves is a complex 
problem depending on multiple parameters, and is not studied in this paper. For simplicity it is 
assumed that the shockwave generated by the collapse of a gas bubble can be described as a 
rapidly decaying disturbance of the local velocity with an exponential time dependency. 
Expressing the shockwave as a velocity pulse allows the concentration of the particles to be 

taken into account using di Felice’s approach (equation 

𝐹𝐹𝑑𝑑 = 1
2 𝜌𝜌𝑓𝑓𝑣𝑣2C𝑑𝑑𝜋𝜋𝑅𝑅𝑝𝑝

2𝜀𝜀−𝛽𝛽

Cd = (0.63 + 4.8
√Rep )

2

𝑅𝑅𝑅𝑅𝑝𝑝 = 𝜌𝜌𝑓𝑓
𝜇𝜇𝑓𝑓

𝛼𝛼𝑓𝑓𝑅𝑅𝑝𝑝|𝑣𝑣𝑓𝑓 − 𝑣𝑣𝑝𝑝|

                                                        

(10)). The details of the behaviour of the gaseous-fluid interface during the bubble collapse are 
not studied in this paper; therefore the duration τ of the pulse is covering a wide range from 5 
ns to 5 μs in order to investigate a potential effect of the pulse duration. The magnitude of the 
pulse is defined by the maximum value v0 which in this paper is ranging from 1-1000 m/s. In 
[7] authors estimated the cavitation pressure peak as 6·107 Pa if a bubble of initial size 100 μm 
collapses, and 1.5·1010 if initial size is 1 μm. Using Bernoulli’s equation, these peak pressure 
values can be correlated with the peak velocities of 225 m/s and 3575 m/s respectively. 

5.3. Interfacial Energy.  
The interfacial energy γ of the contacting particles can be evaluated from the van der Waals 

attraction force acting between two flat surfaces separated by an equilibrium distance z0 : 

𝛾𝛾 = 𝐴𝐴
24𝜋𝜋𝑧𝑧0

2                                                                               (12) 

where A is the Hamaker constant of the material. If particles are interacting in a medium, then 
Hamaker constant must be modified according to the rule:  

𝐴𝐴121 = (√𝐴𝐴1 − √𝐴𝐴2)2
                                                                   (13) 

where A1 and A2 are the properties of the particles and the medium respectively [19]. The 
average separation distance z0 for contacting solids with close packed atomic structure can be 
evaluated as σ/2.5, where σ is the interatomic distance. The typical value of σ=4 Å yields 
z0=0.165 nm (see [19], page 277). Equations (12, 13) can be used to compute the interfacial 
energy for most solids and liquids. This theory is however not applicable to the system that 
involves liquid metals or other highly conducting fluids due to short-range non-additive 
electron exchange interaction. For this reason, a series of the interfacial energy values 0.02, 0.2 
and 2.0 J/m2 to cover a wide range of interfacial energies. In another paper by authors [12] the 
interfacial energy values 2.1 J/m2 and 2.6 J/m2 corresponding to aluminium oxide and silicon 
carbide particles in aluminium melt are used. 

6. RESULTS AND DISCUSSION 

6.1. The Effect Of The Contact Model. 
In this section the effect of the adhesion model on breaking up of the nano-particles cluster 

via the spherical shockwave is investigated. Figure 3 shows the positions of the particles after 
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the incidence of the velocity pulse. The pulse duration is 50 ns, amplitudes 1 to 50 m/s, particles 
radius is 50 nm and interfacial energy γsl=0.2 J/m2. Here and henceforth the particles belonging 
to the same sub-cluster are coloured and numbered for convenience. Individual particles are 
coloured red and have unique numbers. As expected, the no adhesion model (3rd row in Figure 
3) predicts that all of the particles become isolated, since particles interact only via friction and 
elastic forces. As for adhesion models, it can be visually observed that particles tend to form 
chains of particles in the JKR case (2nd row in Figure 3) and more compact sub-clusters when 
the DMT model is used (1st row in Figure 3). This can be explained by, firstly, a lower pull off 
force of the JKR model and, secondly, by the JKR assumption that bodies do not separate 
instantaneously, but stretch while maintaining contact until the stretching becomes critical and 
pull off force is reached. This stretching extends the duration of the contact between the 
particles thus allowing them to re-agglomerate due to collisions with other particles. The 
analysis of the adhesion models clearly demonstrates that choice of the model may significantly 
affect the prediction of de-agglomeration. 

 

Figure 3 The effect of the adhesion model on breaking up of nano-particle clusters via spherical shockwave. 

 

 

6.2. The Effect Of The Interfacial Energy.  
In this section the results are shown for particles of radius 500 nm with interfacial energy 

values 0, 0.02, 0.2 and 2.0 J/m2. The pulse duration is 500 ns and amplitudes 1.0 to 50.0 m/s. It 
can be observed from e.g. 3rd row in Figure 4 that particles with higher interfacial energy tend 
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to form large sub clusters during de-agglomeration. Particles with lower interfacial energy (see 
e.g. 2nd row in Figure 4) form smaller sub-clusters or individual particles. Same effect has been 
reported by authors [12] and terms “local” and “global” de-agglomeration were introduced. It 
was noticed that although global de-agglomeration may separate pieces further apart, the locally 
de-agglomerated particles can be dispersed by turbulent fluctuations or Brownian motion. For 
this reason global and local de-agglomeration should be evaluated separately. 

 

 Figure 4 The effect of the interfacial energy on breaking up of nano-particle clusters via spherical shockwave. 

7. CONCLUSIONS 
A DEM model was developed in order to study the behaviour of a cluster of nano-particles 

subjected to the shockwave originating in the centre of the cluster. The model incorporates 
Mindlin and Deresiewicz partial-slip tangential contact theory and both JKR and DMT adhesion 
force theories. Drag force is implemented using di Felice approach based on the local 
concentration of particles. The effect of the adhesion model choice was studied and it was 
shown that JKR model predicts catenulate, chain-like structures whereas in the case of DMT 
model compact sub-clusters are formed. The behaviour of particles with various interfacial 
energies was compared, and it was found, that de-agglomerating particles with lower energies 
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result in smaller sub-clusters and more isolated particles, while under similar conditions 
particles with higher energies form larger sub-clusters. It is suggested that the effectiveness of 
the local and global de-agglomeration must be evaluated separately. 

This study of the particle-particle interaction forces under various conditions is a part of an 
ongoing investigation of the mechanisms of de-agglomeration and is expected to help 
optimizing the electro-magnetic stirring and the ultrasonic processing of the metal melt with 
added nano-particles. 
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