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Abstract We present a conformal bisection procedure for local refinement of 4D
unstructured simplicial meshes with bounded minimum shape quality. Specifically,
we propose a recursive refine to conformity procedure in two stages, based on mark-
ing bisection edges on different priority levels and defining specific refinement tem-
plates. Two successive applications of the first stage ensure that any 4D unstructured
mesh can be conformingly refined. In the second stage, the successive refinements
lead to a cycle in the number of generated similarity classes and thus, we can en-
sure a bound over the minimum shape quality. In the examples, we check that after
successive refinement the mesh quality does not degenerate. Moreover, we refine a
4D unstructured mesh and a space-time mesh (3D + 1D) representation of a moving
object.

1 Introduction

In the last three decades refinement of 2D and 3D unstructured simplicial meshes
[1–14], based on red/green refinement [1–7] and bisection [8–14], has been shown
to be a key ingredient on efficient adaptive loops. Although one could expect the
same in 4D, a case of special interest for space-time adaption, this line of research
has not been extensively explored.

For our space-time applications, we are interested in conformal bisection meth-
ods since they are really well suited to implement fast geometrical multi-grid con-
formal solvers. Moreover, bisection methods have ensured either a maximum num-
ber of generated similarity classes [11–13] or a minimum lower quality bound over
the generated elements after successive refinements [8–10, 14]. Regarding 4D re-
finement, only a non-conformal local refinement method for pentatopic meshes has
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been proposed [15]. Unfortunately, existent conformal 4D (nD) bisection methods
with a bound over the number of generated similarity classes [11, 12] cannot be
applied to general unstructured meshes.

The main contribution of this work is to propose a local bisection procedure, with
a bound over the number of generated similarity classes, for conformal refinement
of 4D unstructured simplicial meshes. Specifically, we propose a recursive refine to
conformity procedure, in two stages, based on marking bisection edges on different
priority levels (Sec. 3.1). The marking procedure allows classifying the pentatopes
in different types (Sec. 3.2) and hence, determining different refinement templates
(Sec. 4), in an analogous manner to the 3D bisection method proposed in [13].

The refinement method is composed of two stages (Sec. 4). Two successive ap-
plications of the initial stage of the bisection strategy (Sec. 4.1), based on the pro-
posed element classification, ensure that any initial 4D unstructured simplicial mesh
can be conformingly refined. After the two initial refinements our recursive refine
to conformity strategy switches to the second stage (Sec. 4.2). This final stage is
analogous to Maubach’s algorithm, when it is successively applied to a single pen-
tatope. Therefore, we can ensure a bound over the number of generated similarity
classes. Thus, the minimum quality of the refined mesh is bounded, independently
of the number of performed refinements. The main advantage and difference of our
method when compared to Maubach’s algorithm [11] is the first stage of the method,
which allows the application of the method to any 4D unstructured simplicial mesh.

In all the examples (Sec. 5), we show that the proposed methodology leads to
a periodic evolution of the minimum element quality (shape quality measure [16])
illustrating the lower bound of the quality through successive refinement. We first
illustrate how to check that an implementation of the proposed method is valid by
successively refining a pentatope. With our implementation, we show that the pro-
posed bisection technique can be used to refine general unstructured 4D meshes.
Finally, we also illustrate our application of interest, the refinement of a 4D mesh
corresponding to a space-time representation, with varying resolution, of the tem-
poral evolution of a 3D moving object.

2 Preliminaries

In this section, we state some preliminary notions required for the rest of this work.
First, we detail how a pentatope in four dimensions is represented in the 2D plots of
this paper. Second, we state the definition of bisection and finally, we introduce the
strategy used in this work to refine a given mesh through edge bisection.

The element type considered in this work is the pentatope (4D simplex) which is
defined as the convex hull of a set of 5 points {x0,x1,x2,x3,x4} in R4. To represent a
given pentatope (4D) in the plane (2D), we focus on a perspective where the edges
connecting the vertices have a minimal number of edge crossings. Herein, the pen-
tatope [x0x1x2x3x4] is displayed plotting the edges of the tetrahedron [x0x1x2x3] and
the edges that connect the vertices of the tetrahedron [x0x1x2x3] with the extra ver-
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(a) (b)

Fig. 1 (a) Three dimensional representation of a pentatope [x0x1x2x3x4], where the fifth vertex x4
is plotted in R3 inside the tetrahedron [x0x1x2x3]. (b) Potential edges [vx2], [vx3] and [vx4] of the
bisection of the pentatope [x0x1x2x3x4].
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−−−→

(b)

+

(c)

Fig. 2 Bisection of a pentatope (a) into two children (b) and (c).

tex x4 located in the center of the tetrahedron, see Figure 1(a). This representation is
used to display the edge marking procedure for bisection proposed in this work. The
boundary of a pentatope is formed by 5 tetrahedra: the outer tetrahedron [x0x1x2x3]
and the four inner tetrahedra [x0x1x2x4], [x0x1x4x3], [x0x2x3x4] and [x1x2x3x4].

Once detailed the representation of a given pentatope, we particularize the defi-
nition of bisection to 4D simplicial elements. In particular, for a given pentatope σ

with vertices [x0x1x2x3x4], the element vertices are reordered so that the refinement
edge is [x0x1]. Let v be the midpoint of [x0x1]. The bisection of σ by [x0x1] corre-
sponds to removing the element [x0x1x2x3x4] and generating two new elements by
joining v with the tetrahedral faces [x0x2x3x4] and [x1x2x3x4].

We highlight that the tetrahedral face [vx2x4x3] is shared between the two chil-
dren. This shared face has three inherited edges ([x2x3], [x2x4] and [x3x4]) and three
new edges ([vx2], [vx3] and [vx4]). We denote the new edges of the shared face as
potential edges of the initial element. These potential edges are displayed in Fig-
ure 1(b) colored in red. This definition is required in Section 4.2 to characterize the
proposed mesh refinement templates.

Finally, we introduce the algorithm proposed in this work to refine a given mesh
by edge bisection. This algorithm uses a refine to conformity strategy similar to
the 3D refinement method proposed in [13]. Given a marked mesh M and a set of
elements to refine S, the mesh is refined according to Algorithm 1. In this algorithm,
while there is not an empty set of elements to refine, Line 2, the mesh is refined as
follows. In Line 3, the process BisectPentatopes bisects each pentatope in S:
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Procedure 1 Refinement of a mesh ensuring conformity.
Input: Marked mesh M
Output: Marked mesh M′

1: function REFINETOCONFORMITY(M,S)
2: if S 6= /0 then
3: M̄ = BisectPentatopes(M,S)
4: S = {σ ∈M |σ has a hanging node}
5: M′ = RefineToConformity(M̄)
6: else
7: M′ = M
8: end if
9: end function

BisectPentatopes(M,S) = (M \S)∪
⋃
σ∈S

Bisect(σ), (1)

where Bisect performs the element bisection taking into account the element
marks (refinement edge) and sets the proper marks to the two generated elements.
In Sections 3 and 4 we will present the marking procedures proposed in this work
for pentatopic meshes, and the marks that are assigned to the two children.

Following, in Line 4 the set of elements to refine in the next step is set as the
elements with hanging nodes. In Line 5 the Algorithm RefineToConformity
is called recursively. These recursive calls are continued until there are no more
elements with hanging nodes in the mesh. We show that the marking processes
presented in Sections 3 and 4 lead to a conformal mesh.

3 Edge marking and element classification for compatible
refinement

In this section, we first present in Sec. 3.1 an edge marking process compatible
between neighboring elements for conformal mesh refinement. Next, in Sec. 3.2 we
present a classification of the elements of the mesh depending on the marks assigned
to their edges.

3.1 Edge marking for compatible refinement

In this work, we use a marking procedure organized by levels to determine the prior-
ity of the bisection edges used during the element refinement. Following, we present
a procedure to mark the edges of the pentatopes of a conformal mesh. These marks
are devised to ensure that for a given face shared between two pentatopes, succes-
sive bisection of surrounding elements determines the same mesh from both sides
of the shared face. Hence, this ensures mesh conformity along the bisection process.
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(a) (b)

Fig. 3 (a) Marked pentatope and (b) marking diagram process at different levels.

We define three levels of marks in a pentatope. The level 0 features one edge, which
corresponds to the refinement edge of the current pentatope. The level 1 features two
edges, which correspond to the refinement edges of the two children of the first pen-
tatope. Finally, the level 2 features four edges, which correspond to the refinement
edge of the four grandchildren of the original pentatope.

Herein, to determine the marks assigned to each of the edges of the element, we
prioritize the edges in terms of their length with a well-defined tie-breaking rule. For
a given element we define its consistent bisection edge as the edge of longest length
and lowest global index. The lowest global index is a tie-breaking rule that ensures
that if there exist multiples edges with the same length, we select as the longest edge
always the same one, independently of the order in which the edges are compared.
In particular, with this tie-breaking rule we ensure that the edges of a common face
between two adjacent pentatopes are marked in the same manner from the two of
them. We remark that the longest edge is considered in the consistent bisection edge
sorting rule since it is an heuristic to enforce better element quality. Nevertheless, it
is not a key ingredient to ensure conformal mesh refinement. For instance, just by
sorting the mesh edges using their global index would also lead to a valid consistent
sorting rule.

Following, we detail the marking process for a given pentatope [x0x1x2x3x4]. The
process consists of three steps, illustrated in Figure 3(b):

1. Marked edge of level 0: consistent bisection edge of the pentatope [x0x1x2x3x4].
In the bisection process, the marked edge of level 0 corresponds to the bisection
edge of the element. In this work, the marked edges of level 0 are plotted with
a thick black line, see the first column of Figure 3(b).

2. Marked edges of level 1: the two marked edges of level 1 are determined as the
consistent bisection edge of the tetrahedra defined by [x1x2x3x4] and [x0x2x3x4].
These two tetrahedra are indeed the opposite tetrahedral faces of the pentatope
with respect to x0 and x1, respectively. These two tetrahedral faces are the faces
of the original pentatope preserved in each child. The two marked edges of level
1 correspond to the bisection edges of the two children of the current element.
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(a) (b) (c) (d)

Fig. 4 Type of edge relations between the edges on level l +1 (red) and the edge of level l (blue):
(a) P, (b) A, (c) O, and (d) M.

A particular configuration of the marked edges of level 1 is illustrated in the
second column of Fig. 3(b). The marked edges of level 1 associated to the first
and second node of the bisection edge are colored in red and blue, respectively.

3. Marking edges of level 2: the four marked edges of level 2 are determined as
the consistent bisection edge of the opposite faces of the marked edges of level
1 in the tetrahedra [x1x2x3x4] and [x0x2x3x4]. The four marked edges of level
2 correspond to the bisection edges of the four grandchildren of the current
marked element. In the third column of Figure 3(b), we illustrate a particular
configuration of the marked edges of level 2, coloring them with the same color
of the associated marked edge of level 1. In addition, the edge associated to the
first node of the marked edge of level 1 is plotted with fully colored circles, and
the other edge is plotted with empty circles.

Figure 3(a) illustrates the resulting marked element for the test example of the
marking procedure of Fig. 3(b). We highlight an edge, for instance [x2x4] in Fig.
3(a), can have two marks once all the marks are displayed on the initial pentatope.
These two marks indicate that this edge has been marked from both of the faces
that remain after bisection. To differentiate them, we have used blue and red colors.
After bisecting a marked pentatope, the marked edges of the two children have to
be determined.

Remark 1 (Inheritance of marks). The marked edges of level 1 and 2 of the parent
shift marks in the corresponding children and become the marked edges of level 0
and 1 of the two children, respectively. However, it is not straight-forward to deter-
mine the marked edges of level 2 from the parent marks. In Section 4 two methods
are proposed to determine them.

3.2 Classification of marked pentatopes

In this section, we present a classification into different types of a pentatope result-
ing from the marking process detailed in Section 3.1. Several types of pentatopes
are obtained depending on the marks assigned to their edges. Before detailing the
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classification, we introduce four definitions that state how the marked edges of level
l +1 are located with respect to the associated marked edge of level l for l = 0,1.

We propose a classification for different pentatope types, according to the config-
uration of the marked edges at the different levels. This classification is an extension
of the different tetrahedron types proposed in [13], where only two levels of marked
edges are required. Figure 4 illustrates the four different configurations between two
levels of marked edges, coloring the two marked edges of level l +1 with red color
and the marked edge of level l with dark blue color:

• Type P (Planar): the two marked edges of level l + 1 are coplanar with the
marked edge of level l, i.e., the three edges are connected defining a triangle. In
Figure 4(a) an example of edges of type P is illustrated.
• Type A (Adjacent): each marked edge of level l +1 has a common vertex with

the marked edge of level l but the two edges of level l + 1 do not have any
common vertex. In Figure 4(b) an example of edges of type A is illustrated.
• Type O (Opposite): the marked edges of level l + 1 of the opposite faces of

the marked edge of level l + 1 do not intersect the marked edge of level l. In
Figure 4(c) an example of edges of type O is illustrated. We highlight that a
possible configuration of edges of type O is that the two edges of level l+1 are
overlapped. For instance, the edge [x2x3] could be the marked edge of level l+1
for the two faces opposite to the edge of level l.
• Type M (Mixed): the marked edges of level l + 1 of just one of the opposite

faces have a common vertex with one marked edge of level l. In Figure 4(d) an
example of edges of type M is illustrated. We highlight that it is possible that the
marked edges of level l+1 have a common vertex between them. For example,
the marked edges of level l +1 could be [x1x4] and [x4x3].

Herein, in a pentatope we have marked edges of level 0, 1 and 2. We denote by α

the edge type determined by how marked edges of level 1 are located with respect
to the marked edge of level 0. Additionally, we denote by β and γ the edge relation
type between the marked edges of level 2 and the marked edge of level 1. In this
manner, a marked pentatope is classified into a type of the form αβγ .

In Figure 5, we illustrate three different types of marked pentatopes. First, Figure
5(a) illustrates a pentatope of type PPP. In particular, the marked edge of level 0
(bisection edge) configures a triangular face together with the marked edges of level
1. Thus, the first index, α , of the element is P. Next, each marked edge of level
1 defines also a triangular face with the corresponding marked edges of level 2,
determining β and γ equal to P. Hence, the element is of type PPP.

Analogously, for the element illustrated in Figure 5(b) we detail the same pro-
cess. For this element, α is A since the red and blue edges share a node with the
bisection edge, but they do not share any node between them. In addition, β and
γ are equal to P, since each of the blue and red edges determines a triangular face
with the corresponding blue and red circled edges. Thus, this element is of type APP.
Similarly, we can conclude that the element illustrated in Figure 5(c) is of type AAA.

After bisecting the element, the bisection edge [x0x1] is split into two edges, [x0v]
and [vx1], and thus this edge is not present in any of the children. However, the two



8 Guillem Belda-Ferrı́n, Abel Gargallo-Peiró∗ and Xevi Roca

(a) (b) (c)

Fig. 5 Three different types of marked pentatopes: (a) PPP, (b) APP, and (c) AAA.

Stage 1︷ ︸︸ ︷ Stage 2︷ ︸︸ ︷
PAA

{αβγ}α,β ,γ∈{P,A,O,M} {δPP}δ∈{P,A,O,M} PPP AAA

APP

Fig. 6 Refinement process for a pentatope of type αβγ , where α,β ,γ ∈ {P,A,O,M}.

adjacent tetrahedral faces to this edge are preserved. Specifically, the face [x0x2x3x4]
is inherited by the child that preserves node x0 of the bisection edge, and the face
[x1x2x3x4] is inherited by the child that preserves node x1. Following we detail which
marks of the parent pentatope are preserved after its bisection and how these marks
are inherited by the two children.

Remark 2 (Inheritance of element type). Hence, after bisecting a marked pentatope
of type αβγ , where α,β ,γ can be {P,A,O,M}, the obtained children inherit the
marked edges of level 1 and 2 of the parent. These marks become the marked edges
of level 0 and 1 of the children, see Remark 1. Thus, one child inherits the edge
relation type β and the other child the relation type γ . However, the marked edges
of level 2 are not determined. Depending on the edges that are selected to be the
marked of level 2, the type of element of the children will be ββ1β2 and γγ1γ2 , where
β1,β2,γ1,γ2 ∈ {P,A,O,M}.

4 A refinement algorithm for 4D unstructured simplicial meshes
with bounded number of similarity classes

In this section, we detail a new procedure composed by two stages for refinement of
any 4D unstructured simplicial mesh. Given a mesh, we first mark it using the proce-
dure stated in Section 3.1, and following, we classify the elements into the different
types stated in Section 3.2. Next, given a marked element to be refined, the bisec-
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Procedure 2 Element refinement with global mesh conformity
Input: Pentatope σ , set of marked edges mσ , descendant level k.
Output: Pentatopes σ1 and σ2, set of marked edges mσ1 and mσ2 , descendant level k′

1: function BISECT(σ , mσ , k)
2: σ1, σ2 = BisectPentatope(σ ,mσ )
3: mσ1 , mσ2 = inheritMarksFromFather(mσ )
4: if k < 2 then
5: mσ1 , mσ2 ←set marked edges of level 2 using Stage 1 from Sec. 4.1
6: else
7: mσ1 , mσ2 ←set marked edges of level 2 using Stage 2 from Sec. 4.2
8: end if
9: k′ = k+1

10: end function

tion of this element is performed according to Algorithm 2 and the diagram in Fig. 6.
Algorithm 2 is used as bisection procedure in the BisectPentatopes function,
Eq. (1), from the mesh refinement strategy RefineToConformity presented in
Algorithm 1.

The two stages bisect a given marked element according to the bisection edge,
Line 2 from Alg. 2, and following, according to Remarks 1 and 2, the marked edges
of level 0 and 1 of the children are determined from the marked edges of level 1 and
2 of the parent, Line 3. The difference between the two stages is the process to set
the marked edges of the children. The marks determine the type of the generated
element and at the same time, how the children will be bisected through successive
refinement.

The first two times that the element is bisected (Stage 1), Line 4 of Alg. 2, the
marks of level 2 of the children are determined using Sec. 4.1. A child generated
with one application of Stage 1 is of type δPP, being δ any edge relation type.
No element enters to Stage 2 before two refinements, and once it is bisected twice
in Stage 1, in Section 4.1 we show that it is of type PPP. Then, from the second
refinement and on, Line 7, Stage 2 is activated, see Section 4.2. In Section 4.3 the
properties of the two-stage method are presented.

4.1 Stage 1: refinement from any unstructured marked mesh to PPP
elements

Stage 1 determines the marked edges of level 2 following the ideas of the marking
strategy presented in Section 3.1. From the marking diagram presented in Figure
3(b) we observe that two of the edges of the triangular face of the third column
remain unmarked in the parent. After the element is bisected, these edges are still
present in the tetrahedral faces of the children. These edges can be enforced to be the
marked edges of level 2 of the children. This decision is consistent by construction
between adjacent elements since it is performed on the face shared between these
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elements. This approach to determine the marked edges of level 2 of the children
leads to a conformal refinement procedure.

Remark 3 (Refinement towards PPP elements). Given an element of type αβγ for
α,β ,γ ∈ {P,A,O,M}, the application of two refinements of Stage 1 leads to ele-
ments of PPP, see Figure 6.
To show this, we first focus on the initial refinement step. From Remark 2 the chil-
dren will be ββ1β2 and γγ1γ2 , where β1,β2,γ1,γ2 ∈ {P,A,O,M} depend on how the
marked edges of level 2 are located with respect to the marked edges of level 1. By
construction (see Fig. 3(b)), the marked edges of level 2 have been chosen on the
same triangular face of the corresponding marked edge of level 1. Thus, the new
marked edges of level 2 are coplanar with the marked edges of level 1 for each child
and their edge relation is of type P. Hence, by setting these edges as marked edges
of level 2 of the children, we obtain two children of type βPP and γPP, respectively.
Applying this marking strategy again, the grandchildren of the original pentatope
are of type PPP.

Although the marking process is consistent between adjacent elements by con-
struction and the marks of level 2 are chosen consistently with the marking pro-
cess, following we analyze all the possible neighboring configurations between two
marked elements to illustrate that the stated bisection procedure is conformal.

Remark 4 (Conformal refinement). Given two neighbor marked elements, when the
shared face is bisected from the two sides, it is bisected by the same edge. That is,
the interface between the children of the two elements is still conformal. We analyze
three different configurations of the two elements:

• First, let us assume that both elements share a face that contains their consistent
bisection edge. This edge must be the same for each one of the elements, since
in particular, it is the consistent bisection edge of the face. Then, it is clear that
they are refined by that edge and that the new interface is conformal.
• Second, let us assume that the shared face does not contain the consistent bi-

section edge in any of the two adjacent elements. Following the stated marking
procedure, the shared tetrahedral face is marked in the second column of Figure
3(b), containing the marked edges of level 1. Thus, in the first refinement of the
elements, the face is not refined and the interface is still conformal. Next, when
we perform the second refinement, the shared face is refined by the same edge
from the two elements, ensuring a conformal bisection.
• Finally, the third case to be analyzed is when the face contains the consistent

longest edge of the pentatope in one element, but does not contain the consistent
longest edge of the adjacent pentatope. After refining once the elements, the
mesh is not conformal, since the face is bisected from one of the elements, but
is not bisected from the other one. However, the element that has not bisected
the initially shared face, does bisect it after the second refinement, since the
consistent longest edge of the adjacent pentatope is specifically the consistent
longest edge of the shared face, and thus it is marked in the level 1 of the second
element. Hence, after two iterations the mesh is already conformal.
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Procedure 3 Bisection of a simplex from Maubach [11].
Input: Tagged n-simplex σ .
Output: Tagged n-simplices σ1 and σ2.
1: function BISECTSIMPLEXMAUBACH(σ )

2: Set d′ =
{

d−1, d > 1
n, d = 1

3: Create the new vertex z =
1
2
(x0 + xd).

4: Set σ1 = ((x0,x1, . . . ,xd−1,z,xd+1, . . . ,xn), d′).
5: Set σ2 = ((x1,x2, . . . ,xd ,z,xd+1, . . . ,xn), d′).
6: end function

In addition, in the three different presented configurations, the marks determined on
the children are always compatible by construction. Analogously, the same reason-
ing follows for the case where two pentatopes share a triangular face.

4.2 Stage 2: conformal refinement of all-PPP meshes

In this section, we present a conformal refinement algorithm with a bounded number
of generated similarity classes for meshes composed uniquely by elements of type
PPP. This algorithm determines the second stage of the refinement method for any
unstructured mesh presented in Section 4.

The procedure presented in this section is stated in terms of a cycle composed of
four steps, presented in Fig. 6. In Fig. 7 the templates for the bisection and setting
of the marked edges of the children are presented. Given an element of type PPP,
Fig. 7(a), this element is split into two PAA elements setting their marks using the
templates presented in Figs. 7(b) and 7(c). After that, the type PAA, Fig. 7(d), is
bisected into two AAA types applying the templates of Figs. 7(e) and 7(f). Following,
an element of type AAA, Fig. 7(g), is bisected into two APP using the templates
presented in Figs. 7(h) and 7(i). Finally, from the type APP, Fig. 7(j), we obtain
again two PPP types applying the templates of Figs. 7(k) and 7(l).

We highlight that in order to apply the templates of Figure 7 we need to reorder
the vertices of a given PPP element to match the canonical representation of Figure
7(a). Similarly, the two children in Figures 7(b) and 7(c) have to be reordered to
obtain the canonical PAA in Figure 7(d) and then apply the corresponding templates.
This node reordering has to be performed after each bisection to locate the marks in
the canonical representation of the templated fathers. In addition, we highlight that
in Figures 7(d), 7(b) and 7(c) the marked edges of level 2 are assigned on potential
edges (see definition in Sec. 2). Although those edges do not exist on the parent,
they exist in the children and grandchildren, where they will be used to determine
the bisection edge.

Next, in Remark 5 we detail that this templated refinement procedure is anal-
ogous to Maubach’s algorithm [11] when applied successively to one element.
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(b)
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(c)

(d)

−−−→

(e)

+

(f)

(g)

−−−→

(h)

+

(i)

(j)

−−−→

(k)

+

(l)

Fig. 7 Templates to perform the refinement cycle presented in Figure 6. (a)-(c) An element of type
PPP is bisected into two PAA. (d)-(f) PAA is bisected into two AAA. (g)-(i) AAA is bisected into two
APP. (j)-(l) APP is bisected into two PPP.

Maubach’s algorithm cannot be applied in general to any given unstructured mesh
as detailed in [11, 13]. Thus, finally in Remark 6, we analyze the conformity of the
application of our approach for meshes composed of PPP elements.

Remark 5 (Analogy to Maubach’s algorithm). The refinement cycle in Fig. 6 per-
formed using the templates presented in Fig. 7 is analogous to Maubach’s algo-
rithm [11] (see Alg. 3) when applied to a single pentatope. This analogy is inter-
preted as follows. Given a pentatope to bisect using Maubach’s algorithm with a
tag d, we consider as marked edge of level 0 the tagged edge. Next, we consider as
marked edges of level 1 the tagged edges of the two children in the next application
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Table 1 Permutations from the Maubach Algorithm 3 to canonical types in Figure 7

Canonical type Tag in Algorithm 3 Permutation to obtain canonical representation
PPP d = 2 (0,2,1,3,4)
PAA d = 1 (0,1,2,3,4)
AAA d = 4 (0,4,2,3,1)
APP d = 3 (0,3,2,1,4)

Fig. 8 Tetrahedral face of a pentatope of type PPP after five refinements of the face .

of Maubach’s algorithm. Analogously, we consider as marked edges of level 2 the
tagged edges of the four grandchildren. Next, we find the permutation of the ver-
tices [x0x1x2x3x4] to align the marks on the edges of the element with the canonical
representation from Fig. 7. The obtained permutations are presented in Table 1.

Remark 6 (Conformal refinement for all-PPP meshes). The refinement using Stage
2 of a marked mesh composed by elements of type PPP leads to a conformal mesh.
To illustrate the conformity of the refined mesh, we analyze two different cases:

• First, we analyze the case of the refinement of a single element. Since our
method is analogous to Maubach’s by Remark 5, it is also conformal when
there is a single element successively refined, see details in [11, 13].
• Second, we analyze the conformity between the interface of adjacent elements

of type PPP with compatible marks. Extending the reasoning for tetrahedra
in [13], it is sufficient to check if the bisection structure determined on a
shared face is the same from both sides. Given a PPP element to be refined,
if we obtain the same refined mesh on all its tetrahedral faces we can en-
sure that the refinement of two adjacent PPP is also conformal when using the
RefineToConformity strategy. In particular, if we refine five times any of
the five tetrahedral faces of a given PPP the same tetrahedral mesh is obtained
for all of them. This refined face mesh is illustrated in Figure 4.2 and is com-
posed by 32 tetrahedra. The same reasoning follows for the case where two
pentatopes share a triangular face.

Hence, if a pentatopic mesh can be marked with all elements as PPP, then it can be
conformingly refined using our analogy to Maubach’s algorithm combined with the
RefineToConformity strategy. This is the case when any given mesh is refined
two times with Stage 1 in Sec. 4.1.
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4.3 Properties of the method

In this section, we analyze the two main properties of the refinement procedure
determined by Algorithm 2. Our refinement procedure requires as input a conformal
unstructured 4D simplicial mesh. Given a set of elements to refine, the resulting
mesh is a locally refined unstructured 4D simplicial mesh that is conformal and has
a bounded number of generated similarity classes. These properties are discussed in
the following remarks.

Remark 7 (Conformal refinement). The algorithm presented in Section 4 generates
a conformal mesh. To show this, we take into account that this algorithm combines
two refinement methods. The two first refinement steps in Stage 1 are performed by
the algorithm presented in Sec. 4.1. After two refinements the elements are refined
in Stage 2 according to the cycle in Fig. 6, see Sec. 4.2. In the worst case scenario,
to prove conformal mesh refinement, all the elements of the initial mesh have to
be twice refined at Stage 1. At this point, all the elements of the mesh are of type
PPP with compatible marks, as detailed in Remark 4. Then, the conformity of the
refinement is ensured by Remark 6.

Remark 8 (Bounded number of generated similarity classes). The number of simi-
larity classes produced by the repeated application of the cycle presented in Fig. 6
to an element is bounded by 1536. To prove this bound, we take into account that
in the refinement scheme of Figure 6 it is required to perform two bisection steps
before entering in the cycle. For each bisection, we generate at most two new sim-
ilarity classes. Hence, from the given initial element, the bound of the similarity
classes after the two first steps is 2 · 2 = 4. As highlighted in Remark 5 from Sec.
4.2, this second stage is analogous to Maubach’s algorithm when applied to a single
pentatope. In [13] it is proved that in 4D Maubach’s algorithm has a sharp bound of
384 generated similarity classes for an element. Thus, the bound for the procedure
of Figure 6 is 4 ·384, that is 1536.

5 Results

In this section, we present several results to illustrate the features and the applica-
bility of the presented refinement scheme. In all the examples, we plot the mini-
mum and maximum shape quality [16] in each refinement step of Alg. 1. To vi-
sualize the results we intersect each 4D mesh with a hyperplane to obtain a 3D
cut that can be visualized. In Section 5.1, we refine an equilateral pentatope with
two different initial marking configurations to illustrate that the similarity classes
are bounded. In Section 5.2, we refine an unstructured 4D mesh to capture a hy-
persphere and, finally, in Section 5.3 we refine a simplicial mesh on a hypercube
to capture a moving sphere.We highlight that in all the presented examples it has
been explicitly checked that the generated meshes are conformal after the applied
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(a) (b)

Fig. 9 Quality versus the number of iterations of the RefineToConformity algorithm applied
to an equilateral pentatope marked as (a) PAA and (b) APO type. The blue (red) line corresponds to
the minimum (maximum) of the element shape quality at each iteration.

RefineToConformity strategy by checking that the only boundary faces of the
mesh are on the boundary of the domain.

5.1 Bounded quality: iterative refinement of one pentatope

In this example, we check that our implementation of the refinement algorithm does
not lead to degenerated elements after successive refinement of a given pentatope
type. We enforce an equilateral pentatope to be marked as PAA and a second equilat-
eral pentatope to be marked as APO. Then, both pentatope types are globally refined
20 times. Figure 9 shows the minimum and maximum element quality at each re-
finement step. We observe that the minimum quality (vertical axis) decreases on the
first refinement steps (horizontal axis) until a minimum value is reached. Then, the
minimum and maximum qualities start to cycle every 4 refinement steps. This is an
indicator of the bound of the number of generated similarity classes.

5.2 4D unstructured mesh: refining an extruded sphere octant

This example shows that the proposed refinement scheme can be applied to unstruc-
tured 4D pentatopic meshes. To this end, we generate an unstructured 4D mesh of a
3D sphere octant, of radius 1 and centered in the origin, extruded one unit along the
fourth dimension. Then, we successively refine those elements that intersect a hy-
persphere of radius 1/4 and centered in the origin. To generate the 4D mesh, we first
generate an unstructured 3D mesh of the sphere octant composed by 40 nodes and
95 elements, see Figure 10(a). Then, we embed two copies of the 3D mesh points
in the 4D space by setting the fourth coordinate to 0 and 1, respectively. Finally,
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(a) (b) (c)

Fig. 10 A slice with the hyperplane t = 0 of the 4D simplicial mesh is illustrated for (a) the initial
configuration and (b) after 17 iterations of RefineToConformity. (c) Minimum (blue) and
maximum (red) element quality for each refinement step.

these 80 points are reconnected, using the implementation of the Delaunay algo-
rithm provided by QHull [17], to obtain the unstructured 4D mesh. After applying
17 times the RefineToConformity algorithm, we obtain a 4D mesh composed
by 8072909 elements and 433887 nodes. Figure 10(b), shows the tetrahedral mesh
that corresponds to the boundary of the 4D pentatopic mesh at the base of the extru-
sion along the fourth dimension. Figure 10(c) shows the quality at each refinement
step, where we can observe a lower quality bound is constant at value 0.11.

5.3 Space-time mesh: refining a sphere moving along the z-axis

Finally, we illustrate our application of interest, the refinement of a 4D mesh corre-
sponding to a space-time representation, with varying resolution, of the temporal
evolution of a 3D moving object. We consider a sphere of radius 1/5 centered
in the origin that moves along the z-axis from 0 to 1 with constant velocity 1.
We generate an initial mesh on the hypercube [0,1]4 composed by 24 pentatopes
using Freudenthal-Kuhn algorithm [1–3]. Next, we apply 25 times the algorithm
RefineToConformity to refine those elements that intersect the 4D sphere
extrusion that represents the moving sphere. The final 4D mesh is composed by
5233296 pentatopes and 251457 nodes and it is illustrated in Figure 11. Figures
11(a)-11(c) show three slices of the mesh at t = 0, t = 1/2 and t = 1, respectively.
We can observe that each one of the slices on t shows different positions of the
moving sphere, from the initial point (0,0,0) at t = 0 to the final point (0,0,1) at
t = 1. In contrast with these three slices, in Figure 11(d) we show an slice of the
mesh at x = 0. In the closest quadrilateral face of Fig. 11(d) we observe the path of
the sphere on the surface of dimension 2 defined by the axis z and t at x = y = 0. In
this quadrilateral face, we can see that the center of the sphere describes a straight
line going from the lower left corner (0,0,0,0) up to the top right corner (0,0,1,1).
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(a) (b) (c)

(d) (e)

Fig. 11 Slice of the 4D simplicial mesh of the hypercube with the hyperplane: (a) t = 0, (b) t = 0.5,
(c) t = 1 and (d) x= 0. (e) Minimum (blue) and maximum (red) element quality for each refinement
step.

This is so since the sphere goes from z = 0 to z = 1 with constant velocity starting
at t = 0 and finalizing at t = 1. Specifically, the location on the z-axis of the sphere
is z = t.

6 Concluding remarks

In this work, we have presented a new refinement method via edge bisection for 4D
pentatopic meshes. This method ensures that the mesh quality does not degenerate
after successive refinements of a given element. To develop this method, we require
to classify the elements of the mesh into different types in a similar fashion to [13].
Using the pentatope classification we provide four refinement templates to perform
a cyclic bisection analogous to Maubach’s method [11]. Combining two initializing
refinements (Stage 1) with this templated refinement (Stage 2) we obtain a refine-
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ment strategy that can be applied to any given pentatopic mesh. Using this method
a finite number of similarity classes are generated when a given element is refined.

We apply the refinement scheme to different meshes to illustrate its features.
First, we analyze that the mesh quality of the refinement of different element types
does not degenerate. Second, we illustrate the applicability of the technique to refine
unstructured 4D simplicial meshes. Finally, we analyze a space-time configuration
of a sphere moving along an axis.
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