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Real grain shape analysis: characterization and generation of representative virtual grains. Application to railway 
ballast
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Abstract. Grain shape significantly influences the mechanical properties of granular media. 
In order to explore this effect and to simulate realistic material morphology, we designed a 
method which well characterizes  real grains shape. Starting from a representation of the 
particle surfaces as a points cloud, this paper presents a method to generate a set of virtual 
grains that are morphologically representative of real ballast grains. The model relies on a 
statistical modelling of the ballast grain morphology based on a dimensionality reduction 
approach (Proper Orthogonal Decomposition) leading to an optimal and nearly exhaustive 
shape characterization by extracting a hierarchy of shape functions that fully describe the 
grain sample. We will show the efficiency of the both characterizing and generating methods 
and describe their advantages, as well as a future outlook 
 

1    INTRODUCTION 
Granular materials are widely used in different applications ranging from food industry to 

civil engineering. Therefore, a better understanding of the overall behaviour of these materials 
is pivotal to improve and control their performance. Numerous studies have been carried out 
and enriched over the last years, about the impact of particle size, shape and mineralogy on 
the mechanical behaviour of the granular media. As for shape properties, several experimental 
analyses as well as numerical studies using Discrete Element Methods (DEM) [1] have shown 
the significant influence of particle shape on the evolution of granular assemblies [2-6, 11-13, 
16, 17, 24, 26]. Understanding this influence is then a topic of interest in this study.  
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For DEM simulations, representing particle shape is a real challenge. Most discrete element 
codes represent particles as discs (2D) or spheres (3D), because of implementation simplicity 
and computational efficiency. However, it has been proved that these simple geometries fail 
to reproduce realistic material behaviour for an individual grain, as well as for a granular 
assembly [7, 14, 20]. Other attempts have then been made to take into account complexity 
that falls roughly in two classes: 1) parametric model based on given geometric construction 
rules and 2) fitted model based on real grain shapes. Both approaches can be fulfilled with 
simple primitive (sphere, ellipsoid, plane, clumps...) or with more versatile geometric shape as 
polyhedron [8, 10]. Over the last decades, SNCF (French railway company) has chosen the 
second approach to simulate the behaviour of the ballast with DEM based on polyhedron 
shaped particles. Railway ballast is a granular layer formed by irregular rock grains of a 
centimetric size extracted from hard stone quarries by crushing ((BS EN 13450, 2003) [1]). 
Currently, virtual grains used in simulations are sets of nearly 1000 sampled grains that have 
been 3D digitalized and meshed.  

In order to properly study the impact of the ballast shape on the mechanical behaviour with 
DEM, a generator of virtual grains is needed, apt to produce large sets of virtual grains that 
are representative of a limited set of real grain, and that also allows to reach an accurate 
characterization of the grain shape. In this paper, we propose a method to achieve these goals.  
In Section 2, the proposed approach of real ballast grain shape modelling as well as its 
validation are presented and analysed. Some illustrations are presented in Section 3. 

2 REAL BALLAST GRAINS MODELLING  

2.1 Global view  
In the literature, generation methods were presented, such as Fourier-Shape-Descriptors 

[19, 22], and spherical-based random fields [9, 18, 29]. These approaches have given good 
results in terms of similarity of generated grains and real ones, but introduce shape functions 
that are imposed. 

 We present in this paper an innovative approach based on a dimensionality reduction 
method leading to an optimal and nearly exhaustive shape characterization of real grains.  

By means of Proper Orthogonal Decomposition (POD) [15], we identify the optimal 
hierarchy of shape functions that describe the grain set. The main advantage of this approach 
is to reduce the number of needed shape functions to represent the grain shape with a 
quantitative controlled approximation (error based), such that we reduce the parametric space 
to the optimal one. 

2.2 Pre-processing: Sample preparation  
A database of 121 different ballast grains is provided by SNCF. Ballast materials in France 

are selected based on the European railway ballast specification. The grains are represented 
by point clouds obtained experimentally by 3D digitization (3D scan) of the particle surfaces, 
and form irregular polyhedrons of 4000 faces, and about 2000 vertices. Fig.1 shows some of 
these grains.   
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Figure 2: A grain of ballast: (a) Raw data (b) After projection and rotation 

 
 
 
The pre-processing is based on the following steps: 
 
 Projection of the experimental points cloud on an imposed basis (B1) with constant 

angular step and N directions. Since the experimental point cloud are composed of 
many points (up to millions for finer digitalization) with random direction in a 
spherical frame, this step aims at reducing the number of point and having the same 
direction for each grain. 

 Computation for all grains of volume, surface, inertia tensor, and mean radius. 
 Centering grains and rotating vertices until the principal directions of the inertia tensor 

are parallel to the global coordinate axes, and interpolating (Fig.2) 

 

 Projection on a new basis (B2) with uniform density of number of direction by solid 
angle. Indeed, the previous basis, with constant angular step, lead to a high density of 
direction near the pole that can bias the statistic. This new basis with 500 directions is 
generated with a repulsion point iterative procedure. (Fig. 3) 

 By concatenating all grains together, our set of experimental grain is then represented 
by a 500 x 121 matrix. Each column represents grain vertices distances along the 500 
of the basis B2 (Fig.4). This matrix will be the input data of POD procedure. 

 
 
 
 
 
 

Figure 1 : Example of real ballast grains represented by dense point clouds - SNCF 

(a)                                                                          (b) 
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Figure 4: Interpolation on the generated basis with 500 directions and real grain 

 
 
 
 
 
 
 
 
 
 
 

 
 

 
2.3 Grain characterization   
 

A model reduction method, namely the Proper Orthogonal Decomposition or Principal 
Component Analysis (PCA) [27] is used. Starting from the data matrix of the Section 2.2, this 
multivariate statistical method aims at obtaining a compact representation of the data. It 
identifies an optimal and useful set of basic functions that allows to achieve a satisfactory 
approximation of the system. 

This method serves two purposes, namely order reduction by projecting high-dimensional 
data into a lower-dimensional space and feature extraction by revealing relevant, but 
unexpected, structure hidden in the data. The first purpose allows to quantify the controlled 
approximation (error based), while choosing the dimension of the projection reduced space. 
The second purpose allows to characterize the shape features by associating them to POD 
outputs, i.e. basis functions (eigenmodes) and coefficients. Eigenmodes, or principal 
components, are the eigenvectors of the covariance matrix corresponding to original data, 
whereas coefficients are projection coordinates on the reduced space of projection. These two 
elements, in addition to eigenvalues of the covariance matrix are the three key elements of the 
method. For further explications of the method, see [15]. 

While applying POD on the data, a corresponding error ε is expressed in terms of the 
projection errors that are controlled in the construction of POD bases. In other words, it is 
defined as the deviation of the transformed data to the new space from the original data, 
normalized by the raw data and induced by the truncation of the POD basis.  
While POD error gives an indication of the magnitude of the “missing” information, the 

Figure 3: Basis  with 500 direction: (a) basis B1  (b) basis B2 

         (a)                                                                         (b) 
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energy of the system 𝑒𝑒(𝑘𝑘) = 1 − 𝜀𝜀(𝑘𝑘) represents the quantity of information captured by the 
k first POD basis vectors. (Fig. 5) shows the quantities of error/energy as a function of the 
dimension of the reduced space. 

For zero error we have to keep all 121 modes. We see that with only 12 modes we represent 
90% of the information and 99% of the information is represented with roughly 50 modes. 
With this precision, we have half-reduce our data. 

 

 
 
 
 
 
 
 

 

As the accuracy of the grain approximation depends on the number of modes, it is 
important to check if the properties of grains (average radius, surface, volume) are sensitive to 
the number of modes. In (Fig.6), we compare those properties distributions for different error 
thresholds. 
In order to quantify more precisely the comparisons, we perform Kolmogorov-Smirnov (KS) 
tests between original data surfaces/volumes/mean radius and reconstructed grains 
characteristics. The results are presented in Table 1. 
 

Table 1: Values of Kolmogorov-Smirnov tests between original and reconstructed data S, V, Rm distributions 

Er
ro

r o
n 

sh
ap

e  KS Surfaces KS Volumes KS Rayons moyens 
0.1% 0.999 0.997 0.947 
1% 0.999 0.997 0.879 
5% 0.999 0.997 0.785 
10% 0.997 0.984 0.465 
15% 0.984 0.879 0.223  

 

Figure 5: Error and energy quantification 
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We see that even with significant error (more than 10%) we have a very good shape 
approximation but with a much more reduced space.  

Furthermore, by statistically identifying POD coefficients distributions, we can generate as 
many equivalent data as wanted. For a perfectly exhaustive shape characterization, we decide 
to keep all of the eigenmodes and therefore an error of 0% is made. The statistical analysis 
will concern the coefficients that are uncorrelated. (Fig. 7) shows statistical distributions of 
the first 8 coefficients as an example.  
 
 
 
 
 
 
 
 

Figure 6: Reconstruction of the real grains for different error thresholds – Comparison of (a) Surfaces 
distributions (b) Volumes distributions  (c) Mean radius distrbutions  

Figure 7: Statistic representation of the first 8 coefficients 

Experimental data 
ε = 0.1% 
ε = 1% 
ε = 5% 
ε = 10% 
ε = 15% 
 

Experimental data 
ε = 0.1% 
ε = 1% 
ε = 5% 
ε = 10% 
ε = 15% 
 

Experimental data 
ε = 0.1% 
ε = 1% 
ε = 5% 
ε = 10% 
ε = 15% 
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 The challenge is then to build a model of each distribution. While it is possible to search 
the best matching distribution or to fit the CDF, we presently prefer to keep the exact CDFs 
corresponding to discrete data, without transforming it to continuous fitted functions (Fig. 8). 

 
 
 
 
 
 
 
 

 

 
 
 

Figure 8:  First coefficient CDF 

2.4 Generation 
Even though the coefficients are uncorrelated (not shown), these coefficients can be 

dependent in a more complex way. Therefore, the generation process has to take into account 
the dependence. Since the coefficients are of different marginal distributions, this cannot be 
done by only using a multivariate distribution, which suffers from the restriction that the 
marginal should be of the same type. One efficient way to do this is copula functions [28]. 

That is, copula functions allow one to model the dependence structure independently of the 
marginal distributions. Any multivariate distribution function can serve as a copula. That 
offers a good modelling flexibility. 

For our generation process, we use the Gaussian copula, since two parameters (Mean and 
correlation matrices) are enough to describe it. The algorithm is explained in details in [21, 
22, 25]. 

2.5 Validation 
To validate our approach, we generate different sets of 300, 500, 800, 1000, 2000 and 

10000 virtual grains. Surfaces, volumes and mean radius distributions are then computed and 
compared to those of the original data. (Fig. 9) shows the results, and Kolmogorov-Smirnov 
tests results are presented in Table 2. 

 

Experimental CDF 
Fitted CDF 
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Table 2: Values of Kolmogorov-Smirnov tests between original generated data S, V, Rm distributions 

 

 
 

By analysing Fig. 9, we see that for surfaces, volumes and average radii, the peaks are the 
points that match the least. That can be explained by the fact that the real particle dataset (121 
grains) is relatively small, and insufficient for estimating accurately statistics of the grains 
shape, and hence capturing all shape features. That was proved by Liu et al. [18] who 
analysed the impact of data set size on the accuracy of results using spherical harmonics 
approach, and by Grigoriu et al. [9] who also proved the insufficiency of a dataset of 128 
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 KS Surfaces KS Volumes KS Rayons moyens 
300 0.949 0.949 0.811 
500 0.993 0.993 0.831 
800 0.994 0.994 0.883 
1000 0.998 0.939 0.705 
2000 0.976 0.896 0.870 

 10000 0.939 0.968 0.613 

Figure 9: Sample validation – 10000 grains generated 

Experimental data 
Generated data 

Experimental data 
Generated data 

Experimental data 
Generated data 

Experimental data 
Generated data 
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aggregates to exactly represent the concrete grains shape. They showed that a “small data set 
was unable to accurately estimate statistics of aggregate geometry beyond second-moment 
properties and marginal distribution”.  

However, the high values of KS tests obtained and the representations show that we get 
satisfactory results, even with a small data set. That confirms the accuracy of the approach 
and shows that enriching our data set will certainly allow to get an even better and exhaustive 
characterization of ballast shape, and offer an interesting transition between real and virtual 
grains in order to incorporate them in DEM simulations.  

3 ILLUSTRATION 
As shown previously, POD procedure allows to very well approximating the grains shape 

through eigenmodes and coefficients. One interesting question would be how to link 
eigenmodes and coefficients to shapes features.  

One of the advantages of this method is ordering the dominating features by decreasing 
order (first modes have the biggest contributions to energy of the system, and the largest 
values of variance). We then expect the first mode to hold an important part of shape features 
(with 45% of the energy of the system).  

To observe the evolution of grains shape through modes, we represent the same grain 
reconstructed with the first 1 (energy = 45%) to 20 modes (95%) in Fig. 11. We can see the 
progressive emergence of shape details as we add new modes. As the quantity of information 
increases (error decreasing), we minimize the sum of the squared differences of the distances 
between the point on the real grain and the same one represented with a finite number of basic 
functions.  

The first fourth modes are shown in Fig.12. We see that the first mode, contributing most to 
the energy of the system, has a complete shape of a grain while the rest of the modes 
constitute the other details of shape.  

Finally, we represent reconstructed grains with only the first mode in Fig. 13. For all 121 
grains, we have a “round” shape.   
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 

Figure 11: Grain shape evolution through modes 1 to 20 and real grain 
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         (c)                                                       (d) 

Figure 12: (a) Mode 1 (b) Mode 2 (c) Mode 3 (d) Mode 4 

Figure 13: Different grains reconstructed from mode 1 

      (a)                                                          (b) 
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3 CONCLUSION AND PROSPECTS 
An innovative approach, based on dimensionality reduction by means of POD, leading to 

an optimal and nearly exhaustive shape characterization of real ballast grains has been 
presented. A method to generate sets that are representative of real grains has also been 
introduced, and validated by comparing some properties of the grains, such as surfaces and 
volumes. The method proved to give satisfactory results, and will give even better results for a 
data set of a larger size, as it will more accurately capture shape features. By observing the 
grain shape evolution through POD eigenmodes, studying more the link between the latters 
and shape features can be an interesting future outlook. 
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