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Micromechanical analysis of the surface erosion of a cohesive soil by means of a coupled LBM-DEM model
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Abstract. The elementary mechanisms driving the ubiquitous surface erosion of cohesive 
geomaterials can be analysed from a micromechanical perspective combining well-known 
numerical techniques. Here, a coupled model combining the Discrete Element and Lattice 
Boltzmann methods (DEM-LBM) provides an insight into the solid-fluid interaction during 
the transient erosion caused by a vertical fluid jet impinging on the surface of a granular 
assembly. The brittle cementation providing cohesion between the solid grains is described 
here by means of a simple bond model with a single-parameter yield surface. The initial 
topology of the surface erosion tends to mimic the profile of fluid velocity directly above the 
soil surface. We find that both the rate of erosion and the magnitude of eroded mass depend 
directly on the micromechanical strength of the single solid bonds.

1 INTRODUCTION 
The geomechanical assessment of the surface erodibility of soils is usually performed 

empirically, often by means of standard experimental tests such as the Jet Erosion Test (JET, 
see e.g. [1]) and the Hole Erosion Test (HET, see e.g. [2] and [3]). The soils analysed by 
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means of these tests are generally cohesive geomaterials, while the water flowing on their 
surface behaves as eroding agent. 

The erodibility is commonly quantified in terms of the average hydrodynamic shear stress 
at the soil surface with respect to a threshold, the critical shear stress, for the initiation of 
erosion. However, in practice the eroding process is much more complex and involves local 
transient flows such as turbulent jets with intermittent spikes of local hydrodynamic stress. On 
the other hand, the derivation of a reliable empirical expression for the critical stress has been 
hindered by the large variety of sediment properties that are relevant for the inter-particle 
forces of cohesive soils and their complex relationships [4]. All this has led to a general lack 
of consensus over the robustness of the different testing procedures as well as on the analysis 
methods, in particular on the assumptions for the assessment of the critical shear stress [5]. 

From the theoretical side, the starting point of most numerical approaches employed so far 
to study the erosion of geomaterials is merely macromechanical with both water and soil 
described as continuous media. Different techniques have therefore been proposed in order to 
track the transient evolution of their interface, where mass exchange between phases (i.e. the 
actual erosion) takes place [6]. On the one hand, the purely Eulerian approaches permit the 
use of a fixed mesh but they do not allow for a precise definition of hydro-mechanical 
variables at the interface. In a similar vein, hybrid Eulerian-Lagrangian methods may show a 
good precision at the interface but they often lead to severe and time-consuming remeshing 
issues [6]. 

The aim of the present work is to introduce an alternative approach based on discrete-
element simulations of a cohesive granular bed impacted by a fluid jet modelled by the Lattice 
Boltzmann method. This is a micro-mechanical approach, which allows for the investigation 
of different factors driving the elementary mechanisms of erosion, such as the detachment of 
particle aggregates at the soil surface (surface erosion) or the dislodgement of lumps of 
material below the free surface (mass erosion) [7].

We introduce below our numerical approach and its application to a JET test on a granular 
bed with increasing cohesion between grains. A simple model of inter-particle cohesion will 
be considered, and its consequences for the bed’s erodibility will be discussed. 

2 NUMERICAL METHOD 
There are various coupled methods developed so far for the numerical simulation of fluid-

solid interactions at the particle-scale. The approach adopted here combines the computational 
efficiency of the Lattice Boltzmann Method (LBM) for the simulation of fluids with the 
relative simplicity of the Discrete Element Method (DEM) for the simulation of solid 
particles. This approach has already been applied to several geomechanical problems (see e.g. 
[8-10]). 

2.1 Solid phase. A DEM approach 
The granular soil is described here by means of a smooth discrete element approach based 

on the Molecular Dynamics method [11]. We use a two-dimensional assembly of circular 
particles whose trajectories are computed by simple integration of Newton’s equations of 
motion. The smooth inter-particle contact and friction laws are supplemented by cohesive 
interactions (see e.g. [12-14]). Here, we consider a simple cohesive law depicted in Figure 1 
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for contact interactions [12]. 

Figure 1: Left: Rheological model of solid contacts, after [14]; Right: Yield surface of cohesive bonds in the 
space of interaction forces 

The interaction between two particles is thus formulated in terms of an interaction force F
and an interaction moment M applied at the contact point. The interaction force is 
decomposed into its normal and shear components, Fn and Fs respectively, corresponding to 
the normal and tangential directions at the contact. The normal force Fn is described in terms 
of the local interpenetration δn by means of a classical Kelvin-Voigt viscoelastic relationship 
defined by the normal stiffness and damping coefficients, kn and ηn. On the other hand, the 
shear force arising at a frictional (non-cohesive) contact is defined here by a viscous-
regularized Coulomb law [15, 16] characterized by a static friction coefficient µ and a viscous 
coefficient of shear regularization ks. In this way, the shear force is computed as a function of 
the sliding velocity s, which in practice never really vanishes. Due to the small time steps 
considered here (in the order of 10-6 s), the quasi-static equilibrium of particles under the 
action of static friction forces is reached through residual micro-slips. The force moment 
acting on each particle’s centre is defined from the shear force with the particle’s radius as 
lever arm, and a rolling friction component that governs the rolling motion of the particles 
(relative rotation without sliding). The latter is analogous to the sliding friction in which the 
relative velocity of rotation replaces the sliding velocity, and the rolling friction coefficient µω
and the coefficient of regularization kω replace the sliding friction coefficient and its 
regularization factor [13, 15]. 

The ingredients presented so far describe the purely frictional contacts. In order to 
introduce cohesion allowing for tensile normal forces between the solid particles, a simple 
elastoplastic model with parabolic yield surface in the space of contact forces has been 
employed (Figure 1). In this way, a solid bond is defined for all particles initially at contact, 
featuring a linear elastic rheology characterized by the normal and shear bond stiffnesses kn,b

and ks,b. When a contact force reaches the yield surface, the bond is broken and the contact 
becomes purely frictional. For convenience, the normal and shear yield thresholds Cn and Cs

are assumed to depend only on a single parameter C = Cn = 2·Cs, which represents the 
strength or degree of cementation of the solid bond. The relative strength of the bonds in the 
polydisperse assembly can be characterized by a dimensionless number defined as the ratio of 
bond cohesion to the particle’s own buoyant weight. This cohesive Bond number would then 
be expressed as:
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(1)

where ∆ρ is the submerged apparent density of the solid grains, g is the gravitational 
acceleration and V is the volume of the particle. In general it can be noted that B ≥ 0 and that 
solid bonds with B < 1 are unstable and short-lived since any slight rearrangement of the 
assembly under its own weight has the potential to cause bond rupture. Our numerical tests 
show that the granular bed remains completely bonded under gravity for B ≥ 3 for all particles 
in the sample. 

2.2 Fluid phase. The LBM method 
The transient flow of the fluid phase is described here by means of a classical D2Q9 

scheme of the lattice Boltzman method, which is an explicit finite difference scheme of the 
continuous Boltzmann equation [18, 19]. The LBM is based on a Cartesian lattice grid in the 
space and a discrete set of probability density functions and velocities of fluid particles at 
each grid point. The fluid dynamics are then computed in just two basic steps for the collision 
and advection of the fluid particles following a set of rules that ensure the conservation of 
mass, momentum and energy (i.e. the incompressible Navier-Stokes behaviour). However this 
only holds for low Mach numbers, i.e. when fluid velocity is much lower than the lattice 
speed. We used the generalized formulation of d’Humières with a multiple relaxation time 
(MRT) in order to overcome the well-known shortcomings of the classical Bhatnaggar-Gross-
Krook scheme (single relaxation time) [20, 21]. Hence, the fluid phase is fully defined by 
specifying the lattice grid size ∆x and lattice speed cs, the components sα of the diagonal 
relaxation matrix S (inverse of the different relaxation times) and the fluid material 
parameters of density ρf and kinematic viscosity ν [10]. 

2.3 Solid-fluid coupling 
The coupling between the fluid and solid phases and the computation of hydrodynamic 

forces on the particles are performed by means of the simple method for momentum exchange 
proposed by Bouzidi et al [22], which relies on a generalized bounce-back and linear 
interpolation strategy for arbitrary geometries in the LBM. The sub-cycling time integration 
technique proposed by Feng et al [23] was used to exploit the fact that the time step required 
for the fluid computation is generally much larger than that for particle dynamics. The number 
of DEM subcycles for each LBM step was nevertheless restricted to 2 in order to preserve the 
accuracy of the computed hydrodynamic forces on the solid particles. In order to account for 
fluid flow across a densely packed assembly of particles in two dimensions, a “hydraulic” 
radius slightly smaller than the particle radius was used [24, 25]. 

3 ANALYSIS OF JET EROSION 
Figure 2 illustrates the general configuration of a jet erosion test and its relevant 

dimensions. The dimensions of the system were chosen to mimic our on-going physical tests 
[26] for a later comparison. We have an initial jet-bed distance H = 70 mm, a nozzle diameter 
of d0 = 5 mm and average grain size Dmean = 3 mm. A size polydispersity (Dmax/Dmin = 1.5) 
was introduced in order to avoid crystalline configurations of the two-dimensional granular 

 =
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sample. 

Figure 2: Left: Conceptual sketch of jet erosion test (source: [1]); Right: Spatial disposition of granular 
assembly, jet’s nozzle and control section for fluid variables 

The geometrical, material and rheological parameters of the system employed for these 
simulations are summarized in Table 1.

Table 1: Geometrical, material and model parameters adopted for the simulations 

Solid phase Fluid phase 
Particle mean size, Dmean  3x10-3 m Jet’s distance to surface, H 7x10-2 m 
Polydispersity, Dmax / Dmin 1.5 Jet’s nozzle size, d0 5x10-3 m 
Length of granular sample, L 2.63x10-1 m   
Height of granular sample, Hs 8x10-2 m Kinematic fluid viscosity, ν 5x10-5 m2/s 
  Fluid density, ρf 847 kg/m3

Particle density, ρs 2230 kg/m3   
Normal contact stiffness, kn 1.1x105 N/m Lattice grid size, ∆x 2.3x10-4 m 
Shear contact stiffness, ks 1.1x105 N/m Lattice speed, cs 10 m/s 
Rolling stiffness, kω 0.1kn Hydraulic radius factor, Rh 0.8 
Friction coefficients, µ=3·µω 0.3   
  Inlet fluid velocity, uj [0.8-1.5] m/s 
Normal bond stiffness, kn,b 0.5kn   
Shear bond stiffness, ks,b 0.2kn   
Bond strength, C=Cn=2Cs [0-2.5] N   

The fluid flow may be described as an inertial laminar flow (ReJET ~ 80 to 160), i.e. a flow 
in the transition from a laminar to a turbulent regime. 

3.1 Jet analysis 
The transversal profile of fluid velocity right above the soil surface shows a typical shape 
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with a stagnation point under the jet’s axis and the two local maxima at some distance from it 
(r/H ~ 0.25). These features are nevertheless strongly conditioned by the actual shape and 
roughness of the bed surface. 

a) 

b) 

Figure 3: a) Transversal profiles of fluid velocity and pressure at control section A-A’; b) Integrated resultant of 
hydraulic forces acting on the solid particles at the soil’s surface 

The viscous drag forces acting on the soil surface are proportional to the fluid velocity and 
thus show a similar pattern of stagnation under the jet’s axis and local maxima at r/H ~ 0.25 
(Figure 3b). 

3.2 Erosion process 
The erosion process begins when the hydraulic shear stress at the soil surface exceeds a 

critical shear stress. For our configuration, this limit was reached for jet velocities equal to or 
greater than 0.6 m/s, in good agreement with our on-going experimental results [26]. As 
expected, the mobilization of solid particles then follows a pattern that is similar to the 
profiles of fluid velocity and hydraulic drag forces. Figure 4a shows the eroded profile of a 
cohesionless sample for a jet velocity of 0.8 m/s after 1.6 seconds of jet flow. At higher jet 
velocities and in the absence of cohesion, the picture becomes less clear due to the increased 
scouring depth, the ejection of solid particles and frequent avalanches of the scour pit walls. 

In the presence of cohesive forces between particles, the erosion kinetics becomes slower 
but the initial topology of erosion does not change. Figure 4b shows the state of the granular 
sample for a cohesive strength of C = 2.0 N and a jet velocity of 1.5 m/s after roughly 
0.5 seconds of jet flow. We observe a characteristic stagnation zone at the jet’s axis and the 

A A’ 
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contiguous local maxima of scour depth. It is also observed that the grains are now detached 
either as single particles or in multi-grain clusters preserving a number of internal bonds. 

a) 

b) 

Figure 4: Initial topology of surface erosion; a) Cohesionless sample (bond strength C = 0 N), jet velocity 
uj = 0.8 m/s; b) Cohesive sample (C = 2 N), jet velocity uj = 1.5 m/s 

In order to quantify and evaluate the erosion kinetics in a consistent manner for both the 
cohesive and cohesionless samples, it is necessary to specify an erosion criterion allowing us 
to distinguish between eroded and non-eroded particles. The cumulative particle displacement 
can be misleading for this purpose since it integrates the persistent residual micro-
displacements of the particles, which can add up to significant magnitudes. Therefore it seems 
more appropriate to differentiate the particles as a function of an instantaneous quantity such 
as the kinetic energy: 

(2) =
1
2 

 
1
2 
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where m, I, vi and ωi are the particle’s mass, moment of inertia, translational velocity and 
angular velocity, respectively. In this way, if a particle attains at any moment a kinetic energy 
above a given threshold, it is classified as eroded. In this study, a threshold of 2x10-5 Joules 
allowed us to discriminate well the particles at the debonding front separating the cohesive 
assembly from the detached and re-settled particles (see Figure 5a), and thus was adopted as 
erosion criterion. 

Figure 5b shows the time evolution of the relative eroded mass (i.e. the proportion of 
eroded particles compared to the total mass of the granular assembly) for different strengths 
of the cohesive bonds and a jet velocity of 1.5 m/s. 

a) 

b) 

Figure 5: a) Eroded state of soil surface for C = 2 N after t = 5 s, with particle discrimination in terms of kinetic 
energy (red: eroded particles; blue: intact particles); b) Erosion kinetics in dependence of the bond strength 

The purely frictional sample (C = 0 N) shows a sharp increase of eroded mass when the 
fluid jet reaches the soil surface and after 5 seconds half of the assembly has already been 
eroded. This proportion is significantly reduced by the introduction of cohesion, while the 
complete absence of erosion is achieved when the bond strength is C = 2.5 N. Therefore, the 
critical cementation degree for the beginning of erosion in the presented conditions should 
feature a micromechanical bond strength somewhere between 2 and 2.5 N.  
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4 CONCLUSIONS 
We used a coupled DEM-LBM model to investigate the micromechanics of surface erosion 

of cohesive geomaterials under the action of a fluid jet flow. We showed that for a given jet 
flow, there is a critical value of inter-particle cohesion for which surface erosion occurs. We 
presently work on the influence of more complex cohesion laws and the relation between the 
micromechanical and macroscopic yield thresholds. 

REFERENCES 
[1] Hanson, G.J. and Cook, K.R. Apparatus, test procedures and analytical methods to 

measure soil erodibility in situ. Engineering in Agriculture, ASAE, 20(4): 455-462 (2004). 
[2] Wan, C.F. and Fell, R. Investigation of Rate of Erosion of Soils in Embankment Dams. J. 

Geotech. Geoenviron. Eng., 130(4), 373–380 (2004). 
[3] Bonelli, S.; Brivois, O.; Borghi, R. and Benahmed, N. On the modelling of piping erosion. 

Comptes Rendus de Mécanique, 8-9(334): 555-559 (2006). 
[4] Xu, Y.; Jiang, H.; Chu, F. and Liu, C. Fractal model for surface erosion of cohesive 

sediments, Fractals 22(3), (2014). 
[5] Cossette, D.; Mazurek, K.A. and Rennie, C.D. Critical shear stress from varied method of 

analysis of a submerged circular turbulent impinging jet test for determining erosion 
resistance of cohesive soils, Proc. 6th Conf on Scour and Erosion ICSE6, Paris (2012). 

[6] Mercier, F.; Golay, F.; Bonelli, S.; Anselmet, F.; Borghi, R. and Philippe, P. 2D 
axisymmetrical numerical modelling of the erosion of a cohesive soil by a submerged 
turbulent impinging jet, European Journal of Mechanics - B/Fluids, Vol. 45, pp. 36–50 
(2014) 

[7] Winterwerp, J. C. and Van Kesteren, W. G. M. Introduction to the physics of cohesive 
sediment in the marine environment, Developments in Sedimentology Series no. 56. 
Elsevier (2004). 

[8] Mutabaruka, P.; Delenne, J.-Y.; Soga, K. and Radjai, F. Initiation of immersed granular 
avalanches, Phys. Rev. E. 89 (2014). 

[9] Sibille, L.; Lominé, F.; Poullain, P.; Sail, Y. and Marot, D. Internal erosion in granular 
media: direct numerical simulations and energy interpretation, Hydrol. Process. 29(9), 
pp 2149–2163, Wiley & Sons (2015). 

[10] Ngoma, J. Etude numérique et expérimentale de la déstabilisation des milieux 
granulaires immergés par fluidisation, PhD thesis, Université d’Aix-Marseille (2015). 

[11] Cundall, P.A. and Strack, O.D.L. A discrete numerical model for granular assemblies, 
Géotechnique, Vol. 29, pp. 47-65 (1979) 

[12] Delenne, J.-Y.; El Youssoufi, M.S.; Cherblanc, F. and Bénet, J.-C. Mechanical behaviour 
and failure of cohesive granular materials, Int. J. Numer. Anal. Meth. Geomech., Vol. 28, 
pp. 1577–1594 (2004). 

[13] Richefeu, V. Approche par éléments discrets 3D du comportement de matériaux 
granulaires cohésifs faiblement contraints. PhD thesis. Université Montpellier II (2005). 

[14] Jiang, M.; Zhang, W.; Sun, Y. and Utili, S. An investigation on loose cemented granular 
materials via DEM analyses, Granular Matter 15:65–84, (2013) 

[15] Richefeu, V.; El Youssoufi, M.S.; Peyroux, R. and Radjaï, F. A model of capillary 



528

P. Cuéllar, P. Philippe, S. Bonelli, N. Benahmed, F. Brunier-Coulin, J. Ngoma, J.-Y. Delenne and F. Radjaï 

10

cohesion for numerical simulations of 3D polydisperse granular media, Int. J. Numer. 
Anal. Meth. Geomech., Vol. 32, pp. 1365–1383 (2008). 

[16] Schaefer, J.; Dippel, S. and Wolf, D. Force schemes in simulations of granular materials, 
Journal de Physique I, 6 (1), pp.5-20, EDP Sciences (1996). 

[17] McNamara, S. Molecular dynamics method, in Discrete-element modeling of granular 
materials, Eds. Radjaï, F. and Dubois, F., Wiley-Iste, (2011) 

[18] Succi, S. The Lattice-Boltzmann Equation for fluid dynamics and beyond. Oxford 
university press, Oxford (2001). 

[19] Lallemand, P. and Luo, L.-S. Lattice Boltzmann method for moving boundaries, Journal 
of Computational Physics, Vol. 184, pp. 406–421, (2003). 

[20] Lallemand, P. and Luo, L.-S. Theory of the Lattice Boltzmann Method: Dispersion, 
Dissipation, Isotropy, Galilean Invariance, and Stability, ICASE Report No. 2000-17, 
NASA/CR-2000-210103 (2000). 

[21] Yu, D.; Mei, R.; Luo, L.-S. and Shyy, W. Viscous flow computations with the method of 
lattice Boltzmann equation, Progress in Aerospace Sciences, 39: 329–367, (2003). 

[22] Bouzidi, M.; Firdaouss, M. and Lallemand, P. Momentum transfer of a Boltzmann-
lattice fluid with boundaries, Phys. Fluids, Vol. 13, No. 11, (2001). 

[23] Feng, Y.T.; Han, K. and Owen, D.R.J. Coupled lattice Boltzmann method and discrete 
element modelling of particle transport in turbulent fluid flows: Computational issues, 
Int. J. Numer. Meth. Engng 72:1111–1134, (2007). 

[24] Boutt, D.F.; Cook, B.K. and Williams, J. R. A coupled fluid–solid model for problems in 
geomechanics: Application to sand production, Int. J. Numer. Anal. Meth. Geomech.
35:997–1018 (2011). 

[25] Cui, X.; Li, J.; Chan, A. and Chapman, D. A 2D DEM–LBM study on soil behaviour 
due to locally injected fluid, Particuology 10: 242– 252, (2012). 

[26] Brunier-Coulin, F.; Cuellar, P. and Philippe, P. Local mechanisms of cohesive soil 
erosion, submitted to 13th Int. Conf. on Cohesive Sediment Transport Processes, 
INTERCOH2015, Leuven, Belgium, 7-11 September 2015.




