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Abstract

We provide precise asymptotic estimates for the number of several classes of labeled cubic planar
graphs, and we analyze properties of such random graphs under the uniform distribution. This model
was first analyzed by Bodirsky et al. (Random Structures Algorithms 2007). We revisit their work and
obtain new results on the enumeration of cubic planar graphs and on random cubic planar graphs. In
particular, we determine the exact probability of a random cubic planar graph being connected, and we
show that the distribution of the number of triangles in random cubic planar graphs is asymptotically
normal with linear expectation and variance. To the best of our knowledge, this is the first time one
is able to determine the asymptotic distribution for the number of copies of a fixed graph containing a
cycle in classes of random planar graphs arising from planar maps.

1 Introduction and summary of results

The enumeration of labeled planar graphs has been recently the subject of much research; see [11, 12] for
surveys on the area. The problem of counting planar graphs was first solved by Giménez and Noy [6], while
cubic planar graphs where enumerated by Bodirsky, Kang, Löffler and McDiarmid [2]. More recently, the
present authors solved the problem of enumerating 4-regular planar graphs [14]. Several open problems
remain, like the enumeration of bipartite or triangle-free planar graphs.

The goal of this paper is to sharpen the results from [2], as well as to prove new results. We first enumerate
asymptotically several classes of labeled cubic planar graphs. Among our new results are the enumeration
of cubic planar multigraphs and of triangle-free cubic planar graphs. In order to achieve this goal we need
to use the so-called Dissymmetry Theorem for counting unrooted graphs whose structure can be encoded by
means of a decomposition tree.

Random cubic planar graphs are analyzed according to the uniform distribution. More precisely, let G
be the class of labeled cubic planar graphs and let gn be the number of graphs in G with n vertices. Then
each graph in G with n vertices is taken with the same probability 1/gn. We obtain the exact probability
that a random cubic planar graph is connected, and we prove several results on the distribution of the
number of copies of a fixed subgraph. In particular, we show that the distribution of the number of triangles
is asymptotically normal with linear expectation and variance. To the best of our knowledge, this is the
first time one is able to determine the asymptotic distribution of the number of copies of a fixed graph H
containing a cycle in classes of random planar graphs arising from planar maps. We also obtain Gaussian
limit laws for the number of copies of certain almost cubic subgraphs.
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The proofs are based on combinatorial decompositions, generating functions and asymptotic analysis of
their coefficients, using the tools of analytic combinatorics [5]. In several places we use Maple to perform
symbolic and numerical computations.

1.1 Results on enumeration

In the first place we obtain an asymptotic estimate for the number cn of connected cubic planar graphs.
In all the statements that follow, n should be even since a cubic graph has necessarily an even number of
vertices. To avoid repetition, we assume this is always the case when referring to the number of vertices in
cubic graphs. All the numerical constants in this paper are given with a precision of 6 decimals places.

Theorem 1. The number cn of connected cubic planar graphs with n vertices is asymptotically

cn ∼ c · n−7/2γnn!,

where c ≈ 0.060973 and γ = ρ−1 ≈ 3.132591, where ρ ≈ 0.319225 is the smallest positive root of the equation

729x12 + 17496x10 + 148716x8 + 513216x6 − 7293760x4 + 279936x2 + 46656 = 0. (1)

Next we estimate the number of all cubic planar graphs.

Theorem 2. The number gn of cubic planar graphs with n vertices is asymptotically

gn ∼ g · n−7/2γnn!,

where γ is as in Theorem 1 and g ≈ 0.061010. As a consequence, the limiting probability p that a random
cubic planar graph is connected is equal to

p =
c

g
≈ 0.999397.

We remark that the actual value of p was not computed in [2], only estimated from values of cn and gn
for small n. As we will see later, p can be computed exactly using the Dissymmetry Theorem. Once we have
the value of p, a standard proof (see [7]) shows that the number of connected components in a random cubic
graph is asymptotically distributed as X + 1, where X is a Poisson law of parameter λ ≈ 0.000604.

It is also possible to estimate the number of 2-connected cubic planar graphs.

Theorem 3. Let bn be the number of 2-connected cubic planar graphs on n vertices. Then

bn ∼ b · n−7/2γnb n!,

where b ≈ 0.059244, γb = ρ−1
b ≈ 3.129666, where ρb ≈ 0.319523 is the smallest positive solution of

54x6 + 324x4 − 4265x2 + 432 = 0.

Our next result is an estimate on the number of cubic planar multigraphs. This class of graphs is
instrumental in the study of the phase transition of the Erdős-Rényi random graph [8, 9, 13]. In these
references cubic multigraphs are equipped with a weight that depends on the number of loops and multiple
edges. Here we count unweighted cubic multigraphs, which is a result interesting by itself.

Theorem 4. The number hn of cubic planar multigraphs is asymptotically

hn ∼ h · n−7/2γnmn!,

with h ≈ 0.224743 and γm = ρ−1
m ≈ 3.985537, where ρm ≈ 0.250907 is the smallest positive root of the

equation

729 x12 − 17496 x10 + 148716 x8 − 513216 x6 − 7293760 x4 − 279936 x2 + 46656 = 0. (2)

2



The same estimate holds for the number of connected cubic planar multigraphs, but with h replaced by the
constant h′ ≈ 0.209410. The limiting probability of connectivity is

pm =
h′

h
≈ 0.931778.

We remark that the proof needs again an application of the Dissymmetry Theorem, since the presence of
loops and multiple edges does not allow us, as for simple graphs, to directly relate the number of graphs
rooted at a vertex with those rooted at an edge. In addition, the similarity between equations (1) and (2)
will be explained later.

We recall that a sequence (an) is P -recursive if it satisfies a linear recurrence relation whose coefficients
are polynomials in n.

Theorem 5. The following sequences are P -recursive: the numbers of arbitrary, connected and 2-connected
cubic planar graphs, and the number of cubic planar multigraphs.

The proofs rely on the algebraic character of several of the generating functions involved and, in the case
of cubic multigraphs, on a further application of the Dissymmetry Theorem.

Our last result in this section is the enumeration of triangle-free cubic planar graphs. The proof is more
involved and will be given after the proof of Theorem 7, since it uses the techniques introduced there for
studying the distribution of the number of triangles in random cubic planar graphs.

Theorem 6. The number un of connected triangle-free cubic planar graphs with n vertices is asymptotically

fn ∼ f · n−7/2γnt n!,

with f ≈ 0.000911 and γt = ρ−1
t ≈ 2.641747, where ρt ≈ 0.378537 is the smallest positive solution of the

equation

x40 − 2x38 − 41x36 + 180x34 + 285x32 − 3630x30 − 26651
4 x28 + 5654783

32 x26

− 3989098451
4096 x24 + 50409552353

16384 x22 − 246713078305261
37748736 x20 + 8988271236666325

905969664 x18

− 34616066062430108809
3131031158784 x16 + 148714112813428613

16307453952 x14 − 88102457851295
15925248 x12

+ 28819599609215
11943936 x10 − 2805808889

3888 x8 + 130387637
972 x6 − 8646784

729 x4 − 128x2 + 64 = 0.

(3)

In addition, the number tn of triangle-free cubic planar graphs with n vertices is asymptotically

tn ∼ α · n−7/2γnt n!,

where α ≈ 0.0009109.

The multiplicative constant α in the last theorem is the only constant in our work for which we do not
obtain an exact expression. It would be in principle possible to obtain this expression, but the computations
would be very complex. The approximate value given in the statement is estimated from small values of n.

At the end of the paper we provide a table with the numbers of cubic planar graphs for small values of n
for the new families we have enumerated: multigraphs and triangle-free graphs. The numbers for arbitrary,
connected and 2-connected cubic planar graphs are listed in [2].

1.2 Results on limit laws

Given an unlabeled graph H, a copy of H in a labeled graph G is a subgraph isomorphic to H. Our results
in this section deal with the number of copies of a fixed subgraph. We start with the number of triangles,
the main result in this section. We say that a sequence Xn of random variables is asymptotically normal if
the standardized variables (Xn −E[Xn])/σ(Xn) converge in distribution to the standard normal law.
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Theorem 7. Let Xn be the number of triangles in a random cubic planar graph. Then Xn is asymptotically
normal with moments

E[Xn] ∼ µn, Var[Xn] ∼ λn,
where

µ ≈ 0.121974, λ ≈ 0.064985.

It was proved in [2] that Xn is linear with high probability. Our result is a considerable sharpening of this
fact. The proof, based on the so-called Quasi-powers Theorem, is technically involved and we are not able
to extend it, for instance, to the number of cycles of length 4. The key property here is that two triangles
in a cubic graph are either vertex disjoint or share one edge.

Our final results concern the number of copies of graphs which are close to being cubic. We define a
cherry as a planar graph in which all vertices have degree 3 except for one vertex of degree 1. The smallest
cherry has 6 vertices and is obtained by subdividing one edge of K4 and attaching one vertex of degree 1. In
what follows, we denote by aut(H) the number of automorphisms of a graph H. We recall that the number
of different ways of labeling an unlabeled graph H is equal n!/aut(H).

Theorem 8. Let XH,n be the number of copies of a fixed unlabeled cherry H with h vertices in a random
cubic planar graph. Then XH,n is asymptotically normal with moments

E[XH,n] ∼ µn, Var[XH,n] ∼ λn,

where

µ =
4374(ρ4 + 8ρ+ 4)2

ρ2P1
· ρh

aut(H)
, λ =

8748(ρ4 + 8ρ+ 4)(P2h+ P3)

ρ4P 3
1

· ρ2h

aut(H)2
+ µ+ µ2,

where ρ is as in Theorem 1, and

P1 = −(2187ρ10 + 43740ρ8 + 297432ρ6 + 769824ρ4 − 7293760ρ2 + 139968) > 0,

P2 = −4374
(
ρ4 + 8 ρ2 + 4

)3
P1,

P3 = −14348907ρ22 − 593088156ρ20 − 10235553660ρ18 − 95276742480ρ16 − 464803389936ρ14

−412656456960ρ12 + 7449015918528ρ10 + 32947458310656ρ8 − 457978474586624ρ6

+18919725382656ρ4 + 3101861081088ρ2 − 19591041024.

Moreover, for h ≥ 2 we have that λ > 0.

It was shown in [10] that, with high probability, XH,n is at least cn for some constant c > 0 that depends
only on H. Our result provides a precise limit distribution.

Define a brick as a graph obtained from a 3-connected cubic planar graph by removing one edge, so
that all vertices have degree 3 expect two vertices u and v that have degree 2, and such that u and v are
distinguishable (as if the edge removed was oriented). Our last result gives the distribution of the number
of copies of a given brick. We denote by K−4 the graph obtained from K4 by removing one edge.

Theorem 9. Let XB,n be the number of copies of a fixed unlabeled brick B, different from K−4 , with b
vertices in a random cubic planar graph. Then XB,n is asymptotically normal with moments

E[XB,n] ∼ µn, Var[XB,n] ∼ λn,

where

µ =
10185312ρ2

P1

ρb

aut(B)
, λ =

242688ρ2(P2h+ P3)

P 3
1

ρ2b

aut(B)2
+ µ+ µ2,
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ρ is as in Theorem 1, and

P1 = −(2187ρ10 + 43740ρ8 + 297432ρ6 + 769824ρ4 − 7293760ρ2 + 139968) > 0,

P2 = −854929626ρ2P1,

P3 = 880066296 ρ20 + 35202651840 ρ18 + 591404550912 ρ16 + 5407127322624 ρ14

+19994308272243 ρ12 − 51726289953708 ρ10 − 559899907432200 ρ8 − 1063749220662816 ρ6

−5760872476783424 ρ4 + 43131140739648 ρ2 + 3604751548416.

Moreover, for b ≥ 2 we have that λ > 0.
The same result holds for B = K−4 with constants

µ ≈ 0.004529, λ ≈ 0.004343.

The case when B = K−4 has to be treated separately, since it can appear in two different ways: as a
3-connected core, or as the parallel composition of two loop networks, as explained in the next section. Bricks
other than K−4 can only appear as 3-connected cores.

We have obtained similar results for parameters that have been studied for several classes of planar and
related classes of graphs [7]. We can show that the number of cut vertices, the number of isthmuses (separat-
ing edges) and the number of blocks (2-connected components, including isthmuses) are all asymptotically
normal with linear expectation and variance. For the sake of brevity we omit the proofs and give only the
values of the constants for the expectation and variance:

Parameter µ λ
Cut vertices 0.001877 0.003793
Isthmuses 0.000939 0.000950
Blocks 0.001878 0.003796

2 Preliminaries

In this section we collect a number of analytic and combinatorial results that are needed in the sequel.

Analytic combinatorics. We use the elements of analytic combinatorics as in [5]. To a class G of labeled
graphs, we associate the exponential generating function G(x) =

∑
n≥0 gnx

n/n!, where gn is the number of
graphs in G with n vertices. We define G• as the class of graphs in G with a distinguished vertex (that we
call the root). By the basic rules of the symbolic method, its generating function is G•(x) = xG′(x).

Given a complex number ζ 6= 0, a ∆-domain at ζ is an open set in the complex plane of the form

∆(R,φ) = {z : |z| < R, z 6= ζ, | arg(z − ζ)| > φ}.

A dominant singularity of a complex function is a singularity of the smallest modulus. The basic tool for
extracting asymptotic estimates from generating functions is the following (see [5, Corollary VI.1]).

Lemma 10 (Transfer Theorem). Assume that f(z) has a unique dominant singularity ρ > 0 and is analytic
in a ∆-domain at ρ. If f satisfies, locally around ρ, the estimate

f(z) ∼
z→ρ

(1− z/ρ)−α,

with α 6∈ {0,−1,−2, . . . }, then the coefficients of f(z) satisfy

[zn]f(z) ∼
n→∞

nα−1

Γ(α)
ρ−n.
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If f has several dominant singularities coming from pure periodicities, then the contributions from each
of them must be combined (see [5, IV.6.1]). In our case, the periodicities are due to the fact that cubic
graphs have necessarily an even number of vertices and the corresponding generating functions are even. We
will locate the (unique) positive dominant singularity ρ and will add the contributions from ρ and −ρ.

All the singularities we will encounter are of square-root type, that is, the expansion of a function at a
singularity ρ is of the form

f(x) =
∑
i≥0

fiX
i, X =

√
1− x/ρ.

The singular expansions we encounter are of the form

f(z) = f0 + f2X
2 + · · ·+ f2kX

2k + f2k+1X
2k+1 +O(X2k+2),

with k = 1 or k = 2. The only non-analytic term is f2k+1X
2k+1, and it is from this term that asymptotic

estimates are derived using the Transfer Theorem.
In order to prove asymptotic normal limit laws, we need a simplified version of the so-called Quasi-powers

Theorem (see [5, Theorem IX.8]).

Lemma 11 (Quasi-powers Theorem). Let {Xn}n≥1 be a sequence of non-negative discrete random variables
with probability generating functions pn(u). Assume that, uniformly in a fixed complex neighborhood of u = 1

pn(u) = A(u)∆B(u)n
(
1 +O

(
n−1

))
,

where A(u), B(u) are analytic at u = 1 and A(1) = B(1) = 1. Assume finally that B(u) satisfies the condition
B′′(1) +B′(1)−B′(1)2 6= 0.

Then the distribution of Xn is, after standardization, asymptotically normal, and the mean and variance
satisfy

E[Xn] ∼ B′(1)n, Var[Xn] ∼
(
B′′(1) +B′(1)−B′(1)

2
)
n.

In our applications we will have B(u) = ρ(1)/ρ(u), where ρ(u) will be the dominant singularity (as a
function of z) of a bivariate generating function f(z, u). The former expressions then become

E[Xn] ∼
(
−ρ
′(1)

ρ(1)

)
n, Var[Xn] ∼

(
−ρ
′′(1)

ρ(1)
− ρ′(1)

ρ(1)
+

(
ρ′(1)

ρ(1)

)2
)
n.

Planar maps and triangulations. We recall that a planar map is a connected planar multigraph em-
bedded in the plane up to homeomorphism. A map is rooted if one of its edges is distinguished and oriented.
In this way a rooted map has a root edge and a root vertex (the tail of the root edge). We define the root
face as the face to the right of the directed root edge. A rooted map has no automorphism, in the sense that
every vertex, edge and face is distinguishable. From now on all maps are planar and rooted. Since maps are
not labeled, the associated generating functions are ordinary.

A map is a triangulation if it is 3-connected and every face is a triangle (one can consider more general
triangulations having loops and multiple edges but they are not needed in this paper). The dual of a
triangulation is a 3-connected cubic map, since 3-connectivity in maps is preserved under duality (a map
is 3-connected if it is 3-connected as a graph and it has no multiple edges). Let T (z) be the (ordinary)
generating function of 3-connected triangulations together with the map consisting of a triangle, where the
variable z marks the number of vertices minus two. Then, as shown by Tutte [16],

T (z) = U(z) (1− 2U(z)) , (4)

where U is an algebraic function defined by

z = U(z)(1− U(z))3. (5)
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Equation (5) has a unique solution with positive coefficients, given by

U(z) = z + 3z2 + 15z3 + 91z4 + · · ·

Then
T (z) = z + z2 + 3z3 + 13z4 + · · ·

As shown in [16], the unique singularity of U (and hence of T ) is located at τ = 27/256. In particular,

U(τ) = 1/4, T (τ) = 1/8.

The singular expansion of U(z) at τ is equal to

U(z) =
1

4
−
√

6

8
Z +

1

12
Z2 − 31

√
6

1728
Z3 +

37

1296
Z4 − 2093

√
6

248832
Z5 +O(Z6), (6)

where Z =
√

1− z/τ . From Equation (4) we obtain the singular expansion of T (z) at τ

T (z) =
1

8
− 3

16
Z2 +

√
6

24
Z3 − 13

192
Z4 +

35
√

6

1728
Z5 +O(Z6).

We also need to consider the family of 4-connected triangulations, which are those not containing a
separating triangle (a triangle that is not a face) and having at least 6 vertices. The smallest 4-connected
triangulation is the graph of the octahedron. The associated generating function T4(z), where again z marks
vertices minus two, is equal to (see [16])

T4(z) = z + V (z)(V (z)− 1)(V (z) + 1)−2 − z2, (7)

where V (z) is given by
z = V (z)(1− V (z))2.

The unique solution with positive coefficients is

V (z) = z + 2z2 + 7z3 + 30z4 + . . . ,

and
T4(z) = z4 + 3z5 + 12z6 + 52z7 + . . .

The unique singularity of T4 is at ς = 4/27 and we have

V (ς) = 1/3, T4(ς) = 7/5832.

The singular expansion of V (z) at ς is equal to

V (z) =
1

3
− 2
√

3

9
Z +

2

27
Z2 − 5

√
3

243
Z3 +

16

729
Z4 − 77

√
3

8748
Z5 +O(Z6), Z =

√
1− z/ς.

As before, using (7) we obtain

T4(z) =
7

5832
− 245

23328
Z2 +

√
3

96
Z3 − 833

93312
Z4 −

√
3

864
Z5 +O(Z6).
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3-connected cubic planar graphs. Let M(x, y) be the GF of labeled 3-connected cubic planar graphs
rooted at a directed edge, where x marks vertices and y marks edges. There is a bijection between triangu-
lations and planar 3-connected cubic maps given by duality. Also, by Whitney Theorem, every 3-connected
cubic planar graph admits a unique embedding in the plane up to orientation. Using this fact we can express
M(x, y) in terms of the generating function T (z) of rooted unlabeled triangulations, where z counts the
number of vertices minus two. The relation is

M(x, y) =
1

2

(
T (x2y3)− x2y3

)
. (8)

The subtracted term x2y3 corresponds to the triangulation consisting of a single triangle. We have

M(x, y) = 12
x4

4!
y6 + 1080

x6

6!
y9 + · · ·

The first monomial corresponds to K4 (a unique labeling and 12 possible roots) and the second one to the
triangular prism (60 ways to label and 18 roots).

We will also need the generating function M(x, y) of (unrooted) labeled 3-connected cubic planar graphs,
which is obtained by integration. We have M(x, y) = 2y∂M(x, y)/∂y, hence

M(x, y) =
1

2

∫
M(x, y)

y
dy =

1

4

∫
T (x2y3)− x2y3

y
dy.

We change variables as z = x2y3 and are left with the integral 1
12

∫
T (z)/z dz. We make the further change

v = U(z) and, using Equations (4) and (5), we get

M(x, y) =
1

12

(∫
T (z)

z
dz − z

)
=

1

12

(∫
(1− 2v)(1− 4v)

1− v dv − z
)

= − 1

12

(
4v2 + 2v + 3 log(1− v) + z

)
.

Hence

M(x, y) = − 1

12

(
4U(x2y3)2 + 2U(x2y3) + 3 log(1− U(x2y3)) + x2y3

)
. (9)

Networks. We follow the definitions from [2] but deviate slightly from the notation there. A network is
a connected cubic planar multigraph G with an ordered pair of adjacent vertices (s, t) such that the graph
obtained by removing the edge st is simple. There could be an additional edge between s and t which is not
removed. We notice that st can be a simple edge, a loop or a belong to a double edge. The oriented edge st
is the root of the network and s, t are the poles.

Given a network H, with root edge st, and a directed edge e = uv of another network G, the replacement
of e with H is the network obtained from G by performing the following operation. Subdivide the edge uv
twice producing a path uu′v′v, remove the edge u′v′, and identify u′ and v′, respectively, with vertices s and
t of H − st. Notice that if G and H are cubic and planar, so is the resulting network.

A cut vertex in a cubic graph is necessarily incident with one or three isthmuses. For each cut vertex
u incident with exactly one isthmus e, we can remove the component containing e and erase the resulting
vertex of degree 2 resulting in a cubic graph. We call this operation suppressing the cut vertex u.

By classifying the possible situations obtained by removing the edge st, networks fall into five classes, as
shown in [2]. For the sake of completeness we offer an alternative proof based on Tutte’s decomposition of
2-connected graphs into 3-connected components [3].

Lemma 12. Let G be a network and let st be the root edge. Then G belongs to one and only one of the
following classes.
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• L (Loop). The root edge is a loop.

• I (Isthmus). The root edge is an isthmus.

• S (Series). G− st is connected but is not 2-connected.

• P (Parallel). G− st is 2-connected and G− {s, t} is not connected.

• H (3-connected). G is obtained from a 3-connected graph by possibly replacing each non-root edge with
a network of types L, S, P or H.

Proof. Let G be a network with root edge st, and suppose st is neither a loop nor an isthmus, so we are
not in the classes L or I. Consider the 2-connected core C obtained by suppressing all cut vertices incident
with exactly one isthmus. By Tutte’s decomposition into 3-connected components, C belongs to either S,P
or H.

Let now D be the class of networks for which the graph resulting from the removal of the root edge
remains connected. It is by definition,

D = L+ S + P +H,
where + denotes the disjoint union of classes, and the class I is excluded since removing the root edge of
networks in this class disconnects the graph. Let then L(x), I(x), S(x), P (x), H(x), D(x) be the associated
generating functions.

The following result, based on simple combinatorial arguments, is shown in [2, Section 3].

Lemma 13. The following equations hold:

D = L+ S + P +H,

L =
x2

2
(I +D − L),

S = D(D − S),

I =
L2

x2
,

P = x2D +
x2

2
D2,

H =
M(x, 1 +D)

1 +D
.

(10)

Notice that all the functions involved are even, in agreement with the fact that a cubic graph has an even
number of vertices. Using the relations D−L = S+P +H and D−S = L+P +H, the system (10) can be
rewritten so that all the functions on the right hand-side have non-negative coefficients when expanded in
terms of x, L, I, S,H and D. This is also true for the equation H = M(x, 1 + D)/(1 + D), since M(x, y) is
divisible by y. It follows (see [4]) that there is a unique solution of the system with non-negative coefficients,
which is the combinatorial solution.

Let C(x) be the generating function of connected cubic planar graphs, and C•(x) = xC ′(x) that of
connected graphs rooted at a vertex. As shown in [2], C•(x) can be expressed in terms of networks as

3C•(x) = D(x) + I(x)− L(x)− x2D(x)− L(x)2. (11)

The factor 3 comes from double counting since at every root vertex v we have 3 possible root edges with v
as a tail. The term D(x) + I(x) encodes all types of networks, from which one has to subtract those which
are not simple. These are L, where the root edge is a loop, and those where the root edge is a double edge:
parallel networks encoded by x2D(x), and series networks encoded by L(x)2.
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The Dissymmetry Theorem for tree-decomposable classes. We follow the formulation in [3]. A
class of graphs A is said to be tree-decomposable if for each graph γ ∈ A, we can associate in a unique way
a tree τ(γ) whose nodes are distinguishable (for instance, by using the labels on the vertices of γ). Let A•
denotes the class of graphs in A where a node of τ(γ) is distinguished. Similarly, A•−• is the class of graphs
in A where an edge of τ(γ) is distinguished, and A•→• those where an edge τ(γ) is distinguished and given
a direction. The Dissymmetry Theorem for trees by [1] allows us to express the class of unrooted trees in
terms of the classes of trees with a distinguished vertex, edge and directed edge. This result can be extended
to tree-decomposable classes in the following way (see [3]).

Theorem 14. Let A be a tree-decomposable class. Then

A+A•→• ' A• +A•−•,
where ' is a bijection preserving the number of nodes.

3 Proofs of enumerative results

Before proving Theorem 1, we mention the corresponding proof presented in [2]. It is shown by algebraic
elimination from the system (10), that one can obtain a single polynomial equation Φ(x,D) satisfied by D.
It is then claimed in [2] that the root ρ ≈ 0.319224 of the discriminant of Φ with respect to D provides the
dominant singularity of D. However, the analysis is incomplete since one must guarantee that this is the
only dominant singularity and that there are no smaller singularities arising from a potential branch point.
Then a singular expansion of D(x) at ρ of square-root type is somehow guessed as

D(x) = D0 +D2X
2 +D3X

3 +O(X4), X =
√

1− x/ρ.
The validity of this expansion is not fully established and the coefficients Di are apparently not computed
in [2]. Using the Transfer Theorem, an estimate for the coefficients of D is derived, which implies a corre-
sponding estimate for the coefficients of C. This remark also applies to the proof of Theorem 3.

In order to provide completely rigorous proofs for this and the subsequent enumeration results, we will
use the following technical lemma. We recall that the discriminant of an algebraic function A is characterized
by the common roots of the minimal polynomial of A and its derivative with respect to A. Recall also that
τ = 27

256 is the singularity of the generating function T (z) of triangulations.

Lemma 15. Let A(x) be an even algebraic power series with positive coefficients which satisfies an equation
of the form

H(x,A(x), T (x2(1 +A(x))3)) = 0,

where H is a polynomial, and T is the generating function of triangulations as in (4). Let p(x) be the
discriminant of A.

Assume that the equations H = 0 and x2(1+A(x))3 = τ have a common positive solution, and let (x0, A0)
be the one with smallest x0 value. Assume in addition the following conditions:

1. x0 is the smallest positive root of p(x), and ±x0 are the only roots of p(x) of modulus x0.

2. HA(x0, A(x0), T (x2
0(1 + A(x0))3)) 6= 0, where HA is the derivative of H with respect to the second

variable.

3. A′(x0) is finite and A′′(x0) = +∞, where both evaluations are taken as limits as x→ x−0 .

Then x0 is the unique dominant singularity of A(x), and the expansion at x0 is of the form

A(x) = A0 +A2X
2 +A3X

3 +O(X4),

where X =
√

1− x/x0, and A3 > 0 is a computable algebraic number. Furthermore, the following asymptotic
estimate holds for n even:

[xn]A(x) ∼ 3A3

2
√
π
n−5/2x−n0 .

10



Proof. The potential singularities of an algebraic functions are among the roots of its discriminant [5, Section
VII.7.1]. Since x0 is the smallest positive root of p(x), A(x) is analytic in the disk |x| < x0. Since A′′(x0) =
+∞ (recall that by hypothesis A(x) has positive coefficients), A(x) is not analytic at x0. It follows that x0

is a dominant singularity. The condition HA(x0, A(x0), T (x2
0(1 +A(x0))3)) 6= 0 guarantees that x0 is not at

the same time a branch point when solving H = 0. Since T (z) has an expansion at τ in powers of
√

1− z/τ ,
by indeterminate coefficients on the singular exponents A(x) has a Puiseux expansion at x = x0 of the form∑
i≥0AiX

i at x0. The condition A′(x0) < +∞ implies that A1 = 0, and A′′(x0) = +∞ implies that A3 6= 0,
as claimed. The coefficients Ai are algebraic numbers since A is an algebraic function.

Because of the expansion in powers of X, A(x) is analytic in a neighborhood of x0 slicing the ray [x0,+∞].
Since p(z) has no other root of modulus x0, it follows that ±x0 are the only singularities satisfying that
|x| = x0. A standard compactness argument (see the last part of the proof of Theorem 2.19 in [4]) shows
that A(x) is analytic in a ∆-domain at both x0 and −x0. Hence we can apply the Transfer Theorem [5,
Corollary 6.1], and obtain the estimate for n even as claimed, using Γ(−3/2) = 4

√
π/3. Notice that the

contributions from x0 and −x0 are added, so that the multiplicative constant is 2A3/Γ(−3/2).

Note. When computing Puiseux expansions of an algebraic function with Maple it may be that several
solutions appear due to the different branches at a given point. In all our proofs we find a single expansion
containing a non-zero term A3X

3, which has to correspond to the branch of the combinatorial solution due
to the above considerations.

3.1 Connected cubic planar graphs

Proof of Theorem 1. We start by obtaining a single equation for D from the system (10). First we
combine the second and fourth equations and solve for L as

L = 1 +
x2

2
−
√
x4

4
+ 1− x2(D − 1).

The negative square-root is chosen so that L has non-negative coefficients. Then we have

D =
D2

1 +D
+ x2D +

x2

2
D2 + 1 +

x2

2
−
√
x4

4
+ 1− x2(D − 1) +

M(x, 1 +D)

1 +D
.

A simple manipulation together with (8) gives the equation

F (x,D) = (1 +D)

√
x4

4
+ 1− x2(D − 1)− T (x2(1 +D)3)

2
− 1 = 0. (12)

This equation can be written as

H(x,D, T (x2(1 +D)3)) =

(
1 +

1

2
T
(
x2(1 +D)3

))2

− (1 +D)2

(
x4

4
+ 1− x2(D − 1)

)
= 0,

and H is a polynomial. We can apply Lemma 15 with H, however some of the computations will be done
with respect to F .

The equations F = 0 and x2(1 +D(x))3 = τ have a unique positive solution, given by

ρ ≈ 0.319225, D0 = D(ρ) ≈ 0.011526,

We now proceed to check that the conditions of Lemma 15 hold. We eliminate from (12) and (4) and
obtain the minimal polynomial p(x) of D, which is equal to the one displayed in the statement. We check
(algebraically) that ρ is a root of p(x), and check (numerically) that ρ is the root with smallest modulus,
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and that ±ρ are the only roots of modulus ρ. We use the relations T ′(z) = (1−U(z))−2 = (1−U(z))U(z)/z
and U(ρ2(1 +D0)3) = 1/4 to compute

FD(ρ,D0) =

√
ρ4

4
+ 1− ρ2(D0 − 1)− ρ2(1 +D0)

2
√

ρ4

4 + 1− ρ2(D0 − 1)
− 9

32(1 +D0)
≈ 0.734617 6= 0.

Next we differentiate F with respect to x and solve for D′(x) to obtain D′(ρ) ≈ 0.370297 < +∞. The
derivative Fx(x,D(x)) contains the term U(x2(1 + D(x)3), hence the second derivative contains the term
U ′(x2(1+D(x))3). It follows that the expression for D′′(ρ) contains the term U ′(ρ(1+D0)3) = U ′(τ), which
is infinite because of (6). All the other terms, including D′(ρ), remain finite, hence D′′(ρ) = +∞.

We compute the Puiseux expansion of D(x) at ρ

D(x) = D0 +D2X
2 +D3X

3 +O(X4), X =
√

1− x/ρ,

and obtain D3 ≈ 0.254267.
Finally, plugging the singular expansions of D into Equation (11) we obtain the expansion

C•(x) = C•0 + C•2X
2 + C•3X

3 +O(X4), (13)

where C•3 ≈ 0.072048. For n even we deduce the estimate

n · cn = n![xn]C•(x) ∼ 3C•3
2
√
π
· n−5/2 · ρ−nn!,

and
cn ∼ c · n−7/2γnn!, c = 3C•3/(2

√
π) ≈ 0.060973, γ = ρ−1 ≈ 3.132591.

This concludes the proof of Theorem 1.

3.2 Cubic planar graphs

In order to prove Theorem 2 we need an expression of C(x) in terms of the generating functions of networks.
Given Equation (11), it would be sufficient to integrate D(x), which is an algebraic function, but we have not
been able to solve this integration problem. This may be due to the fact that the algebraic equation defining
D(x) has genus 20; in a similar situation when integrating the generating function of general planar networks,
the corresponding curve has genus 0 (see [6, page 319]) and determines a rational curve. Additionally, observe
that by integrating the singular expansion for xC ′(x) will not lead the coefficient C0, which is necessary to
obtain the asymptotic estimate for [xn]G(x).

Instead, we use the Dissymmetry Theorem. This approach is more combinatorial and has the additional
advantage of allowing us to prove Theorem 4, where the algebraic techniques used in [14, Corollary 1.2] do
not apply.

The key tool is to associate, to a cubic planar graph γ, a canonical tree τ(γ) and to encode its different
rootings using the generating functions of networks introduced before. We follow the development and
terminology from [3], adapted to our situation, where the main novelty is that, due to their bounded degree,
there is a finite number of cases to encode cut-vertices using networks.

Rooting at a vertex. The tree τ(γ) has four different types of nodes, namely R, M, T and L corresponding
respectively to the series, parallel, 3-connected and loop constructions, as illustrated by Figure 1.

An R-node is a cycle of length at least 3 in which we replace every vertex with a network of type D−S.
Notice that, by maximality of the series construction, two R-nodes cannot be adjacent in the tree. The
generating function counting trees where an R-node is distinguished is given by

CR = Cycl≥3(D − S) =
1

2

(
log

1

1− (D − S)
− (D − S))− (D − S)2

2

)
.

12
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Figure 1: A connected cubic planar graph γ and its tree-decomposition τ(γ).

An M-node is a 3-bond graph (a graph with two vertices connected by three parallel edges) in which we
replace at least two of its edges with a network of type D. The generating function counting trees where an
M-node is distinguished is given by

CM =
x2

2

(
D2

2
+
D3

6

)
.

An T -node encodes a 3-connected cubic planar graph, the core, in which every edge is (possibly) replaced
by a network of type D. The generating function counting trees where a T -node is distinguished is given by

CT = M(x, 1 +D),

where M is as in Equation (9).

An L-node encodes a cut-vertex of γ which separates the graph into two or three connected components.
The first case is illustrated by the leftmost graph of Figure 2 and is obtained by replacing the root of a
loop-network with a network of type D−L (it cannot be another loop-network as it would create a double-
edge). The second case is illustrated by the middle graph of Figure 2 and is obtained by gluing together
three loop-networks. The generating function counting trees where an L-node is distinguished is given by

CL =
L(D − L)

2
+

L3

6x2
.

Rooting at an edge. The endpoint of an edge of τ(γ) can be any combination of pairs of nodes with the
exception of R–R.

Let us describe how to get CR−M. The adjacency between a R-node and aM-node can be described as
an unordered pair of a series-network an a parallel network. This gives 1

2SP . The same argument applies
for the rest of the families where the vertices of the rooted edge are different. Finally, when the two vertices

13



D − L

Figure 2: In each of the two leftmost graphs, the white cut-vertex encodes one of the two types of L-nodes.
The dashed edge of the rightmost graph encodes an edge between two L-nodes.

of the rooted edge are equal (case T − T and L − L) we need to introduce an extra factor 1/2 due to the
extra symmetry of having in both sides of the edge the same combinatorial class.

Resuming, the associated generating functions are listed below:

CR−M = 1
2SP, CR−T = 1

2SH, CR−L = 1
2SL,

CM−T = 1
2PH, CM−L = 1

2PL, CM−M = 1
4P

2,

CT −L = 1
2HL, CT −T = 1

4H
2, CL−L = 1

2
L2

x2 .

For instance, R–M corresponds to an unordered pair of a series and a parallel network, and similarly for
the remaining expressions.

Rooting at an oriented edge. If A and B are two nodes of different types, then CA→B = CB→A and
CA→B = CA−B, because there are no symmetries. When A = B, we have CA→A = 2CA−A because there
are two possible orientations, hence

CM→M = 1
2P

2, CT→T = 1
2H

2, CL→L = L2

x2 .

Proof of Theorem 2. Recall that C is the generating function of unrooted connected cubic planar graphs.
A direct application of Theorem 14 to the tree-decomposition described above gives C + C•→• ' C• + C•−•.
Translated into the associated generating functions, this yields

C = CR + CM + CT + CL + CM−M + CT −T + CL−L

+CR−M + CR−T + CR−L + CM−T + CM−L + CT −L

−2(CR→M + CR→T + CR→L + CM→T + CM→L + CT→L)

−(CM→M + CT→T + CL→L).

And using the previous expressions, this becomes

C(x) =
x2

2

(
D2

2
+
D3

6

)
+M(x, 1 +D) +

L3

6x2

−1

2

(
log(1−D + S) + (D − S) +

(D − S)2

2
+ P (S +H) +HS +

P 2 +H2

2
+
L2

x2

)
.

(14)

Using the expansion in powers of X =
√

1− x/ρ of each term on the right-hand side of Equation (14),
we compute the singular expansion of C(x) at ρ, which is of the form

C0 + C2X
2 + C4X

4 + C5X
5 +O(X6),
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where C0 ≈ 0.000604 and C5 ≈ −0.028819. The fact that C3 = 0 follows by integrating the expansion for
C•(x) in (13).

Finally, the generating function of cubic planar graphs G(x) = exp(C(x)) has a singular expansion at ρ
of the form

G0 +G2X
2 +G4X

4 +G5X
5 +O(X6),

where G0 = eC0 ≈ 1.000604 and G5 = eC0C5 ≈ −0.028837. An application of Theorem 10 gives the estimate
as claimed (analyticity in a ∆-domain has been shown in the proof of Theorem 1), where

g = 2G5/Γ(−3/2) ≈ 0.061010.

The probability that a random cubic planar graph is connected is then

p = c/g = e−C0 ≈ 0.999397.

We remark that to get the right 6 decimal digits for p we have actually computed c and g to higher
precision.

3.3 Two-connected cubic planar graphs

In order to enumerate 2-connected cubic graphs, we have to discard the classes of networks that produce cut
vertices, namely L and I. We denote the corresponding classes with the same letters as in the previous two
sections, but one must be aware that they represent different classes, since they are restricted to 2-connected
networks. No confusion should arise as we are not working with connected and 2-connected networks at the
same time. The generating functions S, P and H have the same meaning as before, except that they are
now restricted to 2-connected networks. We have

D = S + P +H,

S = D(D − S),

P = x2D + x2D
2

2
,

H =
M(x, 1 +D)

1 +D
.

(15)

Proof of Theorem 3. Using again the relation M(x, y) = (T (x2y3)−x2y3))/2, we get a single polynomial
equation for D, which after a simple manipulation becomes

H = F (x,D) = D +
x2

2
(1 +D)− 1

2
T (x2(1 +D)3) = 0.

The equations
x2(1 +D)3 = τ, F (x,D) = 0

have a unique positive solution ρb ≈ 0.319523 with D0 = D(ρb) ≈ 0.010896. Eliminating D from the
previous equations gives the minimal polynomial of D, which is the one in the statement. As in the proof
of Theorem 1 we check that ρ is a root of p(x), together with the remaining conditions on Lemma 15. The
proofs are along the same lines and are omitted to avoid repetition. The Puiseux expansion at ρb is

D(x) = D0 +D2X
2 +D3X

3 +O(X4), X =
√

1− x/ρb,

with D3 ≈ 0.233893.
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Let now
−→
B (x) be the generating function of 2-connected cubic planar graphs rooted at a directed edge.

Then −→
B (x) = D(x)− x2D(x).

The reason is that from the networks encoded by D(x) we have to exclude the parallel networks with a
double edge, that correspond to x2D(x). If now B• is the generating function for 2-connected vertex-rooted
cubic graphs, by double counting we have

B•(x) =

−→
B (x)

3
.

Applying the Transfer Theorem we obtain for even n

n · bn = n![xn]B•(x) ∼ 2(1− ρ2
b)D3

3 · Γ(−3/2)
· n−5/2 · ρ−nb n!,

and from here the estimate on bn follows with b =
2(1−ρ2b)D3

3·Γ(−3/2) ≈ 0.059244.

3.4 Cubic planar multigraphs

Similarly to the simple case, we decompose connected cubic planar multigraphs using networks. In this
situation we do not demand that removing the edge between the poles gives a simple graph. We also use
the same notation for networks as before. The equations are as follows.

D = L+ S + P +H,

L = x2 + x2L+
x2

2
(I +D − L),

I =
L2

x2
,

S = D(D − S),

P = x2 + x2D + x2D
2

2
,

H =
M(x, 1 +D)

1 +D
.

(16)

The only differences with the system of equations describing the networks associated with simple graphs are
the term x2, in the equation for P , encoding the 3-bond, and the term x2(1 + L), in the equation for L,
encoding the cubic multigraph with two vertices and two loops, rooted at a loop and where the non-rooted
loop is possibly replaced by a loop-network (see Figure 3).

Figure 3: Left is the only cubic multigraph with two vertices and two loops. Right is the same multigraph
whose non-rooted loop has been replaced by a loop-network.

Using the same arguments as before, one can show that there exists a unique solution with non-negative
coefficients of the above system, which is the combinatorial solution.

Let C(x) be the generating function of connected cubic planar multigraphs. Due to the presence of
multiple edges and loops, there is no direct algebraic relation expressing C•(x) in terms of networks. As in
Section 3.2, we need to resort once more to the Dissymmetry Theorem.
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Proof of Theorem 4. We start by obtaining a single equation for D from the system (16). First, we
combine the second and the third equations and solve for L as

L = 1− x2

2
−
√
x4

4
+ 1− x2(D + 3).

Then we have

D =
D2

1 +D
+ x2 + x2D +

x2

2
D2 + 1− x2

2
−
√
x4

4
+ 1− x2(D + 3) +

M(x, 1 +D)

1 +D
.

A simple manipulation together with (8) gives

F (x,D) = (1 +D)

√
x4

4
+ 1− x2(D + 3)− T

(
x2(1 +D)3

)
2

− 1 = 0. (17)

We rewrite as

H
(
x,D, T

(
x2(1 +D)3

))
=

(
1 +

1

2
T
(
x2(1 +D)3

))2

− (1 +D)2

(
x4

4
+ 1− x2(D + 3)

)
= 0,

where now H is a polynomial. We proceed as in the proofs of Theorems 1 and 3. Equations (17) and
x2(1 +D)3 = τ have a unique positive solution

ρm ≈ 0.250907 and D0 = D(ρm) ≈ 0.187679.

The minimal polynomial p(x) of D(x) is obtained by elimination and is equal to the one in the statement.
We check that ρm is a root of p(x), together with the remaining analytic conditions of Lemma 15.

The rest of the proof is a further application of the Dissymmetry Theorem and is very similar to that of
Theorem 2 with some small changes. The rooted tree-decompositions are the same, except that we have to
update the corresponding classes to encode the 3-bond and the multigraph with two vertices and two loops.
Those changes only affect M-nodes and L-nodes. The new equation for the generating function associated
to M-nodes is then

CM =
x2

2

(
1 +D +

D2

2
+
D3

6

)
,

As for L-nodes, we need to introduce two new types of cut-vertices, those adjacent to a loop or to a double
edge (see Figure 4). The equation for the associated generating function becomes

CL = L+ L2 +
L(D − L)

2
+

L3

6x2
.

Now when the tree is either rooted at an edge or at an oriented edge, we need to consider the new case
when two cut-vertices are connected by a double edge (see the multigraph on the right of Figure 4). The
corresponding equations are given by

CL−L =
L2

2x2
+
L2

2
, CL→L =

L2

x2
+ L2.

We then apply Theorem 14 and, after a straightforward calculation, obtain

C(x) =
x2

2

(
1 +D +

D2

2
+
D3

6

)
+M(x, 1 +D) +

L3

6x2

− 1

2

(
log(1−D + S) +D − S +

(D − S)2

2
+ P (S +H) +HS +

P 2 +H2

2
+
L2

x2
+ L2

)
.

(18)
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Figure 4: In white are the two new types of cut-vertices in a multigraph. That are respectively adjacent to
a loop (left) and to a double edge (right).

The Puiseux expansion at ρm is computed from that of D(x) using the previous expression for C(x) and is
of the form

C(x) = C0 + C2X
2 + C4X

4 + C5X
5 +O(X6).

Since we do not have a singular expansion for C•(x) that we can integrate as in the proof of Theorem 2, we
need to show directly that C3 = 0. Assume for contradiction that C3 6= 0. Then, by the Transfer Theorem,
the ratio between the number of connected cubic planar multigraphs with n vertices and the number of
connected networks with n vertices would tend to a constant as n goes to infinity. Let us define a bad edge as
either a double edge or a loop. For n ≥ 4, a vertex of a connected cubic planar multigraph can be adjacent
to at most one bad edge. Hence each vertex is adjacent to at least one simple edge, hence there are at least
n/2 simple edges. Each time a simple edge of a connected cubic planar multigraph is distinguished and
directed, we get a different connected network, hence the number of connected networks with n vertices is
at least n/2 times greater than the number of connected cubic planar multigraphs with n vertices, which is
a contradiction.

We proceed as in the last part of the proof of Theorem 2. We compute

C0 = C(ρm) ≈ 0.070660 and C5 ≈ −0.098979,

together with the singular expansion of G(x) = exp(C(x)), which is given by

G0 +G2X
2 +G4X

4 +G5X
5 +O(X6),

where
G0 ≈ 1.073217 and G5 ≈ −0.106226.

Finally, an application of Lemma 10 gives the estimates as claimed. As a corollary, the probability that a
random cubic planar multigraph is connected is pm = h′/h ≈ 0.931778.

Remark. We provide here a short explanation for the similarity between equations (1) and (2). Let p1(x2)
be the polynomial in (1) and p2(x2) that in (2). After making the change of variables y = x2, p1(y) and
p2(y) are obtained, by eliminating, respectively, in the systems of equations

H1 =
(
1 + 1

2T
(
y(1 +D)3

))2 − (1 +D)2
(
y2

4 + 1− y(D − 1)
)

= 0, y(1 +D)3 = τ,

H2 =
(
1 + 1

2T
(
y(1 +D)3

))2 − (1 +D)2
(
y2

4 + 1− y(D + 3)
)

= 0, y(1 +D)3 = τ.

Now rewrite H1 and H2 as

H1 =
(
1 + 1

2T
(
y(1 +D)3

))2 − (1 +D)2
(
y2

4 + 1
)
− 2y(1 +D)2 − τ,

H2 =
(
1 + 1

2T
(
y(1 +D)3

))2 − (1 +D)2
(
y2

4 + 1
)

+ 2y(1 +D)2 − τ.

We deduce from here that p2(y) = p1(−y), which is equivalent to the relation between (1) and (2).
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3.5 P -recursive sequences

A series is D-finite if it satisfies a linear differential equation with polynomial coefficients. It is well-known
(see Chapter 6 in [15]) that {fn} is P -recursive if and only if

∑
fnx

n/n! is D-finite.

Proof of Theorem 5. We show that in each case the corresponding generating functions are D-finite.
Connected and 2-connected graphs. The generating function C ′(x) is algebraic, hence it is D-finite [15]. It

follows that C(x) is also D-finite. The same argument applies to the generating function B(x) of 2-connected
graphs.

Arbitrary graphs. We use the same argument as in [14], namely that if C ′(x) is algebraic then exp(C(x))
is D-finite. For completeness we briefly recall the proof. Let G(x) = eC(x). One shows by induction
that G(i) = Ri(C

′, x)G(x), where Ri is a rational function in C ′ and x. Since C ′ is algebraic, Q(C ′, x)
is finite dimensional over Q(x), say of dimension k. Hence there are rational functions Si(x) such that∑k
i=0 Si(x)Ri(C

′, x) = 0. It follows that

S0(x)G+ S1(x)G′ + · · ·+ Sk(x)G(k) = 0.

proving that G is D-finite.
Multigraphs. In this case we cannot apply the previous argument, since there is no direct relation

between the generating functions D(x) and C ′(x). It follows from Equation (17) that D(x) is algebraic. We
use Equation (18) to express G(x) = exp(C(x)) in terms of D(x), and the fact that the exponential of an
algebraic function is D-finite, to obtain

G(x) = eC(x) = J(x)eM(x,1+D),

where J(x) is a D-finite function (notice that the logarithm in (18) cancels with the exponential). We next
use the explicit expression (9) and the fact that U(z) is algebraic to conclude that exp(M(x, 1 + D)) is
D-finite (again a logarithm cancels). Since the product of D-finite functions is D-finite, we conclude that
G(x) is D-finite.

4 Proofs of limit law results: triangles

In this section we obtain generating functions encoding triangles in cubic planar graphs and its distribution
in random cubic planar graphs. The main idea behind these proofs is that we are able to enrich the network
decomposition of graphs in order to encode the number of triangles. More precisely, in order to study the
distribution of the number of triangles, we start with 3-connected cubic planar graphs. By duality this
amounts to studying vertices of degree 3 in triangulations. The latter problem is solved in Section 4.1. We
then use it to count triangles in networks in Section 4.2. In Section 4.3 we perform the singularity analysis
of the equations obtained in Section 4.2, and complete the proof of Theorem 7. Finally, as a byproduct of
the previous ideas, in Section 4.4 we apply these tools to enumerate planar cubic triangle-free graphs. This
does not follow directly from Theorem 7 as one needs to adapt the equations satisfied by the associated
generating functions and perform a delicate analysis of singularities.

4.1 Vertices of degree 3 in triangulations

In this section we obtain the generating function of triangulations encoding the number of vertices of degree 3.
This will be done by enriching the classical decomposition by Tutte of triangulations in terms of 4-connected
triangulations [16].

Throughout this section T ∗ denotes the class of triangulations not reduced to a triangle. The associated
generating function is T ∗(z) = T (z) − z, where T (z) is as in Equation (4). Additionally z−1T ∗(z) counts
triangulations (not reduced to a triangle) in terms of internal triangles. Recall that T4(z) is the generating
function of 4-connected triangulations, given in (7). In both cases, z encodes the number of vertices minus
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two. A triangulation A ∈ T ∗ has a 4-connected core C, obtained by removing the vertices inside maximal
separating triangles; the core is either a 4-connected triangulation or is isomorphic to K4. Then A is
obtained by possibly replacing the internal faces of C with arbitrary triangulations. This leads to the
following equation, linking T ∗(z) and T4(z):

T ∗(z) =
T4

(
z
(
1 + z−1T ∗(z)

)2)
1 + z−1T ∗(z)

+ z2(1 + z−1T ∗(z))3. (19)

The first term in the right hand-side is equivalent to Equation (2.6) from [16]; the second one corresponds
to the case when the core is K4. Note that here we want to replace with triangulations in T ∗ instead of T ,
as replacing a face with a single triangle amounts to doing nothing. This is already encoded by the term 1
in 1 + z−1T ∗(z).

Our goal is to refine (19) by counting vertices of degree 3. An internal vertex in a triangulation is a
vertex not incident with the root face, otherwise it is called external. Let t(z, u) be the generating function of
triangulations, where z is as before and u encodes internal vertices of degree 3. In particular, T ∗(z) = t(z, 1).
Let now T0 be the set of triangulations (except K4) in which the degree of the root vertex is equal to 3, and
T1 those where the degree is greater than 3. Then we have T ∗ = T0∪T1∪{K4}. Let T0(z, u) and T1(z, u) be
the associated generating functions, where u now counts the total number of vertices of degree 3, including
the external ones. Then we have

T ∗(z, u) = T0(z, u) + T1(z, u) + z2u4.

In the next lemma we obtain expressions for both T0(z, u) and T1(z, u):

Lemma 16. The generating function t = t(z, u) is defined implicitly in terms of T4(z) as

t =
T4

(
z
(
1 + z−1t

)2)
1 + z−1t

+ z2
(
(1 + z−1t)3 + u− 1

)
. (20)

In addition, we have

T1(z, u) = zut, (21)

T0(z, u) = (1 + 2zu− 3z)t− z2u. (22)

Proof. The first equation follows directly from (19). The only difference comes from the second term asso-
ciated to K4: when none of the internal faces is replaced with a triangulation, the central vertex has degree
3 and the configuration is encoded as u.

When removing the root vertex (and the three adjacent edges) of a triangulation in T1, we obtain a
smaller triangulation. The reverse operation is to take a triangulation, draw a vertex on its root face, join
it with the three vertices on the external face, and re-root the resulting map. This gives (21).

In order to obtain T0 we first compute T (z, u). The following equation follows from (20) by analyzing
again the case where the core is K4, and taking into account how many internal faces are replaced with
triangulations:

T ∗(z, u) =
T4

(
z
(
1 + z−1t

)2)
1 + z−1t

+ z2
(
(1 + z−1t)3 − 1− 3z−1t+ 3uz−1t+ u4

)
.

Finally, we use T ∗(z, u) = T0(z, u) + T1(z, u) + z2u4, and after a simple computation we get (22).

4.2 Triangles in networks

We are now back to labeled graphs and exponential generating functions. In this section the goal is to
obtain equations for networks encoding also triangles. Here, variable x marks vertices and u marks triangles.
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Di(x, u) is the generating function of non-isthmus networks in which the root edge belongs to exactly
i ∈ {0, 1, 2} triangles. (observe that in a cubic graph there is no other possibility). The same convention
applies to series, parallel and h-networks. The special case when the 3-connected core of an h-network is
K4 is encoded in the generating functions Wi. We let E(x, u) be the generating function of networks where
triangles incident to the root edge are not counted, that is,

E(x, u) = D0 + u−1D1 + u−2D2.

The next two lemmas provide the expressions for the series Di, Si, Pi, Wi, I, L and for H0, H1 (H0, H1 will
be treated separately as they are technically more involved).

Lemma 17. The following equations hold:

D0 = S0 + P0 +W0 + L+H0,

D1 = S1 + P1 +W1 +H1,

D2 = P2 +W2,

I =
L2

x2
,

L = 1
2x

2 (I + E − L) + 1
2x

2(u− 1)
(
x2(E − L) + ux2L+ L2)

)
,

P0 = x2(E − L) + 1
2x

2(E − L)2,

P1 = ux2L(E − L) + u2x2L,

P2 = 1
2u

2x2L2,

S0 = E
(
E − (S0 + u−1S1)

)
− u−1S1,

S1 = uL3 + 2ux2L(E − L) + 2u2x2L2,

W0 = 1
2x

4
(
2(1 + u)E2 + 8E3 + 5E4 + E5

)
,

W1 = 1
2x

4
(
4u2E + 6uE2 + 2uE3

)
,

W2 = 1
2x

4
(
u4 + u2E

)
.

Proof. Equations for D0, D1 and D2 are clear, since S2 = P2 = H2 = 0. The equation for I is the same

as in the univariate case. The equation for L is obtained as follows: from the main term x2

2 (I + E − L)
we need to consider separately three situations in which a new triangle is created: they are illustrated in
Figure 5. The corresponding generating functions are 1

2ux
4(E − L), 1

2u
2x4L and 1

2ux
2L2, hence the term

x2

2 (u− 1)
(
x2(E − L) + x2

2 uL+ 1
2L

2
)
.

E − L
L

Figure 5: The three configurations in L where an extra triangle is created. The associated generating
functions are respectively 1

2x
4u(E − L), 1

2x
4u2L and 1

2x
2uL2.

In the case of parallel networks, when using networks in L we create triangles incident with the root edge
of the network. The possible cases in P1 and P2 are illustrated in Figure 6.

21



E − L

L LL

Figure 6: Contributions of ux2L(E − L) to P1 and 1
2x

2u2L2 to P2.

The equation for S1 follows by considering the possible cases in which the root edge is incident with a
triangles, as described in Figure 7.

L

L

L

L

E − L

L

L

Figure 7: Contributions to S1: the corresponding generating functions are uL3, ux2L(E − L), u2x2L2. For
the second and third configuration there are two possibilities.

The equation for S0 is obtained as in the univariate case, by subtracting the term u−1S1. Finally, the
equations for W0,W1 and W2 are obtained by considering all cases where K4 is the core of the h-network.
Observe that the different coefficients that appear in the expressions of W0, W1 and W2 are due to symmetries
of K4.

The previous system can be easily rewritten as we have done earlier (see the paragraph after the statement
of Lemma 13) so that the right-hand terms have non-negative coefficients, and thus admits a unique non-
negative power series as solution. The following lemma gives the expression for H0 and H1 in terms of T0(z)
and T1(z). Joint with the previous lemma, this completes the system of equations encoding triangles:

Lemma 18. Let t(x, u) be the generating function defined by Equation (20). Then H0 and H1 are given by
the following expressions:

H1(x, u) =
1

2
x2u · t

(
x2(1 + E)3, 1 +

u− 1

(1 + E)3

)
,

H0(x, u) =
1

2
t

(
x2(1 + E)3, 1 +

u− 1

(1 + E)3

)
1− x2(E − 2u+ 3)

1 + E
− 1

2
x4(1 + E)2((1 + E)3 + u− 1)).

Proof. We say that a triangle in a network is external if it is incident with the root edge. The edges of an
external triangle that are not the root edge are called special.

We denote by M0 and M1 the family of edge-rooted 3-connected cubic planar graphs (except K4)
without external triangles and with one external triangle, respectively, and let M0(x, y, u), M1(x, y, u) be the
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associated generating functions, where x, y and u mark vertices, edges and triangles, respectively. Similarly
to Equation (8) we have that

M0(x, y, u) =
1

2
T0(x2y3, u), M1(x, y, u) =

1

2
T1(x2y3, u).

Let m1(x, y, u) = M1(x, y, u)/(uy3), where now u counts non-external triangles, and y counts the number of
edges minus three (we do not count the root edge and the special edges).

A network in H1 is obtained from a graph G in M1 in which we replace edges (except the root edge)
with networks, and where the three edges of the external triangle of G are not replaced (recall that the
external triangle is the only triangle incident with the root edge). Observe that triangles in G are isolated
(because G is 3-connected), hence there are no triangles sharing edges and the previous replacement can be
made. In particular, the term u+ 3E+ 3E2 +E3 = (1 +E)3 +u− 1 encodes the substitution of networks on
3-sets of edges defining triangles (except the external triangle and the corresponding edges, which are not
substituted). This translates into the equation

H1(x, u) = u ·m1

(
x, 1 + E, 1 +

u− 1

(1 + E)3

)
.

The expression for H1 is obtained by writing first m1 in terms of T1, and then writing T1 in terms of t
using (21).

Let us now consider a network in H0. It can be obtained in two different ways: either from a core without
an external triangle, or from a core with an external triangle in which some special edges are replaced with
a non-empty network. Using a similar encoding argument as before we arrive at

H0(x, u) =

M0

(
x, 1 + E, 1 +

u− 1

(1 + E)3

)
1 + E

+ (2E + E2) ·m1

(
x, 1 + E, 1 +

u− 1

(1 + E)3

)
,

where the factor 2E + E2 in the second summand corresponds to the substitution of networks on the pair
of special edges. Using the expressions of M0 and m1 in terms of T0 and T1, and Equations (21) and (22),
after simplification we get the expression for H0, as claimed.

We conclude this section by expressing the generating function of vertex-rooted graphs C•(x, u), where
x marks vertices and u marks triangles, in terms of networks:

3C•(x, u) = D0 +D1 +D2 + I − L− x2(D0 +D1 +D2)− L2. (23)

This equation is obtained by considering all networks (which is counted by D0 +D1 +D2 + I) and removing
those where the root edge is either a loop or a multiple edge (term L + x2(D0 + D1 + D2) + L2 ). This
difference is equal to the generating function for networks with only simple edges, which by double counting
it is equal to 3C•(x, u).

4.3 Singularity analysis and proof of the main result

After obtaining the system of equations in Lemmas 17, 18 and Equation (23) we proceed to analyze it. In
order to apply Lemma 11 for proving a Gaussian limit law, our first task is to find the dominant singularities
(of x as a function of u, for u close to 1) of the function C(x, u) counting triangles in connected cubic planar
graphs. We start finding the singularities for 3-connected graphs. Later, we use the results from the previous
section to obtain the singularities of C(x, u).

Singularities of 3-connected graphs. Recall that the generating function t(z, u) encodes triangulations,
where z is the number of vertices minus 2 u encodes internal vertices of degree 3. Its expression in terms of
T4(z) is given in Lemma 16. The next result gives the dominant singularities of the generating function of
3-connected graphs:
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Lemma 19. Let t(z, u) be as in Lemma 16. Let u be a fixed complex number with |u− 1| < ε, where ε > 0
is sufficiently small. Then the point z0 = z0(u) where t(z, u) ceases to be analytic is the solution of the
following equation:

z0(1 + (u− 1)z0)2 =
27

256
. (24)

Moreover, at the critical point (z0, u) we have the relation:

(z0(u− 1) + 1)t(z0, u) =
1

8
− z0(1 + (u− 1)z0). (25)

Proof. The unique singularity of T4(z) is at 4/27 (see Section 2). Hence, for u in a small neighborhood of
1, the only possible source of singularities for t(z, u) in Equation (20) comes from the singularity of T4(z),
giving the relation

z0(1 + z−1
0 t(z0, u))2 = 4/27.

We also know that T4(4/27) = 7/5832, hence at the singular point we have

t(z0, u) =
7/5832

1 + z−1
0 t(z0, u)

+ z2
0((1 + z−1

0 t(z0, u))3 + u− 1).

Eliminating t(z0, u) from the previous two equations gives (24), and an elementary computation gives Equa-
tion (25).

Singuarities of connected graphs. We have seen in the proof of Theorem 1 that the singularities of the
generating function D(x) of cubic networks come from the singularities of T (z). Variable u marks triangles,
which is a linear parameter. Hence, by continuity and for u sufficiently close to 1, this also holds for the
bivariate generating functions of networks. For a given u close to 1, we let ρ(u) be the dominant singularity
of the function E(x, u). Notice that, because of (23), it is also that of C(x, u); there is no cancellation
because there is none for u = 1. Remark also that ρ(1) is equal to the constant ρ ≈ 0.3192246062 from
Theorem 1.

In order to determine ρ(u), we find two equations satisfied by u, ρ(u) and E(ρ(u), u). Then eliminating
E will give us ρ(u) implicitly in terms of u. Once we have access to ρ(u), an application of Lemma 11 will
give the asymptotic normal law with the corresponding moments.

Lemma 20. For fixed u close to 1, E(x, u) admits two dominant singularities given by the two curves ±ρ(u)
and such that ρ(1) = ρ. As x→ ρ(u)−, we have locally

E(x, u) = E0(u) + E2(u)

(
1− x

ρ(u)

)
+ E3(u)

(
1− x

ρ(u)

)3/2

+ . . . ,

where E0(u), E2(u) and E3(u) are analytic functions.
Let x = ρ(u) be the positive dominant singularity of E(x, u) and let E = E(x, u). Then the following two

equations hold:

x2(1 + E)3
(
1 + (u− 1)x2

)2
=

27

256
, (26)

256(1 + (u− 1)x2)2(1 + E)A = 256x2(1 + (u− 1)x2)3(E3 + 3E2 + 3E) +B, (27)

where

A =
(
(u2x4 − 2ux4 + x4 − x2 − 2)2 − 4x2(1 + (u− 1)x2)2E

)1/2
,

B = 256(u− 1)3x8 + 768(u− 1)2x6 + 192(u− 1)(3u+ 1)x4 + (1066u− 810)x2 + 517.
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Proof. Similarly to the univariate case, we show that the only source of singularities for E = E(x, u) comes
from t = t(x2(1 + E)3, 1 + (u − 1)/(1 + E)3). Furthermore, the singular behaviour of t transfers directly
to that of E. In our case, both statements can be deduced directly from a slightly modified version of
[4, Theorem 2.31], in which we now require that |PE(t(τ), E(ρ), ρ, 1)| 6= 0 when u = 1, and that t(z, u)
admits a 3/2 singular behaviour locally around u = 1 and z = τ(u), where the τ(u) is the solution of
z0 in (24). By elimination from the equations in Lemmas 17 and 18, we obtain a polynomial equation
P (t, E, x, u) = 0, which has degree 6 in E (it is too big to be displayed here). From there, we check that
|PE(t(τ), E(ρ), ρ, 1)| ≈ 7.1818705965. For the second condition, we eliminate V (z) and T4(z) from (7), (20)
and z = V (z)(1− V (z))2 to obtain an irreducible polynomial equation Q(t(z, u), z, u) = 0. Using Newton’s
polygon algorithm on Q (as it is square-free), we compute the Puiseux expansion of t(z, u) locally around
z = τ(u), which is of the form:

t(z, u) = t0(u) + t2(u)

(
1− z

τ(u)

)
+ t3(u)

(
1− z

τ(u)

)3/2

+ . . . ,

where t0(u), t2(u) and t3(u) are analytic functions.
Let us finally consider the expressions for H0 and H1 in Lemma 18. Since the singularities of E must

come from the substitution in t(z, u), the point (z1, u1) = (x2(1 + E)3, 1 + (u − 1)/(1 + E)3) must be a
singular point of t(z, u). The singularities of t(z, u) are given by the relation (24), hence we have:

z1 (1 + (u1 − 1)z1)
2

= x2(1 + E)3

(
1 +

(
1 +

(u− 1)

(1 + E)3
− 1

)
x2(1 + E)3

)2

=
27

256
, (28)

which is precisely (26). Let us now deduce Equation (27). We first need the evaluation of t(z, u) at the point
(z1, u1). This follows directly from (25) and (26) and gives:

t(z1, u1) =
32(u− 1)x2 + 5

256(1 + (u− 1)x2)2
.

Notice that all the functions, involved in both Lemmas 17 and 18, can be written in terms of E,L and the
variables x and u. Solving for L and substituting provides a second equation on E, x, and u. The solution
for L is given by:

L(x, u) =
x2 + 2− (u− 1)2x4 −A

2(1 + (u− 1)x2)
, (29)

where A is an in the statement. It remains finally to write D0, D1, D2 in terms of E, L, x and u, then to
replace L with the expression in (29), and to perform an elementary computation to obtain (27).

Proof of Theorem 7. One can eliminate E from the system composed of Equations (26) and (27) to
obtain a single polynomial equation p(x, u) = 0 in x and u, whose smallest positive solution in x is the
singularity ρ(u) of E(x, u). The polynomial p has degree 40 in x2 and is too large to be displayed here. We
then differentiate p(ρ(u), u) with respect to u and compute the following values (using Maple):

ρ′(1) = −0.0389371919, ρ′′(1) = 0.0229417852.

Alternatively, we can differentiate (26) and (27) and solve the corresponding system involving ρ(1) and ρ′(1),
and similarly for ρ′′(1).

In order to apply Lemma 11, we need to show that E(x, u) is analytic in a ∆-domain at x = ρ(u).
By Lemma 20, E(x, u) has an expansion in powers of

√
1− x/ρ(u) for u near 1. It is hence analytic in a

sufficiently small neighborhood of ρ(u) sliced along the ray [ρ(u),∞]. Consider now u in a small neighborhood
U of 1, and take u0 ∈ U real with ρ(u0) > |ρ(u)|. By the same argument as in the proof of the univariate
case (Theorem 1), E(x, u) is analytic in a ∆-domain at u0. It follows that E(x, u) is analytic in a ∆-domain
at ρ(u). Thus, for u in a small neighborhood of 1, we get the estimate

[xn]E(x, u) = c(u) · n−5/2ρ(u)−n
(
1 +O(n−1)

)
.

By a direct application of Lemma 11, we are able to first compute the values ρ′(1) and ρ′′(1), then the values
of µ and λ, as claimed. This concludes the proof of Theorem 7.
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4.4 Enumeration of triangle-free cubic planar graphs

In this section we enumerate cubic planar graphs without triangles. The starting point is the enumeration of
triangles from the previous section (more precisely, Lemmas 17 and 18). We consider cubic planar networks
without triangles, except possibly the ones incident with the root edge: when removing the root edge of the
network, the resulting graph becomes triangle-free. In particular, we need to encode such networks where
the only triangles are incident with the root edge (and becoming triangle-free when replaced at an edge).

We use the same notation as in the previous section, with the difference that now we do not encode
triangles. The following lemma gives the relations between the various classes of networks in this setting.

Lemma 21. Let t(x, u) be the generating function defined by Equation (20), and let E, L, I, Di, Si, Pi, Ji,
Wi be the generating functions of networks without triangles except those containing the root. Then

E = D0 +D1 +D2,

D0 = S0 + P0 +W0 + L+H0,

D1 = S1 + P1 +W1 +H1,

D2 = P2 +W2,

I = L2

x2 ,

L = 1
2x

2 (I + E − L)− 1

2
x2
(
x2(E − L) + L2)

)
,

P0 = x2(E − L) + 1
2x

2(E − L)2,

P1 = x2L(E − L),

P2 = 1
2x

2L2

S0 = E ·
(
E − (S0 + S1)

)
− S1,

S1 = L3 + 2x2(E − L)L

W0 = 1
2x

4
(
2E2 + 8E3 + 5E4 + E5

)
,

W1 = 1
2x

4
(
6E2 + 2E3

)
,

W2 = 1
2x

4E,

H1 = 1
2x

2 · t
(
x2(1 + E)3, 1− 1

(1+E)3

)
,

H0 = 1
2 t
(
x2(1 + E)3, 1− 1

(1+E)3

)
1−x2(E+3)

1+E − 1
2x

4(1 + E)2((1 + E)3 − 1)).

(30)

Proof. The equations are obtained from the ones in Lemmas 17 and 18 as follows. For those defining
generating functions with an index i (counting networks whose root edge is incident with i triangles) we
take the corresponding equation, divide it by ui and then set u = 0. For the two respectively defining the
functions I and L, because they only count networks without any triangle, we simply set u = 0. In particular,
with this convention, equation for D0, D1, D2, P0 and I are exactly the same as in Lemma 17. Equation for
L is obtained from Equation for L in Lemma 17 by simply writing u = 0.

The remaining equations are obtained by adapting the argument in Lemmas 17 and 18 in this setting.
For instance, the equation for S0 follows since S1 has been replaced with u−1S1 (namely, the generating
function u−1S1 in Lemma 17 in the equations we have now is written as S1).

Proof of Theorem 6. The proof uses a simple variant of Lemma 15 as follows. In the present situation
we have an equation of the form

F (x,E(x)) = f(x,E(x)) + t

(
x2(1 + E)3, 1− 1

(1 + E)3

)
= 0.
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The singularities of t(z, u) are given by Equation (24), that is, z(1 + (1 − u)z)2 = τ . Assuming that the
dominant singularities of E(x) come from those of t(z, u), they are obtained by solving

F (x,E) = 0, x2(1 + E)3
(
1− x2

)2
= τ. (31)

The conditions to be verified are the same as in Lemma 15, except that the equations determining the
singularity are now (31) instead of F = x2(1 + E)3 = 0. They have as smallest positive solution

ζ ≈ 0.378537, E0 = E(ζ) ≈ 0.000951.

We verify the three technical conditions from Lemma 15 and obtain the corresponding estimate on [xn]E(x)
by computing the singular expansion:

E(x) = E0 + E1X + E2X
2 + E3X

3 +O(X4), where X =
√

1− x/ζ, and E3 ≈ 0.094744.

Let now F (x) be the generating function of connected triangle-free cubic planar graphs. We have the
relation

3F •(x) = D0 + I − L− L2 − x2(E − L),

where F •(x) counts connected triangle-free cubic planar graphs rooted at a vertex. The reason is that the
only networks that contribute to F •(x) are those with no triangle incident with the root edge, that is, those
counted by D0 and I. We have to subtract those which are not simple, namely: loop networks (L), series
composition of two loop networks (L2), and parallel composition of a double edge and a non-loop network
(x2(E−L)). From the expansion of E(x) at ζ we get a corresponding expansion of F •(x) with F •3 ≈ 0.001077.
Since E(x) is ∆-analytic at ±ζ, so is E(x). Thus we obtain the following estimate for n even:

nfn ∼ n![xn]F (x) ∼ 2F •3
Γ(−3/2)

· n−5/2ζ−nn!,

which gives the estimate for fn claimed in Theorem 6.
Finally, the exponential formula gives

∑
n≥0 tn

xn

n! = eF (x), from which can we compute the number
of arbitrary triangle-free graphs up to any number of vertices. We find an approximation to the limiting
probability p of a triangle-free graph being connected by computing the quotients fn/tn, and obtain p ≈
0.99995. Finally we compute α = p · f ≈ 0.0009109.

5 Proofs of limit law results: cherries and bricks

The strategy in the proofs of Theorems 8 and 9 is very similar than the one of Theorem 7. We use the variable
u to mark the number of copies of a given cherry or brick, and we find the equations satisfied by the respective
bivariate generating functions D(x, u) of non-isthmus networks. We then find the dominant singularities of
D(x, u) and apply Lemma 11 to deduce an asymptotic normal law, together with a computation of the first
two moments.

Proof of Theorem 8. Let H be a fixed cherry with h vertices, and let aut(H) be the number of automor-
phisms of H. Notice that the unique vertex of degree 1 in a cherry must be fixed by every automorphism.
We let variable x mark vertices and u mark copies of H in a cubic network.

Clearly, copies of a cherry can only arise in loop networks. This implies that in order to obtain an
equation for D(x, u), we need only modify the corresponding equation for L in Lemma 13, as follows

L =
x2

2
(D + I − L) +

xh

aut(H)
(u− 1).

This is because occurrences of H are encoded with the monomial h!
aut(H)

xh

h! = xh

aut(H) , since h!/aut(H) is the

number of ways of labeling H, and each occurrence is marked by u.
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We solve for L and, as in the proof of Theorem 1 of Section 3.1, we obtain an equation for D = D(x, u),
namely

(1 +D)

√
x4

4
+ 1− x2(D − 1)− 2xh

aut(H)
(u− 1)− T (x2(1 +D)3)

2
− 1 = 0. (32)

By continuity, for u close to 1, the dominant singularities of D come from those of T and we have

x2(1 +D)3 = τ =
27

256
.

Since T (τ) = 1/8, we get a second equation from (32) at the singular point (x, u). Eliminating D we obtain
a polynomial equation P (x, u) = 0 for the dominant singularities x = ρ(u) (since all functions are even in x,
−ρ(u) is also a singularity as in the univariate case). Similarly to Theorem 7, one shows that D is analytic
in a ∆-domain at ρ(u). A routine computation gives the values of the moments as claimed.

It remains to show that λ > 0. Taking the approximation ρ ≈ 0.32 and setting a = aut(H), we obtain

a2λ = 1.68aρh + (3.05− 5.64h)ρ2h ≥ ρh(1.68− 5.64hρh).

It is elementary to check that the right-hand side is positive for h ≥ 2.

Proof of Theorem 9. Let B be a brick and aut(B) be the number of automorphisms of B with the
convention that the two vertices of degree 2 are distinguishable. A brick B 6= K−4 can only arise from an
h-network isomorphic to B in which no edge is replaced. The modified generating functions of networks
becomes

H =
M(x, 1 +D)

1 +D
+

xb

aut(B)
(u− 1).

Notice that when B = K−4 , the brick B can also appear as a series composition of two loop networks, and
we have to modify P in consequence:

P = x2D +
x2

2
D2 +

x2

2
L2(u− 1).

The singularities are determined as before by modifying the equation satisfied by D. Again, an application
of Lemma 11 and a routine computation give the claimed result.

To finally show that λ > 0, we approximate ρ ≈ 0.32 as in the previous proof and obtain

b2λ = 1.74bρb − (3.18 + 6.08h)ρ2b.

It is also elementary to check that the right-hand side is positive for b ≥ 2.

Numerical table

The numbers of arbitrary, connected and 2-connected cubic planar graphs for small values of n were given
in Table 1 from [2]. To these we add the new families of cubic planar graphs we have enumerated in this
work: multigraphs and triangle-free.
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n Multigraphs Triangle-free
2 2 0
4 47 0
6 4710 0
8 1239875 840

10 669496590 181440
12 634267800705 79833600
14 946240741175730 61232371200
16 2056603172557758825 69529227768000
18 6148723823146399745250 105801448533580800
20 24214871726535475276466175 205703216403561676800
22 121481234613567346345100623350 497546215788236719104000
24 756128791200007319214204305696475 1467149457794547540581568000
26 5716103221856552423681553448136208750 5185994162876896958824435200000
28 51574528549599744692080383726773969240625 21659841687523558647126605967360000
30 547355299046868963962856204715812138973841250 105576624440793627977398205974671360000
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