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Virtual concrete specimens: discrete element simulations of the quasistatic and dynamic material behavior and 
failure mechanisms of concrete and mortar
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Abstract. A quite minimalistic approach is described which allows to generate differently
shaped ensembles of densely packed spherical particles. The distributions of the particle
diameters approximate realistic sieving distributions of concrete aggregates. An ad hoc
approach is used in order to add cohesive interaction forces to the model which allows
first plausibility tests.

1 INTRODUCTION

Real experiments to investigate the damage behavior of concrete provide insight into
the damage behavior of the specimens used and, after having carried out a sufficient
number of experiments, into the damage behavior of the material itself. However, such
experiments always imply destruction and non-reusability. The generation of representa-
tive, standardized specimens is a non-trivial task and the application of similar loading
scenarios in the testing machine requires considerable skill and care.

Virtual specimens are destructible and indestructible at the same time. Each indi-
vidual specimen may be used for numerous situations of loading, may they be uniaxial
or multiaxial, monotonic or cyclic, possibly for situations that cannot be realized in the
laboratory for reasons of principle or for practical reasons. Slight modifications of the size
distribution of the virtual aggregates and even the generation of different virtual speci-
mens consisting of an identical ensemble of aggregates (so-called clones) are possible and
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allow to repeat the numerical experiments under slightly different initial conditions any
number of times.

This article concentrates on a detailed description of the generation of virtual speci-
mens. An ad hoc approach to paste the particle ensembles is used in order to perform some
tests for plausibility. We start with a first 1D approach to wave propagation and spall
fracture, which leads in a quite natural way to the Distinct/Discrete Element Method.

2 A 1D DISCRETE ELEMENT APPROACH

Spallation experiments are performed in order to investigate the material behavior
in situations of high compressive loading or impact. For that purpose the specimen is
hit at one end by a Hopkinson pressure bar or similar device. Then a wave propagates
through the specimen which under certain circumstances causes the specimen to split
into fragments. Fig. 1 shows a specimen of cylindrical shape that was exposed to high
compressive loading and fragmented into three pieces.

Figure 1: Concrete specimen, destroyed by spall fraction. (Photography: Ulrich van Stipriaan)

As a first approach to simulate the spallation phenomenon, the specimen is considered
to be consisting of a number of pairwise mutually overlapping segments (or slices or
discrete elements). All segments are supposed to have the same longitudinal extension
or segment length a, and – at the beginning, i. e. at equilibrium – any two segments
have the same overlapping area λ0 a, where the initial relative depth of penetration λ0 is
a small positive number (see Fig. 2). Then the initial length L0 of the entire specimen
(neither loaded in compression nor in tension) can be calculated by

L0 = [N − λ0(N − 1)] a , (1)

or, since it is more convenient to give the specimen a certain initial length, the segment
length a can be calculated by

a =
L0

N − λ0(N − 1)
. (2)
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Figure 2: Geometrical relations for two non-overlapping and two overlapping segments.

The value of a depends on our choices for N and λ0. λ0 itself depends on N and
different material parameters, which can be seen after it was explained what mechanical
properties the virtual specimen is supposed to have.

The specimen will have a certain density �, which allows to calculate its mass by

m = �L0A , (3)

where A denotes the cross-sectional area of the rod. If the total mass is equally distributed
to the respective segments, the segment mass mS is obtained by:

mS = �
L0A

N
. (4)

When (slowly) loaded in tension, the specimen should behave as if consisting of a per-
fectly linear-elastic, not at all ductile material with modulus of elasticity E and maximum
tensile strength σmax. That means, there is a maximum tensile force Fmax the specimen
can withstand. When this force is exceeded it breaks into its N different segments at the
same time. At this moment, the specimen has a length

Lmax = N a , (5)

which means that all regions of contact are stretched to the maximum, and all relative
depths of penetration become zero. Thus, for the maximum tensile strain εmax we obtain:

εmax =
Lmax − L0

L0

=
λ0(N − 1)a

[N − λ0(N − 1)] a
. (6)

For σmax, E, and εmax holds the following the simple relation, according to Hooke’s
law,

σmax = E εmax , (7)

from which the following formula for λ0 can be obtained:
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λ0 =
N

N − 1

1

1 +
E

σmax

. (8)

The specimen, spatially discretized in longitudinal direction, can be understood as
a chain of mass points, pairwise connected by springs (and dampers, since real wave
propagation dissipates energy). It can be shown, that for the inner segments (i. e. for
all N − 2 segments other than the leftmost and the rightmost segment) the following
equations of motion are given by Newton’s second law:

mi ẍi =
xi−1 − 2xi + xi+1

λ0a
Fmax + δvi−1 − 2δvi + δvi+1 , (9)

where xi and vi denote the i-th segment’s position and velocity, respectively, and δ is a
universal dissipation coefficient (responsible for viscous damping). The formulae for the
leftmost and the rightmost segment slightly differ from the formula above, you shouldn’t
care about this at this point.

Applying the well-known Stoermer-Verlet method for time integration, the problem
can be posed in matrix notation as follows:

xn+1 = xn +∆t vn − ∆t2

2
M−1

(

Q xn + q+KTDK vn
)

, (10)

vn+1 =

(

I+
∆t

2
M−1KTDK

)−1 (

vn − ∆t

2
M−1

[

Q (xn + xn+1) + 2q+KTDK vn
]

)

. (11)

Here xn and vn denote the vectors of segment positions and velocities at the n-th time
step, ∆t the step size for time integration, M and D are diagonal matrices containing
segment masses and dissipation coefficients, respectively, I stands for the N ×N identity
matrix, and

Q =
Fmax

λ0a
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The matrix K, finally, is an (N − 1)×N matrix responsible for dissipative interaction,

K =











1 −1
1 −1

. . . . . .

1 −1











. (13)
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Figure 3: Virtual specimen after about 7ms of simulation time.

Table 1: Parameters used in the 1D simulation of spall fracture

Parameter Symbol Value Unit
Length L0 200 mm
Diameter d 50 mm

Density � 0.0024 g/mm3

Modulus of elasticity E 37000 N/mm2

Maximum tensile stress σmax 4.1 N/mm2

Dissipation coefficient δ 10 g/ms

Number of elements N 200 –
Time step size ∆t 0.00025 ms

The model described can be implemented, for instance, in the MATLAB scripting
language. Fig. 3 shows the simulation result for the model parameters given in Tab. 1.
Within the first 0.355ms the leftmost segment (or element or particle) was continuously
accelerated to a velocity of 3mm/ms which is equivalent to a momentum difference of
0.87 gmm/ms. The figure shows the virtual specimen after about 7ms have been elapsed.
The specimen spalled into three fragments. Colors indicate compressive (blue) and tensile
(orange/yellow) strain at the respective positions of the specimen.

This 1D approach, of course, is much too simple to yield realistic simulation results. For
instance no lateral strain is included in the model. Moreover, the fracture surfaces are not
at all plane, but show a complicated, fractal structure. One would expect to obtain better
simulation results by means of a 3D approach which takes into consideration concrete’s
heterogeneous nature. Fig. 4 shows the prototype of a cylindrical virtual specimen for
usage in simulations of wave propagation and spall fracture, which raises the question
how such specimen can be generated.
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Figure 4: Virtual specimen for numerical simulations of spall fracture.

3 PARTICLE GENERATION AND INTERACTION

3.1 Particle Generation

Concrete aggregates are modelled as spherical particles of different diameter. The
size distribution should approximate realistic sieving distributions for concrete. In this
context several problems occur. First, realistic sieving distributions are obtained using a
finite number of sieves (actually only a few), which makes the sieving result depending
on the size distribution of the aggregates sieved. On the other hand, the well-known
interpolations such as the Fuller parabola do not allow to construct suitable random
generators.

3.2 Particle Interaction

The approach used for particle interaction is based on contact models for 2D poly-
gon/polygon interaction as given by [1], [2], [3] and [4], for respective simulation results
see also [5], [6] and [7]. In these models the magnitude of the repulsive contact force
depends on the intersection area of two overlapping particles. This allows a permanent
intersection at equilibrium if external forces are applied to the contact partners (Soft
Contact approach). In case of 3D simulations the overlap area has to be replaced by the
contact volume of the intersection of two spherical particles. Fig. 5 shows how the relative
contact volume V C

rel (i.e. the contact volume relative to the volume of the smaller particle)
depends on the relative depth of penetration (i.e. the depth of penetration relative to the
diameter of the smaller particle). The solid curve describes the special case of a particle
contacting another particle of twice its diameter. The dashed lines show the extremal
cases of two interacting particles of same diameter and a particle interacting with a ”in-
finitely” larger particle (which represents the contact of a particle with a plane, a wall or
a loading plate).

Besides the contact volume, the interaction of two particles with position and velocity
vectors xi, vi and xk, vk, respectively, depends on the distance vector

n =
xi − xk

‖xi − xk‖
(14)

and the relative velocity

vrel = vi − vk . (15)
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Figure 5: Relative contact volume in dependence of the relative depth of penetration.

The contact force resulting from particle interaction is composed by a normal and a
tangential part:

FC = FC
⊥ + FC

‖ . (16)

Using the projection v‖ of vrel into the contact plane, which is described by the normal
vector n,

v‖ = vrel − (vrel · n)n , (17)

the components of FC can be expressed by:

FC
⊥ = fC

⊥ (V
C ,vrel)n , (18)

FC
‖ = fC

‖ (vrel)
v‖

‖v‖‖
. (19)

Adding the terms for viscous damping yields:

fC
⊥ (V

C ,vrel) =
k

d
(V C

rel − κ)Vmin − γ⊥ meff v⊥ , (20)

fC
‖ (vrel) = −γ‖ meff v‖ . (21)

In the formulae above denote:

- Vmin the volume of the smaller particle,

- V C
rel the relative contact volume, i.e. the ratio of the contact volume and the volume

of the smaller particle,

- κ a parameter to manipulate the contact law (see below),
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- k a parameter that allows to scale the contact force,

- d the characteristic length, 1/d = 1/di + 1/dk, where di, dk are the respective
diameters of the particles,

- meff the effective mass, 1/meff = 1/mi + 1/mk, where mi, mk are the respective
particle masses,

- v⊥ and v‖ the normal and tangential components of the particles’ relative velocity,

- γ⊥ and γ‖ parameters that allow to control normal and tangential dissipative inter-
action.

There exist different approaches for modelling static friction (see, for instance, [1], [4]
and [8]). Numerical investigations on the respective effects on the simulation results are
on the way.

For each particle, the equation of motion is now schematically given by:

mi ẍi =
∑

k �=i

(

FC(xi,xk)− γ meff (vi − vk)
)

. (22)

Thus the method requires the solution of an initial value problem for a system of
ordinary differential equations of second order, which can be obtained by any suitable
numerical integration scheme.

4 IMPLEMENTATION

The simulation code, written in C, is based on the code fragments given by [9]. A
good part of the code is dedicated to runtime efficiency. The well-known Linked Cells
strategy with some refinements described in [10] is used to reduce the computational
effort. However, the great differences in particle size require some modifications since
the cell width is dictated by the largest particle diameter. The simulation therefore uses
two different meshes of linked cells, a coarser mesh for the larger particles and a finer
one for the smaller particles, an idea that can be refined to a Hierarchical Linked Cells
mechanism.

5 VIRTUAL SPECIMENS

5.1 Packing of virtual aggregates

The generation of virtual concrete specimens starts with the successive generation
of layers of virtual aggregates above a virtual shuttering unit. Under the influence of
gravitation and repulsive as well as dissipative interaction forces (particle/particle and
particle/wall) densely packed particle ensembles of different size and geometry can be
obtained. Fig. 6 shows three specimens with the same cross-sectional area, consisting of
exactly the same ensemble of particles.
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Figure 6: Cubic, cylindrical and prismatic specimens with the same cross-sectional area, generated by
use of identical virtual aggregates. The simulation result is in good accordance with Cavalieri’s principle.

5.2 Generation of virtual specimens

In order to obtain virtual specimens that keep shape when the respective shuttering
unit is removed, cohesive interaction between adjacent particles has to be added to the
model. One possibility to achieve this goal is to add a network of immaterial bars to the
model (see, for instance, [4]).

Here the following ad hoc approach is chosen, which makes the repulsive and the
cohesive interaction forces depending only on the amount of particle intersection: A
certain, small value is subtracted from the relative contact volume, which formally allows
negative values for the contact volume. This has to be done sufficiently slow in order to
avoid premature crack evolution inside of the virtual specimens (see Fig. 7).

Figure 7: A 2D virtual specimen shortly before and immediately after cohesive interaction has been
activated in an abrupt manner.

The virtual specimens obtained by this procedure keep shape and act together like a
rigid body when being let loose or been thrown (Fig. 8).
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Figure 8: Even without static friction included, this specimen keeps shape when being dropped and
hitting a loading plate.

Up to a certain amount of loading, the virtual specimens show elastic material behavior
when loaded in compression or tension, while crack evolution and propagation can be
observed when the applied forces are furthermore increased (Fig. 9).

6 CONCLUSIONS

The model described allows to generate densely packed ensembles of spherical particles
with size distributions that approximate realistic sieving distributions for concrete aggre-
gates. The approach can neither compete with sophisticated models of granular flow, nor
with models that are tailored to special cases of loading. On the other hand, it contains no
artificial supplements such as bars or other, and allows to detect crack evolution directly.
Further efforts have to be made in order to obtain better simulation results, in particular
the addition of a suitable model of static friction.
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Figure 9: Crack evolution of a virtual specimen loaded in compression. Particles in the area of load
application are drawn white in order to visualize the crack pattern.
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