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Abstract. The discrete static models are advantageneously used for fracture simula-
tions in heterogeneous materails. These simulations are often extremely computationally
demanding. The contribution aims to reduction of computationa cost via adaptivity in
construction of the discrete model geometry. The simulation starts with coarse discretiza-
tion that provides correct elastic behavior; the discretization is adaptively refined during
the simulation in regions that suffer high stresses.

1 INTRODUCTION

Discrete representation of materials is a natural alternative to continuous approaches.
A collection of interconnected rigid cells organized into a net structure is often called
discrete or lattice model. Lattice models are being used in several versions; we focus here
only on static models with lattices of random geometry based on Voronoi tessellation,
such as [1, 2, 3].

The fine discretization of the discrete model leads to extreme computational demands,
but it is often necessary; especially when it is related to meso-scale structure of the
simulated material. The contribution presents a technique to adaptively refine model
discretization. Without this tool, it is necessary to densely discretize the whole domain
and therefore to create computationally demanding model. Availability of adaptive re-
finement allows starting simulation with coarse discretization and refining it adaptively
during simulation run.

Successful attempts to introduce this important feature already exist [4, 5]. They
are based on adaptive replacement of some continuous model with the discrete one, but
problematic interface between continuum and discrete model is involved and the discrete
model has to have regular geometry (that produces directional bias).

Another approach is proposed here. The adaptive refinement is performed within
the discrete lattice model only and allows using irregular geometry based on Voronoi
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Figure 1: Model geometry obtained by Voronoi tessellation on randomly placed nuclei with restricted
minimum distance lmin, 2D sketch.

tessellation. The algorithm works as follows. Initially, the whole domain is coarsely
discretized. Whenever any region of the coarse model exceeds some criterion based on
the equivalent stress, the coarse discretization in its vicinity is replaced by the finer
one and some transitional area connecting the coarse and fine discretization is inserted
around. The rest of the domain discretization will remain the same. Finally, comparison
of adaptively discretized and fully densely discretized models is presented.

2 RANDOM GEOMETRY OF THE MODEL

The model geometry is random to avoid directional bias that occur in any regular
structure. Domain of the modeled element is filled by nuclei with randomly generated
positions. These nuclei are added sequentially and accepted only when distances to pre-
viously placed nuclei are greater than chosen parameter lmin, see Fig. 1. The parameter
lmin controls discretization density and therefore it should correspond to the size of het-
erogeneities in the material (e.g. aggregate diameter). Varying discretization density in
the model can be achieved by spatial varying the parameter lmin. Each of the nuclei will
serve as center of one rigid body and three translational u and three rotational θ degrees
of freedom (DOF) will be associated with it.

The domain is considered as saturated by nuclei when new nucleus is rejected for large
number of subsequent trials. Delaunay triangulation that provides connectivity between
the nuclei is performed. Dual diagram of Voronoi tessellation then provides geometry of
the rigid bodies, see Fig. 1. Rigid bodies has common contact facets that are perpendicular
to their connections; facet centroids are denoted c, see Fig. 2.

3 LINEAR ELASTIC BEHAVIOR

The elastic behavior of the discrete system is independent on discretization density.
This statement is fundamental assumption of the adaptive technique, but it is not obvious.
The proof and numerical verification is delivered here.
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Figure 2: One discrete body of random geometry and one contact facet between nuclei i and j - normal
and tangential directions and forces.

3.1 Scaling of elastic problem

This section is based on work [6], from which it adopts both notation and theory.
Let us analyze one contact between nuclei i and j of coordinates xi = [x1i, x2i, x3i]

T

and xj with central point c, elastic modulus E and lenght L, see Fig. 2. The translations

of point i are denoted ui = [u1i, u2i, u3i]
T and rotations are θi = [θ1i, θ2i, θ3i]

T . Then
from rigid body motion (assuming small rotations), position of any point x inside the
body associated with nucleus i can be expressed as

u(x) = ui + θi × (x− xi) = Ai(x)

�

ui

θi

�

(1)

with matrix Ai(x) being

Ai(x) =





1 0 0 0 x3 − x3i x2i − x2

0 1 0 x3i − x3 0 x1 − x1i

0 0 1 x2 − x2i x1i − x1 0



 (2)

Displacement jump∆ij between bodies i and j is measured by their separation at common
facet centroid c. Therefore, it can be expressed as

∆ij =
�

∆1ij ∆2ij ∆3ij

�T
= Aj(c)

�

uj

θj

�

−Ai(c)

�

ui

θi

�

(3)

Based on displacement jumps, contact forces are calculated. Three contact forces acting
at point c in normal direction, n, and two tangential directions, m and l, are given by

F =
�

FN FM FL

�T
=

�

n
T∆ijEA

L

m
T∆ijαEA

L

l
T∆ijαEA

L

�T

(4)

Model parameter α controls the macro-scopic Poisson’s ratio.
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Forces and moments acting on nuclei i (Fij and Mij) and j (Fji and Mji) due to
contact ij can be obtained from principle of virtual work

�

Fij

Mij

�T �

δui

δθi

�

+

�

Fji

Mji

�T �

δuj

δθj

�

=





FN

FM

FL





T 



n
T δ∆ij

m
T δ∆ij

l
T δ∆ij



 (5)

where δ denotes the virtual quantities. Substitution of equation (3) provides

�

Fij

Mij

�T

= −FNn
T
Ai(c)− FMm

T
Ai(c)− FLl

T
Ai(c) (6)

�

Fji

Mji

�T

= FNn
T
Aj(c) + FMm

T
Aj(c) + FLl

T
Aj(c) (7)

The equilibrium must be achieved in every nuclei when contribution from all contacts and
external forces are summarized.

Now, what happen when the whole problem is scaled in all three dimensions by factor
ξ. Then, coordinates, contact lengths and areas becomes x = ξx, L = ξL and A = ξ2A.
The matrix A has now form

Ai(x) =





1 0 0 0 ξ (x3 − x3i) ξ (x2i − x2)
0 1 0 ξ (x3i − x3) 0 ξ (x1 − x1i)
0 0 1 ξ (x2 − x2i) ξ (x1i − x1) 0



 (8)

To induce the same stress level in the scaled domain, the external force load must
scale with the same factor (F e = ξ2Fe) as areas. We now search for displacements and
rotations u and θ that satisfy equilibrium in all nuclei.

Apparently, the unknown DOF are u = ξu and θ = θ, i.e. translations are linearly
scaled and rotations remains unchanged. Plugging this solution into Eqs. (6) and (7), the
nodal forces are scaled with ξ2 while the moments with ξ3. The nodal equilibrium then
yields

F e +
�

j

F ij = ξ2

�

Fe +
�

j

Fij

�

= 0 (9)

M e +
�

j

M ij = ξ3

�

Me +
�

j

Mij

�

= 0 (10)

based on equilibrium achieved in the original unscaled problem.
Let us now estimate the macro-scopic elastic modulus Ẽ and Poisson’s ratio ν. These

two variables relates the stresses and strains in the structure. Since both stresses (forces
scaled with ξ2 over areas scaled with ξ2 as well) and strains (deformations scaled with
ξ over length scaled with ξ as well) remain unchanged, also the elastic modulus and
Poisson’s ratio on discretization with lmin = ξlmin are constant for arbitrary ξ.
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Figure 3: Estimation of macro-scopic elastic constants via least square fitting of deformation field.

3.2 Numerical verification

The analytically derived conclusion is verified numerically here. Volume 100×100×100mm3

is compressed by low level stress σ3 in z direction. Assuming ideally homogeneous ma-
terial, constant stress over the whole domain with the only nonzero component σ3 is
obtained and the strain field is constant as well having three nonzero components

[

ε1 ε2 ε3
]T

=
σ3

Ẽ

[

−ν −ν 1
]T

(11)

with Ẽ and ν being the macro-scopic elastic modulus and Poisson’s ratio. The deformation
field can be obtained from strains

ui = εi(xi − Si) (12)

with i ∈ {1, 2, 3} being the Cartesian coordinates and Si coordinates of a point that
preserves constant position during loading. The point S is typically known from the
boundary conditions.

Combining Eqs. (11) and (12), the following equalities hold

u1

σ3

= − ν

Ẽ
(x1 − S1)

u2

σ3

= − ν

Ẽ
(x2 − S2)

u3

σ3

=
1

Ẽ
(x3 − S3) (13)

These equations offer simple way to determine macro-scopis elastic modulus and Poisson’s
ratio. Simulating the compressed cube using the discrete model, one can simply obtain
deformations ui and locations xi. Then, least square fitting can be performed to determine
the unknown elastic constants. The fitting is shown in Fig. 3. Meso-scopic elastic modulus
was E = 48GPa and α = 0.29.

Several discretization densities were tested and macro-scopic elastic parameters were
fitted. The results are shown in Fig. 4 where the mean value and the standard deviation of
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Figure 4: Elastic constants identified on discrete system with different discretization density lmin.

relative quantity (with respect to the one obtained with smallest lmin) from 20 realization
are computed for every considered lmin. One can see that

• the difference between values of both elastic modulus and Poisson’s ratio are within
±3%. Therefore, one can conclude that elastic behavior of the particle system is
independent on discretization density.

• the standard deviation decreases with decreasing lmin. This is because as the number
of bodies in the model increases, the response becomes less sensitive to the random
location of the nuclei.

• there is certain convergence pattern. This has to be attributed to the boundary
effect. The rigid bodies at the boundary have slightly different shapes as they
have one or more sides determined by the boundary planes. Therefore, they have
slightly different elastic properties. With increasing density of the discretization,
this boundary layer occupies lower portion of the volume and the effect diminishes.

Especially the last point is important. The elastic behavior is invariant with respect to
lmin but not with respect to body shapes, e.g. anisotropic elastic behavior can be expected
for bodies elongated in one direction. The discretization has to be also fine enough to
account for strain gradients in the model.

4 NON-LINEAR BEHAVIOR

The nonlinear constitutive model applied at facets is based on damage parameter D
ranging from 0 (healthy material) to 1 (completely damage material). The details of the
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Figure 5: Response of discrete system loaded in tension.

nonlinear constitutive equations are not provided here since these are not crucial for the
presented concept of adaptivity. The nonlinear behavior model is again adopted from
works of Gainluca Cusatis [7, 8, 6, 9]. Fracture parameters of the model were taken
from simulations [10] of large experimental series [11, 12, 13] on concrete. The meso-
scopic tensile strengths in tension and shear were 2.66MPa and 7.98MPa, the meso-scopic
fracture energies in tension and shear were 20 Jm−2 and 320 Jm−2.

Contrary to the linear elastic behavior, the nonlinear behavior of the model is depen-
dent on discretization density. This is, however, understood as beneficial. The model
discretization should correspond to the material heterogeneity and therefore dependence
on lmin reflects changes in material behavior due different grain size.

Simple tension simulations were performed to investigate effect of discretization in
nonlinear regime. The beam cross-section was 100×100mm2 and length was 400mm.
The relative stress in the beam is calculated as the loading force divided by cross-section
area (0.01m2) and meso-level tensile strength (ft = 2.66MPa). Beam elongation against
the relative beam stress is plotted in Fig. 5. The finer the discretization, the higher the
strength. However, until approximately 70% of the relative stress, all the models remain
elastic.

5 ADAPTIVE DISCRETIZATION REFINEMENT

Two types of nuclei are distinguished. Those that belong to fine discretization region
of target density lmin = lf and the others. Initially, the coarse discretization is performed
using lmin = lc and all nuclei belongs to the latter group. Non-linear behavior is allowed
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Figure 6: Adaptive refinement of discretization in steps.

only at facets connecting nuclei from the former group, any connection that involves
nucleus from coarser discretization behaves linearly elastic.

The adaptive refinement of discretization is performed within sphere of radius rc. All
nuclei that belongs to this sphere but not to the fine discretization are removed. Then,
new nuclei are added using the same procedure as described in Sec. 2. The parameter
lmin is set to lf inside inner sphere of radius rf and is linearly changing with distance from
the sphere center r

lmin =







lf for r < rf

lf + r
lc − lf
rc − rf

otherwise
(14)

Described replacement of nuclei is schematically shown in Fig. 6. The linear transition
from coarse to fine discretization is included to keep the shape of the bodies approximately
the same in statistical sense. If the transitional regime is omitted, the sharp change in
discretization density would produce significantly elongated body shapes, directional bias
and anisotropy.

On the newly created nuclei, triangulation and tessellation is performed. New system
stiffness matrix is assembled and calculation continues. The damaged connections are
only between nuclei from fine discretization that were not affected by the discretization
refinement and therefore all the state variables are automatically transfered to the new
discrete system.

Last component of the adaptivity algorithm is the decision where and when the refine-
ment should take place. The straightforward way would be to check all the connections
from the coarse discretization and build the adaptivity criterion on the level of equiva-
lent stress reached at the facets. This would however lead to refinement of the model
in excessively many regions. Due to random discretization, some of the facet suffer high
equivalent stress even under low far field stress. To identify the regions of high stress
more robustly, application of some stress averaging is reasonable.

Therefore, refinement criteria is base on an average stress in rigid bodies. The fabric
stress tensor can be utilized to evaluate average stress tensor components in body i

σ
(i)
kl =

1

V (i)

�

j

F
(ij)
k c

(ij)
l (15)
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Figure 7: Beam subjected to three-point bending with notch (left) and without notch (right).

where j runs over all nuclei in contact with nucleus i; k and l are Cartesian coordinates,
F is a vector of contact force and c is centroid of contact facet.

The Mazar’s equivalent stress [14] serves as measure of the stress level in the body

σeq =

√

√

√

√

III
∑

p=I

�σp�2 (16)

with σI−III being the principal stresses and �·� returning the positive part of the argument.
After every solution step, stress tensors in all rigid bodies belonging to coarse disretization
are evaluated (Eq. (15)). Then, principal stresses and equivallent stresses (Eq. (16)) are
calculated. Whenever σeq/ft > γ, the discretization os adapted and the nuclei associated
with that rigid body serves as a center of the refinement sphere.

The adaptivity model brings additional 4 parameters: coarse discretization density lc,
radii lc and lf and relative stress limit γ. Based on uniaxial tension simulations, reasonable
limit seems to be γ = 0.7.

6 EXAMPLE

Proposed adaptive algorithm is tested on simulation of three-point bending tests. The
beams had 200mm in depth, 800mm in span and thickness was 100mm. Two variants
were considered: notched variant with relative notch depth 0.25 and unnotched variant.
The geometry of the beam as well as area where the discrete model was applied is shown
in Fig. 7.

The same material parameters as in Sec. 3.2 and 4 of the model were used. Fine
discretization density was set to lf = 10mm, the coarse one was lc = 20mm, radii of
adapted region were rf = 60mm and lf = 120mm, limit for refinement was kept γ = 0.7.
The adaptive model response is compared with response of finely discretized model, that
serves as a reference solution.

Figure 8 shows response of the reference and adaptive model for both notched (left)
and unnotched (right) beams. The blue circles highlight steps where refinement was
performed. In linear part and initial nonlinear part of the diagrams the adaptive and
reference model coincide. However, the peak load is different. This is attributed to the
randomness of the response, the models have different location of the nuclei and therefore
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Figure 8: Comparison of responses of beams with notch (left) and without notch (right) with fine
discretization and with adaptive discretization refinement.

also different response. Further simulations will be performed to show whether the mean
value and also variance of the peak load from the adaptive model matches those from the
reference model.

Finally, Fig. 6 shows crack patterns developed in both models. Three stages - initial,
at the peak load and at the end of the simulation - are presented. Number of DOF at
each stage is listed bellow the figures. Finely discretized model has about 50000 DOF
during the whole simualtion. Adaptive models starts at 9000 (approx. 1/8 as the lmin is
doubled) but number of DOF increases during refinements.

7 CONCLUSIONS

• The adaptive discretization refinement for discrete meso-scale models of fracture
was presented. The adaptivity is performed in model of random geometry created
via Voronoi tessellation.

• The developed approach was verified on simulations of beams subjected to three-
point bending. Significant time savings were achieved.

• Presented concept of adaptivity can be successfully applied in problems where ma-
terial non-linearity is localized into small portion of the modeled element, but the
location of that region is not known in advance.
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• notched beam - fine discretization

DOF≈50000 DOF≈50000 DOF≈50000

• opnotched beam - adaptive discretization

DOF≈9000 DOF≈17000 DOF≈20000

• unnotched beam - adaptive discretization

DOF≈50000 DOF≈50000 DOF≈50000

• unnotched beam - adaptive discretization

DOF≈9000 DOF≈28000 DOF≈30000

Figure 9: Damage patterns developed during simulations. Two stages are shown - in the solution step
when the maximum load war reached and at the end of the simulation. Approximate number of DOF in
the simulation stages is written bellow.
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