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Abstract. The process of conduction mode laser welding is simulated using the meshless
Lagrangian method Smoothed Particle Hydrodynamics. The modeling of the solid phase
is based on the governing equations in thermoelasticity. For the liquid phase, surface
tension effects including the Marangoni force caused by a temperature-dependent surface
tension gradient are taken into account to simulate the melt flow in the weld pool. A
non-isothermal solid-liquid phase transition with the release or absorption of additional
energy known as the latent heat of fusion is considered. The major heat transfer process
through conduction is modeled, whereas heat convection and radiation are neglected. The
energy input from the laser beam is approximated as a Gaussian heat source acting on
the material surface. Numerical results obtained with the developed model are presented
for laser spot welding and seam welding of aluminum. The change of process parameters
like welding speed and laser power, and their effects on the weld pool dimensions can be
investigated through simulations, and the overall welding quality may be assessed.

1 INTRODUCTION

Laser welding is widely applied in industry due to several advantages compared to
conventional arc or gas welding: high welding speed, a small heat affected zone, ease of
automation, and weight savings. Depending on the absorbed radiation intensity from
the laser beam, laser welding may be classified into conduction mode welding and deep
penetration welding. Conduction mode laser welding is a preferred manufacturing method
to obtain visually appealing weld seams without further grinding or finishing. It is suitable
for joining thin sheets and tubes, e.g. visible surfaces of device housings or stainless steel
sinks. The process is characterized by high quality welds without defects like pores or
spatter, and low mechanical and thermal distortions in the work piece. During the welding
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process, a laser beam melts the parts to be welded along a common joint, while the
maximum temperature stays below evaporation temperature. The energy is transferred
to the work piece merely through heat conduction and thus, the weld depth is limited by
the heat conductivity of the material. The molten materials coalesce and solidify to form
a weld, whose width is greater than its depth.

To gain insight into the influence of process parameters on the melt flow and resulting
weld, the conduction mode laser welding process is simulated using Smoothed Particle
Hydrodynamics (SPH) [8, 15]. As a meshless Lagrangian method, it has the ability to
accurately describe the free surface melt flow by fulfilling the continuity equation at the
same time. The underlying heat transfer phenomena including the solid-liquid interface
and the occurring phase transitions, melting and solidification, are modeled based on the
works of Cleary and Monaghan [3, 20]. Temperature-dependent material properties are
taken into account, as an example, the temperature-dependent surface tension gradient is
considered in order to describe the Marangoni convection which dominates the weld pool
[11, 24]. The energy input from the laser beam is approximated as a moving heat source
acting on the material surface.

2 MODELING WITH SPH

In SPH [16, 18], the continuum is represented by a set of particles acting as dis-
cretization points. Material properties and field variables like velocity and acceleration
are associated to each particle such that the overall state of the system is characterized
properly. The particles interact with each other within a defined influence range h of a
smoothing kernel function W . The evaluation of field variables fi and their derivatives
for particle a is approximated by sums over all neighboring particles b

f a
i =

∑

b

mb

ρb
f b
i W (ra − rb, h) =

∑

b

mb

ρb
f b
i Wab , (1)
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mb

ρb
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, (2)

wherem is the mass, ρ the density, r the position vector, and h the smoothing length. The
Gaussian kernel function as introduced in [8] is applied here. As a general discretization
method, all systems that are described by partial differential equations can be simplified
to a set of ordinary differential equations. For time integration, the explicit second-order
Leapfrog scheme [21] with time step control is used.

2.1 Solid phase

A coupled thermoelastic approach is developed for modeling the solid phase, in order
to analyze both the temperature distribution and the stress and strain in the workpiece
during the welding process.
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Equation of motion

The balance equation of linear momentum is given as

v̇i =
1

ρ

∂σij

∂xj

+ gi (3)

with the gravity force per unit mass gi acting as body force. Discretizing this equation into
SPH form, the acceleration acting on a particle a due to interaction with its surrounding
neighbor particles b is according to [18]

v̇ a
i =

∑

b

mb

(

σ a
ij

ρ2a
+

σ b
ij

ρ2b
+Rab

ij Φ
n
ab +Πab δij

)

∂Wab

∂x a
j

+ gi . (4)

For numerical reasons, an artificial stress term Rab
ij Φ

n
ab introduced in [17] and an artificial

viscosity term Πab δij proposed in [19, 16] are added in Eq. (4) to reduce the tensile
instability and to smooth spurious numerical oscillations, respectively.

The stress tensor consisting of elastic and thermal stresses due to linear thermal ex-
pansion is defined as

σij = (−p− 3Kα(T − T0))δij + Sij , (5)

where p is the pressure, K the bulk modulus, α the thermal expansion coefficient, T the
absolute temperature in K, T0 the reference temperature, and Sij the deviatoric stress
tensor. Both the pressure and the thermal expansion term only have influence on the
hydrostatic part of the stress tensor.

The hydrostatic part of the stress tensor can be evaluated directly. The pressure is
calculated using a state equation. Here, an isothermal approach is chosen

p = c20(ρ− ρ0) , (6)

where c0 =
√

K/ρ0 is the speed of sound, ρ the current density, and ρ0 the initial reference
density.

The Updated Lagrangian method is used for updating the deviatoric part of the stress
tensor, which evolves as follows according to [18]

Ṡij = 2µ

(

ε̇ij −
1

3
δij ε̇kk

)

+ SikΩjk + ΩikSkj , (7)

where ε̇ij =
1
2

(

∂vi
∂xj

+
∂vj
∂xi

)

is the strain rate tensor, Ωij =
1
2

(

∂vi
∂xj

− ∂vj
∂xi

)

the rotation rate

tensor, and µ the shear modulus. Note that the Jaumann stress rate is employed to ensure
the objectivity of the formulation [5].
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Energy equation

The thermoelastic coupled heat equation may be derived using the internal energy
equation [6]

ρė = σij ε̇ij −
∂qi
∂xi

+ qs δ(r−Rs) , (8)

where e is the specific internal energy, qi the heat flux, qs the source strength in the
dimension power per unit volume, δ the Dirac delta function, and Rs the position vector
of the heat source. Inserting the formula for the internal energy density [6]

e = c(T − T0) +
3K

ρ0
αT0εkk +

1

2ρ0
(λ+ 2µ)ε2kk +

µ

ρ0
((εkk)

2 + ε2kk) + const. (9)

with the heat capacity c, the Lamé parameters λ and µ, the approximation ρ = ρ0, and
Fourier’s law of heat conduction for a material with constant thermal conductivity k

qi = −k
∂T

∂xi

(10)

into Eq. (8) yields the coupled heat equation in linear thermoelasticity

ρcṪ = −3KαT ε̇kk + k∆T + qs δ(r−Rs) . (11)

Equation (11) is converted to its corresponding SPH form following [3] and [20] for the
heat conduction and source term

cṪa =
∑

b

mb

ρaρb
(−3KαTa(vb − va) · ∇Wab + 2k(Ta − Tb)Fab) +

1

ρa

∑

k

Qs ζsW (rk −Rs) ,

(12)
where Fab = (ra − rb) · ∇Wab/‖ra − rb‖2, Qs is the power of the heat source, and ζs a
normalizing factor for the heat source such that the rate of change of thermal energy is
correctly considered [20].

2.2 Liquid phase

The molten material is modeled as an incompressible Newtonian fluid with constant
dynamic viscosity η. The constitutive law is characterized following [9] by

σij = −pδij + η

(

∂vi
∂xj

+
∂vj
∂xi

)

= −pδij + 2ηε̇ij , (13)

where the pressure is calculated through a quasi-incompressible state equation as given
in [1]

p =
ρ0c

2
0

γ

((

ρ

ρ0

)γ

− 1

)

(14)

with a constant value γ = 7 and an artificial speed of sound c0.
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Continuity equation

The conservation of mass is ensured by the continuity equation, see [9],

ρ̇ = −ρ
∂vi
∂xi

(15)

which is discretized in SPH form as

ρ̇a =
∑

b

mb
ρa
ρb

(va − vb) · ∇Wab . (16)

Momentum equation

The conservation of linear momentum is described by the Navier-Stokes equation as
stated in [9]

ρv̇i = − ∂p

∂xi

+ η∆vi + ρfi + ρgi . (17)

The discretization of the pressure term is treated analogously to the pressure term for
solid particles in Eq. (4). The viscous forces are modeled by the term proposed in [22].
Additionally, the surface tension force fi is applied to fluid particles in the melt flow.
The computation of the surface tension force is based on the Continuum Surface Force
(CSF) model described in [2]. For modeling the Marangoni convection in the melt flow
caused by a temperature-dependent surface tension coefficient, we follow the approach
from [25]. A linear dependence of the surface tension coefficient τ on temperature with
the proportionality factor τT is assumed and the volumetric surface tension force is

f =
1

ρ
(τκn+ τT∇sT ) , (18)

where κ is the curvature, n the normal vector pointing outwards, and ∇sT the surface
temperature gradient. As suggested in [25], ∇sT is projected onto the tangential space
and the spatial temperature gradient is calculated using the Corrective Smoothed Particle
Method (CSPM) described in [12].

Internal energy equation

The internal energy equation is given in [9] as

ρė = ρcṪ =
∂vi
∂xj

ηε̇ij + k∆T + qs δ(r−Rs) . (19)

Compared to Eq. (11), the coupled term has vanished as a result of incompressibility.
Instead, there is a positive viscous dissipation term which represents the energy dissipated
as heat.
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2.3 Solid-liquid phase transition and interaction

The solid-liquid phase transition is assumed to take place between a significant tem-
perature range, which is the usual case for metal alloys. Therefore, two parameters are
set for the phase transition temperature marking the lower solid and upper liquid limit,
Ts and Tl. As different material parameters apply for the solid and liquid phase, the tem-
perature dependency is partially considered by using different heat capacities cs and cl.
During the phase transition from solid to liquid, heat is absorbed by the material. If the
absorbed heat value exceeds the latent heat of fusion Hf , the transition has completed.
The particle type is then changed from a solid to a fluid particle.

Using the enthalpy method for a non-isothermal phase transition as basis [10], the
temperature of each particle is determined from the specific enthalpy h

T =



























h
cs

solid: T < Ts , h < csTs ,
(

h+
Hf

Tl−Ts
Ts

)(

cin +
Hf

Tl−Ts

)−1

mushy: Ts ≤ T ≤ Tl , csTs ≤ h ≤ cinTl +Hf ,

1
cl
(h−Hf − cin(Tl − Ts)) liquid: T ≥ Tl , h ≥ clTl +Hf + cin(Tl − Ts) .

(20)
For a continuous function at T = Tl, the intermediate heat capacity cin has to fulfill the
constraint

clTl +Hf + cin(Tl − Ts) = cinTl +Hf , (21)

leading to cin = clTl/Ts .
The elastic interaction for solid particles given in Eq. (4) is also applied to the inter-

action between solid and fluid particles. The difference lies in the evaluation of the stress
tensor of the fluid particle from Eq. (13). In contrast to other contact algorithms for fluid-
structure interaction with SPH that introduce repulsive forces between two approaching
particles similar to the penalty contact force scheme [14], or e.g. the CD-FSIT algorithm
[13], this approach is purely based on the stress tensors for the solid and fluid particle.
The interaction does not contain any additional artificial parameters and hence avoids the
cumbersome process of parameter identification. Concerning the energy equation, both
Eq. (8) and Eq. (19) are combined. The coupled thermoelastic term is only applied to the
solid particle, whereas the viscous dissipation term is solely applied to the fluid particle.

2.4 Laser beam

According to the Beer-Lambert law [24], the laser beam intensity I decreases exponen-
tially with respect to the depth z after penetrating the surface of the workpiece

I(z) = (1− Γ)I0 exp(−Az) , (22)

where Γ is the reflection coefficient, and A = 4πnκ/λ0 the absorption coefficient, with the
refractivity n, the absorbance κ, and the wave length of the laser beam in vacuum λ0.
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For metals, the depth of absorbing 95 % of the laser radiation is less than one micrometer
[11, 24], therefore the laser beam may be regarded as a surface source.

The assumption of a Gaussian intensity distribution is most common when modeling a
laser beam. Due to the use of the Gaussian kernel in the presented SPH simulations, the
Gaussian intensity distribution is implicitly considered. The power intensity is defined as

I(x, y) =
(1− Γ)Plaser

exp(−0.5) πr2s
exp

(

−x2

r2s
− y2

r2s

)

, (23)

in which the radius of influence of the heat source rs is set equal to the smoothing length.
Hence, the strength of the heat source is identified as Qs = (1− Γ)Plaser/exp(−0.5) such
that the intensity at the distance rs/

√
2 is equal to the mean absorbed radiation intensity

(1− Γ)Plaser/πr
2
s .

3 SIMULATION RESULTS

For the simulations, the suggested model is implemented into the object-oriented soft-
ware package Pasimodo [7, 23]. Two exemplary welding processes of aluminum are pre-
sented. First, a spot weld generated by a short-term laser heating process and subsequent
solidification is modeled. The second example shows a seam welding process with a mov-
ing laser beam. As boundary condition, a few bottom layers of particles are fixed in all
directions to prevent rigid body motion.

The explicit time integration scheme has to fulfill the Courant-Friedrichs-Lewy condi-
tion [4] for the maximum time step to achieve stable results. The limiting factor for the
time step is the speed of sound of the material. To reduce the computation time, the
speed of sound may be decreased, if the analysis of thermal effects is in the focus and the
error in the coupling term of Eq. (11) may be neglected.

3.1 Static heat source

First, we simulate the process of laser spot welding where a static laser beam irradiates
the workpiece for 15 ms. The initial temperature distribution is homogeneous at 293 K,
no additional temperature boundary conditions are set. The temperature distribution
after the heating process is shown in Figure 1. The effect of the Gaussian distribution of
the laser radiation on the resulting temperature field is clearly visible.

The Marangoni force acting in the melt flow due to a temperature-dependent surface
tension coefficient is plotted in Figure 2. The molten material flows in the negative
direction of the temperature gradient and the Marangoni force in x and y-direction have
their maxima near the solid-liquid interface. In z-direction, the force is negative with no
distinct minimum value.

The resulting spot weld dimensions are visualized in Figure 3, which shows the work-
piece after the solidification has completed. The particles in red were melted during the
heating process and solidified to form the spot weld, whereas the particles in blue stayed
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(a) Temperature distribution in the xy-plane (b) Temperature distribution in the xz-plane

Figure 1: Temperature distribution at t = 15 ms

Figure 2: Marangoni force in x-, y-, and z-direction at t = 15 ms

solid during the welding process. The spot weld has a smaller depth than its radius, which
is typical for conduction mode laser welding. The roughness of the surface after the weld
solidified can be seen in the results.

3.2 Moving heat source

Next we investigate the process of seam welding where the laser beam is moved along a
straight trajectory with a constant velocity of 1 m/min. At the beginning, the workpiece
has the ambient temperature of 293 K. Through the moving laser beam, the material
begins to melt and a weld pool with constant width and depth is formed. The shape of
the weld pool and the position of the heat source after 50 ms can be seen in Figure 4(a).
The effect of the surface tension force is noticeable at the border of the weld pool, since
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(a) Spot weld in the xy-plane (b) Spot weld in the xz-plane

Figure 3: Resulting spot weld colored in red

all particles are held together and the border particles do not move in the negative z-
direction due to gravity. Figure 4(b) shows the corresponding temperature distribution
in the xy-plane.

(a) Weld pool with heat source in grey (b) Temperature distribution in the xy-plane

Figure 4: Weld pool and temperature distribution at t = 50 ms

The Marangoni force at t = 50 ms in the case of a moving laser beam where the
temperature gradient is constantly changing with time, is visualized in Figure 5. In
the vicinity of the laser beam, the particles are accelerated in radial direction with the
maximum force acting at the distance rs. The value of the force in positive x-direction is
slightly larger than in the negative direction, which is a consequence of the moving heat
source. The force in z-direction has its minimum at the center of the heat source.
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Figure 5: Marangoni force in x-, y-, and z-direction at t = 50 ms (view at xy-plane)

4 CONCLUSIONS

The process of conduction mode laser welding may be simulated with SPH and the
obtained results are plausible. Compared to mesh-based methods, the advantage of using
SPH lies in the relatively simple conversion from a solid to a fluid particle, the modeling of
the free-surface melt flow, and the fluid-structure interaction. With welding simulations,
the influence and sensitivity of each process parameter or material property on the weld
pool dimensions and resulting weld can be investigated. Optimal process parameters like
welding speed and laser power may be found for each welding application. The maximum
temperature during the whole process can be monitored which might be useful for heat
sensitive components that must not exceed a critical temperature value. For a quantitative
validation, experiments under real operating conditions are planned to be carried out.

A multi-phase SPH formulation that is able to handle large density differences is in
development. Then, the welding of different materials, e.g. steel and aluminum, could be
simulated as well. Also, the modeling of laser deep penetration welding is in progress. For
this physically much more complex welding technique, the liquid-vapor phase transition
and the interaction of three different phases have to be modeled to achieve feasible results.
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