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Abstract. In this paper, a vector form intrinsic finite element (VFIFE or V-5 ) method is used 
to compute the nonlinear responses of reinforced concrete (RC) structure. In addition, the 
fiber-element model of VFIFE frame element is formulated. Material models of both concrete 
and steel on the cross section of the member are considered.  The VFIFE method is a particle-
based method. They have three key VFIFE processes such as the point value description, path 
element and convected material frame [1]. The RC structure is represented by finite particles. 
Each particle is subjected to the external forces and internal forces. The particle satisfies the 
Newton’s Law.  A fictitious reversed rigid body motion is used to remove the rigid body 
motion from the deformations of the element [2]. The internal forces of the element in 
deformation coordinates satify the equilibrium equations. Comparing the results of numerical 
simulations and experiments of the reinforced concrete members subjected to external loads, 
the proposed method demonstrate accuracy and efficiency.  

 
 
1 INTRODUCTION 
For nonlinear material structures, most of the existing nonlinear material models can be 
classified into two main categories: lumped and distributed plasticity models. The lumped 
model is an efficient way to represent inelasticity in frames. A typical finite element method 
considering the geometrical and material nonlinearities requires iterations at each incremental 
step to achieve the equilibrium. This method encourages flexural yielding and can ensure that 
plastic hinge rotation will occur at the member ends rather than along the column length. The 
second-order plastic hinge concept based on the use of stability interpolation functions has 
been proposed for frame structure analysis proposed a general criterion of localization and 
two plastic hinges at the end of the frame member. Some researches improved the lumped 
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plastic hinge method, such as for example the distributed plasticity model (also called plastic-
zone model), which allows for the gradual spread of yielding within the member. In the 
distributed plasticity model, the frame element stiffness can be computed by using either the 
displacement or the force-based approach. This allows plastic hinges to form at any location 
in an element. In addition, the element cross-section can be a fiber section using different 
stress-strain models for different fibers within the cross-section. Without properly taking into 
account the internal forces due to pure deformations, most of these studies may not be able to 
simulate inelastic structural responses of moving structures subjected to extremely-large 
displacements or deformations. 

Recently, the VFIFE method has been proposed by Ting, et al. [1] and Wang [2]. This 
method applies a unique approach to compute the effects of rigid motion, allowing the 
simulation of extremely large deformation of elastic motion structures. The key objective of 
this study is to construct a fiber-section of the frame element subjected to extremely large 
deformation having inelastic material properties. In this study, in order to model the 
reinforced concrete member, the fiber-element formulation has considered two material types 
such as steel and concrete is proposed. It can be used to compute nonlinear responses of 
reinforced concrete structure. Three numerical examples are presented to illustrate the 
capability and the accuracy of the proposed method. 

 

2 FUNDAMENTALS OF VFIFE METHOD 
In this study, the VFIFE  method is extended in order to analyze reinforced concrete 

members containing multiple deformable bodies with the following characteristics: (1) 
interact with each other, (2) or are discontinuous, (3) undergo large deformations and arbitrary 
rigid body motions. The VFIFE method establish a new analysis strategy based on the 
intrinsic theories of mechanics and avoid the difficulties such as the iterative and perturbation 
procedures in solving partial differential equations commonly adopted in the conventional 
nonlinear structural analysis methods (CNSAM). The key VFIFE concept is that the structure 
is viewed as a system composed of particles and forces components. The forces on the 
particles include the internal forces and external forces. In order to describe the deformation 
of the structure, the following general assumptions are adopted: (1) the internal forces are 
computed from the deformations of the structural members such frame element, (2) each 
structural member has geometry and position changes simultaneously. In addition, the 
changes of the geometry and the position for the deformable structure are not separated, and 
(3) each particle may have a motion trajectory. Base on these assumptions, the associated 
analytical operations are using: (1) the point value description (PVD), (2) the path element, 
and (3) the convected material frame (CMF).  

Figure 1 shows the characteristic of the VFIFE analysis using the PVD concept. The 
motions and deformations of a structure are described by the positions of the particles and 
discrete time points as shown in Fig. 1(a). The PVD uses many discrete time points to 
describe the entire time trajectory of the deformable body. VFIFE analysis is not required to 
solve the partial differential equations for structural members. This is because the equations of 
motion on particles at each time point are established using Newton’s Law. The reference 
configuration of the structure at time ta can be identified by connecting the representative 
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particles (ia, ja, 1a). The trajectory of any representative particle satisfies the definition of a 
path element at each set of time points (e.g. i-i1, i1-ia, ia-it, it-ib, ib-ic, ic-if in Fig. 1(b)). Details 
of the path element will be explained in the following sections. The PVD and the function of 
time trajectory are shown in Fig. 1(b). The dotted line represents the particle trajectories from 
the positions at time t0 to positions at time tf.  

In order to introduce the concept of the path element, the motion of a structure member is 
considered as shown in Fig. 2(a). The PVD is used to describe the entire time trajectory of 
particles i and j. For example, a series of time points (t0<t1<.....ta<t<tb<tc...<tf) is used to 
describe the entire time for the particle i. Figure 2(b) shows four configurations, original 
configuration V0 at time t0, configuration Va at time ta, current configuration V at time t and 
the fictitious configuration Vr. The position vectors used to describe the motion of the 
deformable body are continuous functions of time. In the VFIFE method, the deformable 
body is represented by many particles using PVD to describe its motion as shown in Fig. 1. 
The entire time trajectory of the deformable body uses many path elements. For the purpose 
of discussion, choose the time interval (ta, tb) as one of the path elements in the entire time 
trajectory of the deformable body. The position, material properties, stress and the geometric 
features of the deformable body at time ta is known as the configuration aV . In Fig. 2(b), the 
relative position dx between particles i and j in the current configuration V is computed from 
dxa: 

a ad d d x F x RU x  (1) 
where F is the deformation gradient. R is a rigid body rotation matrix. U is a matrix of the 
deformation. The fictitious configuration Vr can be computed as follows: 

T
r r rd d d x F x R x  (2) 

where rF  is a virtual deformation gradient and rR is a reversed rigid body rotation matrix. In 
this study, rF  is equal to a reversed rotation matrix rR . Substitute equations (1) into (2), the 
following can be obtained: 

r r ad dx F F x ( )T
r ad R R U x  (3) 

If the reversed rotation matrix rR is close to R, the rR can be used to reduce the effects of the 
rigid body rotation on the deformation gradient F of a deformable body. Then: 

r ad dx U x  (4) 
In this study, a procedure to obtain the best approximate rotation matrix rR  is proposed for 
the VFIFE method. The internal forces of the structural members are computed from using 
the CMF, PVD and path element.  

4 REINFORCED CONCRETE FIBER FRAME ELEMENT 
The internal force formulation of reinforced concrete fiber frame element (RCFFE) is 
introduced. The internal virtual work in the deformation coordinates of the RCFFE is: 

* *ˆ ˆˆ ˆ) )(d f (d fT T
c sW      (5) 

The deformations of the RCFFE are based on Euler beam theory. The pure deformations ˆdu  
of the RCFFE at any cross section can be computed by the pure concrete deformation ˆd

cu  and 
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steel deformation ˆd
su along the axis of the frame element in the deformation coordinates. In 

Fig. 3, Total deformation of RCFFE can be represented as: 
        ˆ ˆ ˆd d d

c su u u     (6) 
where 

ˆˆ ˆ ˆ
ˆ

d
d d
c m

dvu u y
dx

    (7) 

  ˆˆ ˆ
ˆ

d
d d
s m c sj

dvu u h h
dx

     (8) 

1 2ˆ ˆd
mu a a x   (9) 

2 3
3 4 5 6ˆ ˆ ˆ ˆv a a x a x a x     (10) 

where hc is a center line of the frame section. The compatibility conditions of the frame 
element are: 

ˆ ˆˆ ˆ ˆ0, 0, 0,
d

d d
m iz

dvx u v
dx

     (11) 

ˆ ˆˆ ˆ ˆ, , 0,
d

d d
a m e iz

dvx l u v
dx

      (12) 

The deformation functions are used to compute the internal forces of the frame element. In 
VFIFE method, the effects of rigid body motion must be removed from the deformation 
functions in each path element. Then, the internal forces in the fictitious configuration rV  can 
be evaluated from the traditional procedures. The pure deformation ˆdu  satisfy Eqs. (11) to 
(12). The concrete deformation ˆd

cu  and steel deformation ˆd
su  can be written as: 

 2 2ˆ ˆˆ ˆ(1 4 3 ) ( 2 3 )d
c e iz jzu s s s s s y           (13) 

  2 2ˆ ˆˆ (1 4 3 ) ( 2 3 )d
s e iz jz c sju s s s s s h h            (14) 

where lxs ˆ/ˆ  is a non-dimensional parameter. Because the deformation of the RCFFE is 
small deformation in each path element, the infinitesimal concrete strain ˆc , steel strain ˆs  and 
total axial strain ˆs  are: 

ˆ ˆ ˆc s     (15) 

ˆ ˆc ac c    , 
*ˆ ˆ ˆ ˆ( ) ( ) ( )1 1 ˆˆ

ˆ ˆ ˆ2

Td d d d
c c c c

c c
a

u u du d u
x x dx l ds


                  

B d  (16) 

ˆ ˆs as s    , 
*ˆ ˆ ˆ ˆ( ) ( ) ( )1 1 ˆˆ

ˆ ˆ ˆ2

Td d d d
s s s s

s s
a

u u du d u
x x dx l ds


                  

B d  (17) 

Where 
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* ˆˆ

ˆ

e

iz

jz





 
 

  
 
 

d  (18) 

1 1 (4 6s)(h h ) (2 6s)(h h )Bs c sj c sj
al
        (19) 

 1 ˆ ˆ1 (4 6s) y (2 6s) yBc
al

    (20) 

where ac  and as  are the concrete and steel axial strain at time at . The ˆc  and  ˆs  are the 
concrete and steel relative axial strains from time at  to t. The la is the length of the frame 
element at time at . In Eqs. (19) and(20), the ˆc  and  ˆs  can be written as 

ˆ ˆ(s) ye
c

a

K
l

 
    (21) 

ˆ (s)(h h )e
s c sj

a

K
l

 
     (22) 

where K(s) is the incremental curvature from time at  to t. The concrete stress ˆc , steel stress
ˆ s  and total axial stress ̂ of the section can be computed from: 

ˆ ˆ ˆc s     (23) 
ˆ ˆc ac c    , ˆˆc ac cE     (24) 
ˆ ˆs as s    , ˆˆs as sE     (25) 

where ac  and as are the concrete and steel axial stress at time at . The ˆc  and ˆs are the 
concrete and steel relative axial stress from time at  to t. In Eqs. (24) and (25), the acE and asE
represents the instantaneous constitutive relationships of the concrete and steel at time at . The 
virtual strain energy U : 

s cU U U       (26) 

ˆ
ˆˆ ˆ( )T

c c cV
U dV        (27) 

ˆ
ˆˆ ˆ( )T

s s sV
U dV        (28) 

In the deformation coordinates ( x̂ , ŷ ), the internal virtual work W  equals to the virtual 
strain energy U : 

U W     (29) 
The three internal forces f̂  can be computed from: 

 ˆ ˆ ˆ ˆ ˆ ˆf f f ij ji ij
a jx iz jzf m m    (30) 

 ˆ ˆ ˆ ˆf ( ) ( ) ( )ij ji ij
a jx a iz a jz af m m

 (31) 
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 ˆ ˆ ˆ ˆf ij ji ij
jx iz jzf m m      (32) 

The remaining three internal forces can be obtained from the equilibrium equations: 
ij
jx

ji
ixx

ffF ˆˆ0
ˆ

  (33) 

)ˆˆ(1ˆ0
ˆ

ij
jz

ji
iz

a

ij
jyy

mm
l

fM   (34) 

ij
jy

ji
iyy

ffF ˆˆ0
ˆ

  (35) 

The internal forces ( ji
if̂ , ij

jf̂ ) at the particle i and j in the deformation coordinates are (see Fig. 
4): 

 ˆ ˆ ˆf
T

ji ji ji
i ix iyf f ,  ˆ ˆ ˆf

T
ij ij ij
j jx jyf f  (36) 

In order to compute the actual internal forces, the internal forces in fictitious configuration rV  
must be rotated back to the current configuration V. In addition, since all the force directions at 
each particle are defined in the global coordinates, they need to be transformed into global 
coordinates. Thus, the internal forces in the global coordinates can be computed: 

ji
i

T
a

T
r

ji
i fΩRf ˆ , ij

j
T
a

T
r

ij
j fΩRf ˆ  (37) 

fiber section method is used to analyse various material on crass section of member as show 
in Fig. 5. These materials include the reinforced steel, steel, well-confined concrete and not 
well-confined concrete. The fiber section method can consider the effects of frame element 
axial force-bending moment interaction on nonlinear dynamic structural simulation for 
behavior of real reaction. In this paper, we focus on numerical analysis of reinforced concrete 
structures. The fiber-element model can be used fiber section model in each area using 
different stress-strain models. The stress-strain relation of confined concrete model is adopted 
for each fiber as show in Fig. 6. Thus, the bending moment-curvature relation of complex 
section can be calculated. Wang and Restrepo [3] have suggested a formulation of Mander 
concrete model on rectangular section. Now, this formulation is written on VFIFE  method in 
this paper. It can be expressed as: 

1 2cc cf       (38) 
where 

2

1 1 2
1

2 2

1.4 0.6 0.8 1l l l

l l c

f f f
f f f

    
           

 (39) 

2 2
2

7.941.25 1.8 1 1.6 1l l

c c

f f
f f

  
        

 (40) 

2 max ,l lx lyf f f        (41) 

1 min ,l lx lyf f f        (42) 

Thus, lx e lxf k f  and ly e lyf k f  was the effective lateral confining stress for rectangular 
confined concrete in the spiral of x and y direction and ek was effective confined coefficient. 
For the stress–strain model for confined concrete, the modified Mander confined model is 
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used to analyse numerical simulation analysis of reinforced concrete members. For steel 
material model, the stress-strain relation of steel by Mirza and MacGregor [4] is adopted.  

5 NUMERICAL EXAMPLES 
In this paper, three numerical examples are given. Comparison experimental and numerical 

results of reinforced concrete members are studied. Firstly, example has been studied by Yang 
[5]. Figures 7 and 8 are design details of the specimens for the C1 and C1W. Figures 9 and 10 
show that the analytical results computed from the VFIFE method are close to experimental 
results. It has been demonstrated that the proposed method can be used to compute responses 
of the reinforced concrete members 

6 CONCLUSIONS 
In this paper, following the VFIFE  approach, we developed a numerical procedure for 

the analysis of fiber-element model using different stress-strain models. The numerical 
procedure can be used to simulate the extremely large deformation of inelastic structures. One 
example has been presented. It has been demonstrated that the proposed method can be used 
to analyze the large static deformation responses of reinforced concrete members under loads 
or deformations. 
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Figure 1: Motion of a structure in VFIFE method 
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(a) Path element in a series of time points 
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(b) Convected material frame 

Figure 2: Path element and convected material frame adopted in VFIFE 
 

 
(a) Reinforced concrete simple support beam 
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(b) Frame element section. 

Figure 3: Reinforced concrete section of the frame element. 
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Figure 4: Internal forces in the deformation coordinates 

 
Figure 5: Fiber section of the RCCFE. 
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Figure 7: Design details of the specimens for the C1 by Yang [5] 
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Figure 8: Design details of the specimens for the C1W by Yang [5] 

 
Figure 9: Comparison experimental and numerical results (C1) 
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Figure 10: Comparison experimental and numerical results (C1W) 
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