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Abstract   The problems of fluid-structure interaction (FSI) are often encountered in different 
industries as well as the nature. The macro-scale particle methods are advantageous in the FSI 
simulations, which include smoothed particle hydrodynamics (SPH), macro-scale pseudo-
particle modelling (MaPPM), and so forth. Compared with the grid-based numerical 
techniques, particle methods could provide the flow and/or deformation details without 
complex tracking of interfaces. The progress of FSI simulation of multiphase flows with rigid 
particles is presented, and some major findings about heterogeneous structures are stressed. 
Meanwhile, weakly compressible outflow from elastic tube is investigated, and some 
preliminary results of flow details are presented. The possible development of macro-scale 
particle methods in the FSI simulation is prospected finally.

1 INTRODUCTION 
The problems of fluid-structure interaction (FSI) are extensively encountered in many 

industrial applications as well as biological systems, such as multi-phase flows in fluidized 
beds, transports in flexible pipeline, and coupled membrane-fluid systems. In general, they are 
often too complex to be solved analytically, while numerical simulation could play an 
important role in this aspect. The well-known arbitrary Lagrangian-Eulerian method[1] (ALE)
formulates the fluid field on deforming grids, and takes into account the convection of these 
grid points. Nevertheless, the remeshing procedure in ALE is usually rather complicated and 
also computationally expensive, particularly for large deformation. On the other hand, the 
fluid domain of immersed boundary method[2] (IBM) is based on uniform background grids, 
and the immersed set of boundary points interact with the fluid through the introduction of 
body forces. Actually, the distributed Lagrange multiplier based fictitious domain method[3]

(DLM\FDM) shares many similarities with IBM, but the force between the fluid and structure 
in DLM\FDM is distributed using an integral formulation. However, there still exists some 
difficulty in the accurate representation of structure with finite volume and/or complicated 
constitutive laws in the above two fixed grid methods as well as their variants. 

In contrast, macro-scale particle methods offer notable advantages in FSI problems, 
including smoothed particle hydrodynamics[4,5] (SPH), macro-scale pseudo-particle 
modelling[6] (MaPPM), moving particle semi-implicit (MPS) method[7], and so forth. In these 
approaches, the continuum is discretized into a collection of particles without background 
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meshes, and these particles move in Lagrangian manner according to the macro-scale 
interaction with their neighboring ones. Consequently, the large deformation of material 
interface or free surface is naturally handled without the vexing problem of mesh distortion. 
Actually, the classical SPH method originally developed for astrophysical contexts, has been 
extended to various fields due to the conceptual simplicity[8,9], including turbulent flow, 
multiphase flows, non-Newtonian flows, and elastic dynamics.  

In the FSI simulations with particle methods, complex tracking of interface is completely 
avoided. However, the structure/solid could be rigid or elastic, which corresponds to totally 
different treatment. As for the rigid solids usually in the form of a large number of particles, 
the interactions between particles are generally depicted by the discrete element method 
(DEM) [10,11]. DEM follows the motion of every particle, while their interactions are based on 
certain contact model. On the other hand, for the interaction between elastic structure and 
fluid, both of them could be simulated by unified SPH descriptions with their own 
constitutive relations. However, the classical SPH generally suffers from the problem of so-
called “tensile instability” in the simulations of elastic or brittle solid[8]. When the SPH 
particles are under a tensile state, they tend to form small clumps, resulting in unphysical 
fractures eventually. The source of this instability has been analyzed in details by Swegle et al. 
[12], and several techniques have been proposed to remedy this drawback, such as adding extra 
stress points[13], corrective smoothed particle method[14] (CSPM), and artificial stress method 
[15,16]. In the artificial stress method, additional artificial stress was particularly incorporated 
into the momentum equation by mimicking atomic forces. The artificial stress exerted a small 
repulsive force for particles in the state of tensile stress, and thus effectively prevented them 
from clustering. Based on the analysis of the dispersion relation in elastic wave, the resulting 
algorithm of artificial stress was found to be effective and accurate for various benchmark 
problems in elastic dynamics[16,17].

A good understanding of FSI phenomena is crucial to relevant industrial applications. As 
for the FSI problem of rigid solids, the direct numerical simulation (DNS) of classical multi-
phase suspensions is generally full of challenges due to its large computational cost. On the 
other hand, most simulations on FSI problems cope with the nearly incompressible fluid and 
hypoelastic structure[17-19], and thus further study of FSI problems with weakly compressible 
flow would be quite significant. In this paper, the progress of FSI simulation of rigid particles 
is presented, which combines MaPPM (or SPH) with DEM. Also, weakly compressible 
outflow from elastic tube is investigated with unified SPH formulations, where a particular 
outflow boundary is applied, and the artificial stress is employed to remove the tensile 
instability in elastic solid. Besides, the outflow simulation is based on the previous researches 
on selective withdrawal from rigid microcavity[20] and immiscible displacement in rigid 
cavity-fracture structures[21].

2 NUMERICAL FORMULATIONS OF FSI PROBLEMS 

2.1 SIMULATION OF FLUIDS 
In nature, the macro-scale particle methods are based on interpolation theory. An arbitrary 

field variable f(r) at location r is evaluated as sum over a set of neighboring points (particles)
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where mj and j are the mass and density of particle j; while ( , )jW hr r  is the weighting 
function with h as its smoothing length. The weighting function should satisfy several 
requirements, including the normalization condition and the property of Dirac delta function. 
Among a number of weighting functions, the cubic spline is employed for both fluid and solid 
in the present work[8].
  Following Eq. 1, the local density of particle i  is given by 
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m W h   r r                                                                    (2)

In regard to the SPH formulation of Navier-Stokes equation, there exist different forms of 
pressure component as well as viscous component. Based on the symmetric pressure which 
conserves linear and angular momentum exactly, the momentum equation of SPH particles 
could be written as[22]
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where v is the velocity,   is the dynamic viscosity, and i  denotes the gradient with respect 
to its coordinates. 
    Besides, the two-dimensional version of  momentum equation in MaPPM[6] is  
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where cf is numerical sound speed of fluid in the artificial state equation. The compressibility 
of fluid could be adjusted with suitable choice of numerical sound speed, and the 
incompressiblity is approximately guaranteed through sufficiently large sound speed. 

2.2 SIMULATION OF EALSTIC STRUCTURES 
The stress tensor  of momentum conservation could be decomposed into the isotropic 

pressure P and the deviatoric stress S. In regard to elastic solid with Hooks’ law, the Jaumann 
rate is commonly adopted to satisfy the material frame indifference of large deformation. The 
evolution of deviatoric stress in elastic solid[16,23] can be written as

12 ( )
3

dS G S S
dt
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where G is the shear modulus,   is the strain rate,   is the rotation tensor, while superscripts 
  and   indicate the spatial coordinates.

Moreover, the momentum equation of solid can be depicted by the following form  
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where ij and n
ijR f  refer to the terms of artificial viscosity and artificial stress[16],

respectively. 
Generally, the introduction of artificial viscosity could effectively enhance the stability of 

numerical algorithm. Among various types of artificial viscosity, a popular one[24] is  
2
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where cs represents the numerical speed of sound in the solid, 2 20.01
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 . The linear term with   produces shear and bulk viscosity, while the quadratic 

term with   suppresses the unphysical penetration among particles. 
   In addition, the term of artificial stress has the expression[16]
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where d is the initial interparticle distance, and q is a parameter. To obtain the artificial stress R,
the original stress tensor is diagonalised for the signs of principal stresses, and the diagonal 
components of artificial stress in the rotated frame could be specified as follows 
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where e is also a parameter. The artificial stress in the original coordinates is further 
calculated through rotating the coordinates back. Besides, the strain rate   and rotation tensor 
  in Eq. 6 are obtained with corresponding SPH formulations.  

3 FSI SIMULATION OF MULTIPHASE FLOWS WITH RIGID PARTICLES  
As for the gas-solid or liquid–solid multiphase flows in industrial systems, such as fluidized 

bed, the systems usually involve huge number of rigid particles. In the DNS simulation of 
such flows using SPH or MaPPM, the size of numerical parcticles should be much smaller 
than that of solid particles. Therefore, the computational cost is generally in proportional to 
the involved particle number of the system. Potapov et al.[25] carried out the investigation of 
liquid–solid flows combining SPH and DEM with soft-particle technique. In the shear-cell 
simulation, there were only 8 or 17 solid particles, corresponding to solid area fractions of 
17% and 37%, respectively.

Furthermore, the simulation of gas-solid suspension with 1024 particles was implemented 
by couping MaPPM and DEM with hard-sphere collisions[26], based on the large-scale parallel 
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computating with CPU (central processing unit) clusters. The parallel was realized through 
message-passing interface (MPI) with the techniques of space-decomposition, shift-mode 
communication, and dynamic load balancing. The result revealed dynamic multi-scale 
structures characterized by heterogeneity with clustering solids. The solid particle velocity 
distribution was rather anisotropic, although it was nearly Maxwellian in each direction. The 
drag forces on the particles were also quite different, and locally structure-dependent to some 
extent. They were much larger in the dilute phase than those in the center of the dense phase, 
and become maximum on the phase interface. Besides, the distribution of drag force was 
somewhat close to the Gaussian function.

Figure 1: Heterogeneous structure with corresponding velocity field of a gas-solid suspension[27]

With the newly developed general computing technique based on GPU (graphic processing 
unit), the large computational burden of DNS could be greatly alleviated. Actually, up to 
30,000 fluidized solids were further simulated by MaPPM using GPU-based Mole-8.7 HPC 
(high performance computing) system[27]. The GPU computating in a computer node was 
realised through CUDA (compute unified device architecture), while the data exchange 
between different nodes was implemented by MPI technique. Large speedup of nearly 19 
folds for one GPU (NVIDIA GT200) over one typical CPU core was achieved. The result 
reproduced detailed destabilization process of initial uniform suspension and the following 
formation of solid clusters (Fig. 1). Moreover, the scale-dependence of some important 
parameters in the suspension with moderate solid/gas density ratio was also revealed. 
According to the statistical analysis on gas-rich dilute phase and particle-rich dense phase 
with relatively large solid/gas density ratio (beyond 1000), it was found that the drag 
coefficient was essentially dependent on the specific cluster configuration.  
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4 FSI SIMULATION OF OUTFLOW FROM ELASTIC TUBE  
Deformation of elastic tube due to the flow of its inner fluids is quite common in both 

industrial systems and everyday life. To investigate the interaction between weakly 
compressible fluid and elastic structure,  simulation of outflow from elastic tube is carried out 
with SPH method. As presented in Fig. 2, the particles are initially arranged in a densely 
packed array of hexagonal lattice inside the whole region. The outer hollow particles 
represent the elastic microtube, the inner solid bulk represents the fluid, and the solid particles 
on the rightmost side of the tube are the fixed ends. The flow inside the tube is induced by the 
control region, where all the particles automatically flow out with the following velocity 

                                      0 criV                                                                              (11)

where   is a flow coefficient depending on many factors, including the pressure difference 
between fluid and outer atmosphere, flow resistance inside the tube, and so forth. Besides, 

cri  is the critical density of fluid, below which the flow would come to an end. When these 
particles leave the control region, they are immediately eliminated from the simulation. With 
the quick outflow of inner fluid, the density of fluid would decrease correspondingly, and thus 
the outflow velocity V0 would become zero eventually.  

 
       Figure 2: Sketch of elastic tube with initial particle distribution 

In our simulation, the length and width of the microtube are L=6.010-4 m and W=1.010-3

m. The density of the fluid and solid are f=0.92103 kg m-3 and s=2.76103 kg m-3,
respectively. The length of velocity control region is 4.010-5 m, the critical density of fluid 

cri  (Eq. 11) is appointed as 0.85f, and the flow coefficient  is 8.61510-5 kg-0.5 m2.5 s-1.
The smoothing length h is 5.33310-5 m, while the numbers of initial fluid particles and solid 
particles are 35,783 and 2498, respectively. Besides, according to the analysis on dispersion 
relation of elastic waves[16], the parematers in the artificial stress (Eqs. 9 and 10) are e=0.3
and q=4. The simulation is switch on at the time t=0.
      Fig. 3 displays some typical snapshots during the whole deformation process of elastic 
tube. With the continuous outflow of fluid in the control region, the inner fluid of the tube is 
induced to quickly flow out. Since the fluid is weakly compressible, its density gradually 
becomes smaller, which leads to the reduction of its pressure. The pressure reduction of fluid 
destroys the initial pressure balance between fluid and tube, resulting in the deformation of 
the elastic tube. As shown in Figs. 3a-c, with more and more fluid flows out of the tube, the 
deformation extent of tube increasingly becomes large. Meanwhile, the fluid density and 
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coreresponding pressure become smaller, and thus the outflow rate of fluid quickly reduces 
according to Eq. 11. Finally, the fluid flow completely stops due to the zero pressure 
difference between fluid and outer atmosphere. Fig. 3c is the steady state of this FSI system, 
where the deformation of tube reaches maximum and fluid density becomes minimum. Note 
that the deformation of tube in Fig. 3c is so large that the upper and lower sides of this tube 
nearly connect with each other in their central sections. 
 

 
Figure 3: Deformation process of elastic tube due to the outflow of inner fluid: 

0.2 s (a), 0.4 s (b), and 1.2 s (c) 

4   CONCLUSIONS  
As elucidated in the two FSI examples of rigid particles and elastic tube, the FSI 

simulations with macro-scale particle methods are suitable and also advantageous in 
providing flow and/or deformation details without complex tracking of interfaces in grid-
based numerical techniques. Actually, SPH has been coupled with other particle methods to 
combine their respective advantages, such as element bending group for modeling flexible 
fibers[28]. However, the computational cost of macro-scale particle methods is generally rather 
large (particularly for industrial systems), and thus the further development of efficient 
algorithm and computational decive would be quite significant in this regard.  Besides, the 
outflow from elastic tube is only preliminarily investigated. Further extension to the liquid-
liquid immscible flows (such as water and oil) inside the large-scale complex ealstic and/or 
rigid structure network would be more meanfuling.  
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