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Abstract. This paper presents the micromechanical model for unsaturated soil in pen-
dular regime, taking into account the roughness of the grains and the interfaces that
separate the different phases present in the medium. It supplements the oral presentation
with more technical content. Laplace equation is solved for two grains configuration to
calculate the capillary force and all the geometric properties of the meniscus connecting
the grains. Many configurations are solved and the look up table method is then used
during the simulations. Results for grains moving at constant suction and constant vol-
ume are presented. It is also shown that the roughness has an important impact on the
value of capillary force and it is evolution with the change of suction.

1 INTRODUCTION

Unsaturated soils has been an interest for many studies recently. Different approaches
has been used to study the behavior of such materials.

One of these approaches is the thermodynamic approach([2],[5],[4],[10]). All these
studies, highlighted the importance of the interfaces separating the different phases, and
insisted that specific terms accounting for them must be included in the formulation of
the effective stress.
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Figure 1: Illustration of a liquid bridge between 2 spherical grains.

On the other side, many recent work has been dedicated to studying unsaturated soils
using the discrete element method DEM [1]. See for instance ([3], [7], [11]).

Bridging the theoretical frameworks mentioned previously, all these numerical tools
need to define the interfacial areas accurately which has not been done yet.

This paper details in the first part the micromechanical model inspired by [11] and
implemented in the open source code YADE and in which the interfaces that exist in the
partially saturated medium are taken into account.

The model takes also into account the roughness of the grains. The influence of the
roughness on the behavior of the unsaturated granular matter is discussed in the second
part.

2 LAPLACE EQUATION

The geometry of the water bridges connecting the particles is determined by Laplace
equation. Laplace equation relates the pressure jump pc across the wetting-non wetting
interface to its curvature through the surface tension:

pc = γC (1)

Even if the form of the Laplace equation is simple, it is very difficult to solve. In the
pendular regime, the capillary force is easy to compute and can be linked to the geometry
of the grains and the suction in the medium. For higher saturations, the problem becomes
much more complicated. This section details the resolution of Laplace in the pendular
regime.

The pendular regime is over when the disconnected bridges start to overlap. The
overlapping of the bridges is tested using the filling angles of the bridges on each particle.
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For sake of more simplicity, the grains are assumed to be spherical in order to have an
axisymmetric problem. In this case, the curvature and the Young-Laplace equation can
be written as following:
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1
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1 + y′(x)2
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To generalize the study and describe the capillary phenomena for different particle sizes
and different liquid types, all the variables are normalized. We introduce the factor R
that is the radius of the smallest (r2) at biggest (r1) grains in one meniscus configuration:
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A∗ =
A

R2
(11)

Fcap refers to the capillary force, V to the volume of the meniscus and A to interfaces.
The normalized Laplace equation becomes then :

y′′∗

(1 + y′2)
3
2

− 1

y∗
√

1 + y′2
= p∗c (12)

Based on the work of [8] , Laplace equation can be integrated into a first order differ-
ential equation:

Assuming Q = 1 + y′2 the equation becomes:

dQ

dy∗
− 2Q

y∗
= 2p∗cQ

3
2 (13)

This is a Bernoulli type equation that gives the following solution:

Q =
4y∗2

(2K − p∗cy
∗2)2

(14)

In perfect wetting condition, K is determined from the contact boundaries at the triple
line connecting the bridge to the grains, or at the gorge ([6], [8]) for given spheres sizes,
suction and distance separating the grains.

The calculations show that K is proportional to the capillary force.

K = y∗ +
y∗2p∗c
2

= F ∗
cap ∗ 2π = Fcap ∗ 2πγR (15)

The final form of the integrated equation is then:

1

2π
(

y∗

2
√

1 + y′∗2
− p∗cy

∗2) = F ∗
cap (16)

For the same spheres sizes, suction and distance configuration, we can also calculate the
volume of the liquid bridge ([13])and the values of the interfaces separating the different
phases in the system.

V ∗ =

∫

πy∗3dx∗ − V ∗
1 − V ∗

2 (17)

V ∗
1 and V ∗

2 are the volumes of the spherical caps covered by the filling angles δ1 and δ2
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The wetting-non wetting interface is:

A∗
wn =

∫

2πy∗2
√

1 + y∗′2dx∗ (18)

The other interfaces are calculated using the equation to calculate the interface of spherical
cap using the values of the filling angles (δ1 and δ2).

The solid-wetting interface is:

A∗
sw =

1

R2
(2πr21(1− cos(δ1)) + 2π ∗ r22(1− cos(δ2))) (19)

The solid-non wetting interface is:

A∗
sn =

1

R2
(2πr21(1 + cos(δ1)) + 2π ∗ r22(1 + cos(δ2))) (20)

As for the rupture distance of the meniscus connecting the grains, it is determined
automatically when there is no possible physical solution for Laplace equation.

3 Lookup table.

For different imposed R, p∗c and D∗ values (D refers to the distance between the par-
ticles), all these variables are calculated and saved in text data files, to be used in the
simulations. The values of the imposed input values cover all the possible range of solu-
tion. R varies from 0.1 to 1 to allow simulating different particle size distribution in the
packing, D∗ cover the range of distance from the formation to the rupture of the bridge,
and the suction varies from 0 to very high suction values. The look up table methods
that consists in creating the data file that replaces the runtime computations makes the
calculations much faster.

During the simulation at imposed suction, the grain size particles, their positions are
known. The trio (R,p∗c ,D

∗)can be deduced. The discrete set of solutions in the text files is
triangulated using Delaunay triangulation, and the capillary force applied to the particles
and the other variables are obtained by interpolation. This interpolation is called the
P-Based interpolation and is used to simulate drained quasi-static simulations.

The values obtained from the interpolation in the text files are normalized, and need
to be re-upscaled to the real particles size distribution present in the sample.

Another type of simulations is also possible in the capillary law code. The V-Based
interpolation is then introduced. The input variables for the V-Based interpolation are
(R,V ∗,D∗) and the same procedure is repeated with different triangulation set.

Simulations are done on two grains connected by a water bridge and the variation of the
force and the geometric properties of the meniscus are plotted as function of the distance
separating the grains in the case of P-Based and V-Based interpolations in figure 2.

It is noticed that for the capillary force and interfaces, the results are the same for
grains moving at constant suction or constant volume of water up to a critical value
(D*=0.03) before they start diverging.
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Figure 2: The variation as function of the distance of (a)-suction , (b)-volume of the bridge , (c)-capillary
force, (d)-wetting-non wetting interface and (e)-solid-wetting interface for constant suction and volume.
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Figure 3: Illustration of 2 grains connected by a meniscus with (a) negative roughness and (b) positive
roughness.

4 Roughness of the grains

Another aspect added to the capillary law in YADE is the roughness of the grains.
The roughness aspect helps representing the real shape of the grains and the dependence
of the capillary effect on that. The model is based on the work of [9]. The roughness is
represented by considering that the meniscus is formed between spherical grains slightly
smaller or bigger than the grains for the contact law. The roughness can be then either
positive or negative. In the case of positive roughness, the grains are touching through
asperities (figure 3(b)). When the roughness is negative, the sphere has some plane
surfaces, and it’s volume is smaller than the sphere used for the capillary law law(figure
3(a)). The model is not able to describe the behavior of quite angular grain shape.

The value κ of the roughness is taken into account for each grain as following:

r = r − r ∗ κ (21)

The way the roughness is taken into account in the DEM code is represented in figure 4.
In the case of packing, a mean value of the roughness κm and the value of the dispersion

from the mean value in such a way to have a uniform distribution of the values of roughness
are defined.

The impact of the roughness on the capillary force is shown in figure 5. It is noticed
that for smooth grains in contact, the force is almost constant with the change of suction.
For positive roughness, the capillary force decreases with increasing suctions. The nega-
tive roughness instead increases the value of the capillary force with increasing suction.
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Figure 4: Illustration of a liquid bridge taking into account the roughness in the DEM capillary law for
(a) negative roughness and (b) positive roughness.

Figure 5: The influence of the roughness on the capillary force.

5 Conclusion

The numerical model presented hereabove offers a consistent framework for studying
unsaturated materials. It provides accurate values of interfacial areas, a cornerstone
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of thermodynamics and variational methods applied to such materials. This method was
used to produce results which serve as a base in the companion oral presentation. Therein,
the validity of Love-Weber stress tensor σc =

1
V

∑

f
⊗

l for defining the effective stress
in three phase materials ([12]) is discussed.
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[2] Dangla, P. and Coussy, O. Approche énergétique du comportement des sols non
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