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Abstract. Several theoretical predictions of the mass flow rate of granular flows through
outlets are based on the existence of a free fall arch region covering the silo outlet. Early
in the nineteenth century, it was suggested that the particles crossing this region lose
their kinetic energy and start to fall freely under their own weight. However, there is
not conclusive evidence of this hypothetical region. We examined experimentally and
numerically the micro-mechanical details of the particle flow through an orifice placed at
the bottom of a silo. Remarkably, the contact stress monotonously decreases when the
particles approach to the exit and it only vanishes just at the outlet. The behavior of
this magnitude was practically independent of the size of orifice indicating that particle
deformation, is insensible to the size of the aperture. Contrary, the behavior of the
kinetic stress puts on evidence that the outlet size controls the propagation of the velocity
fluctuations inside the silo. Examining this magnitude, we conclusively argue that indeed
there is a well-defined transition region where the particle flow changes its nature. Above
this region, the particle motion is completely correlated with the macroscopic flow. Our
outcomes clarifies why the free fall arch picture has served as an approximation to describe
the flow rate in the discharge of silos.
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Figure 1: (a) Numerical three-dimensional silo, the color of the particles indicates the velocity in the
vertical direction. (b) Sketch of the numerical interaction among two colliding particles. (c) A picture
of the two-dimensional silo used in the experiments. The red arrows represent the velocity of each grain.
The arrow at right bottom is equivalent to 500mm/s.

1 INTRODUCTION

Predicting the mass flow rate during silo discharging has been thoroughly attempted
in the past years [1, 2, 3]. In general, theoretical frameworks rest on the existence of
region close to the orifice where the inter-particle forces diminish and, below this vault,
fall due to gravity. Long time ago, this was postulated by Brown & Richards [2], who
introduced the concept of free-fall arch. Nowadays, this conception is fully accepted and
researchers commonly relate it with Beverloo’ correlation [4]. However, the free-fall arch

idea implies the strong formal inconsistency of a spatial stress discontinuity, which is
difficult to justify. In addition, recent experimental efforts aimed on proving the existence
of such a transition have provided inconclusive outcomes [5, 6].

When examining granular flows experimentally, there are several technical restrictions
[7, 8, 9]. Hence, to capture the behavior of three dimensional flows and packings is
generally not feasible. In this framework, there is a real need of performing numerical
simulations. Discrete element modeling (DEM) is widely accepted as an effective method
to address engineering problems concerning dense granular media [10]. Moreover, in
applications the formulation of granular macroscopic fields is also necessary. The micro-
mechanical details provided by DEM, i.e. velocity, position and contacts of individual
particles, allow to determine the continuum field profiles, implementing coarse grained
average techniques. In this work, we apply a post-processing methodology introduced by
I. Goldhirsch [11] and generalized by Weinhart et al [12, 13]. We analyze the granular
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flow through an orifice, thoroughly describing the kinetic and dynamic fields.
The paper is organized as follows: in Sec. 2, we describe the experimental setup, the

numerical simulations and the theoretical framework of the coarse-grained formulation
[11]. Then, in Sec. 3 we explain the implementation of the coarse-grained methodology,
which has been used to process both numerical and experimental data, allowing to clarify
the nature of the granular flow close to the orifice.

2 METHOD

2.1 Experimental Setup

The experimental setup consists of a quasi-bidimensional silo built with two glass sheets
(height 800mm and width 200mm) separated by a steel frame which also conforms the
lateral walls (see Fig. 1). The gap between the glass sheets is slightly larger than the
particles diameter (d = 2rp = 1.0mm) so the beads can only arrange themselves in
a single layer. The particles flow out through a horizontal slit of a tunable aperture
D = 2R located at the flat bottom of the silo. The discharge process is recorded by a
hight speed camera. The videos were analyzed using image processing techniques allowing
a precise determination of the instantaneous position �r and velocity �v of each particle. A
more detailed description of the experimental setup and image analysis techniques can be
found in [14] and [9], respectively.

2.2 Numerical Simulations

In order to model a 3D silo, we have developed a hybrid CPU-GPU Discrete Element
[15, 16] algorithm for a system of spheres with rp = 1/64 m. Initially, we generate a
granular column from a granular gas of particles, where particles are located at random
positions, within a cylindrical container with flat bottom. Then they settle under the effect
of gravity and are allowed to leave the system through a circular outlet, which is located
at the bottom of the column. A snapshot of the silo of the numerical three-dimensional
silo is shown in Fig. 1.

In the model, each particle (i = 1...N) has three translational degrees of freedom and a
quaternion formalism has been implemented for describing the 3D angular rotations. The
interaction between particle i and particle j is decomposed in normal and tangential di-
rections (see Fig.1). In our approach, the normal interaction is defined by a linear contact
and dissipation is introduced using a velocity dependent viscous damping. Our model
has been used to simulate spheres with density ρ = 7520 kg/m3, restitution coefficient
en = 0.5 and ∆t = 10−6 s. More details about the numerical implementation can be
found in [16, 17].

2.3 Coarse Graining Formulation

In order to explore the macromechanical properties of particle flow, a novel coarse
graining methodology is used [11, 12]. In both cases, simulations and experiments, we
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have accessed to the position and velocities of the particles. According to [11, 12], the
microscopic mass density of a granular flow, ρ(�r), at time t is defined as,

ρ (�r) =
N
∑

i=1

miφ (�r − �ri(t)) (1)

where the sum runs over all the particles within the system and φ (�r − �ri(t)) is an inte-
grable coarse-graining function. In the same way, the coarse grained momentum density
field P (�r, t) reads as,

P (�r, t) =

N
∑

i=1

mi�viφ (�r − �ri(t)) (2)

where the �vi represent the velocity of particle i. The macroscopic velocity field �V (�r, t) is
then obtained as the ratio of momentum and density fields,

V (�r, t) = P (�r, t)/ρ(�r, t). (3)

To calculate the macroscopic stress tensor we have used a mathematically consistent
definition of the mean stress tensor σαβ [11]. Following this approach the total stress field
σαβ can be decomposed by kinetic stress field σk

αβ and contact stress field σc
αβ. The

mean contact stress tensor reads as,

σc
αβ = −1

2

N
∑

i=1

Nci
∑

j=1

fijαrijβ

∫ 1

0

φ(�r − �ri + s�rij)ds (4)

where the sum runs over all the contacting particles i, j, whose center of mass are at �ri
and �rj, respectively. Moreover, �fij accounts for the force exerted by particle j on particle
i and �rij ≡ �ri − �rj.

The kinetic stress field reads as,

σk
αβ = −

N
∑

i

miv
′

iαv
′

iβφ (�r − �ri(t)) , (5)

where �v′i accounts for the velocity fluctuation of particle i, respect to the mean field.

�v′i(t, �r) = �vi(t)− �V (�r, t). (6)

Based on the previous theoretical framework, we have implemented a post-processing
tool, which has allowed us to examine the 2D and 3D kinetic and dynamic fields obtained
experimentally and numerically.
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Figure 2: The time evolution of the flow rates in terms of the characteristic time td =
√

2rp
g

are shown

for different outlet sizes. In a) experimental and b) simulations

3 RESULTS AND DISCUSSION

Our aim is to determine the micro-mechanical properties of a granular flow during a
silo discharge. Thus, the complexity of the particle flow was explored experimentally and
numerically in a region close to the silo aperture. Additionally, the simulations give the
micromechanical details and the contact forces of all particles within the silo.

First, we have determined the particle’ flow rate through the surface of the outlet.
Experimental and numerical outcomes are exposed for several apertures in Fig.2.3a and
Fig.2.3b, respectively. The time evolution of the flow rate dN/dt in particles per second

is shown in terms of the characteristic time scale td =
√

2rp
g

,i.e. the time elapse in which

a particle moves its own diameter. In all cases, it is noticeable the system quickly evolves
to a steady state characterized by a constant flow rate. This fact allows us to use the
coarse-graining methodology, describing the micro-mechanical details of the particle flow
[11, 12, 18].

As a second step, we have thoroughly examined the outcomes of the coarse-graining
methodology described in Sec. 2.3. To this end, two different coarse-graining functions
φ(�r) have been studied. It is know that φ(�r) should be an integrable normalized function.
First, we have implemented the method with a Heaviside function

φh(�r) =
1

Ωd(ω)
H(ω − |�r|). (7)

and as second choice, we have used a Gaussian

φg(�r) =
1

(
√
2πw)3

exp

(

− |�r|2
2w2

)

. (8)
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Figure 3: Mass density profiles of a granular flow, ρ(�r), using Gaussian (left) and (right) Heaviside
coarse-graining functions. The measurement has been obtained at different heights from the base of the
silo. The orifice size of the silo is R = 16d and the coarse graining scale w = d.

In Fig.3, the mass density profiles ρ(�r) of a 3D numerical granular flow are shown.
Outcomes obtained using two different integrable functions Heaviside Eq. 7 and Gaussian
Eq. 8 are illustrated . Note, the measures were done at different heights respect to the
silo outlet, covering from z = 2d to z = 32d where d is the particle diameter. As can be
observed, both coarse-graining functions give equivalent outcomes for the density profiles.
However, the Gaussian function produces smoother results for the same coarse graining
scale w = d. In the following, the data processing has been done using the Gaussian
function φ(�r) = φg(�r). At the end of this work, we will clarify the role of the coarse-
graining scale w.

Given the positions and velocities of all particles, one can fully describe the steady
state kinetic fields in the whole silo. In Fig. 4 we plot the average velocity fields obtained
numerically in a 3D silo with an orifice of R = 16d. The profiles of the radial velocity vr(r)
at different heights are shown in Fig. 4(right). As it can be expected, the radial absolute
velocity field diminishes at the center of the silo, that is clearly explained by symmetry
reasons. Note, that the magnitude vr(r) is comparable with the magnitude of vz(r) and
the location of the maximum absolute radial velocity | vr(r) | only slightly changes with
the height from the orifice. Additionally, in Fig. 4(left), the vertical velocity fields vz(r)
are also illustrated. The Gaussian shape of the velocity profiles vz(r) is in excellent
agreement with those experimentally obtained [19]. Moreover, in the past it has been
proven that this behavior is compatible with the solution of a diffusive-like equation [20]

Additional macromechanical details of the particle flow can be extracted studying the
changes in the stress field. In Fig.5a, we plot the spatial behavior of the contact pressure,
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Figure 4: On the left, radial component of the velocity at different heights from the orifice (velocity
measured in units of diameter of particle per second). On the right, vertical component of the velocity
at different heights from the orifice. The measurements have been done for the simulation of a 3D silo
with an orifice size of R = 16d (heights of z = 4d, z = 8d, z = 16d and z = 20d, respectively). In all
cases, the units are diameter/sec.

which was estimated using trace and the deviatoric of the contact stress field σc. Note
that the contact pressure results in a monotonous decreasing function that correlates with
the increase of the dilatancy, which achieves a maximum at the outlet [9, 17]. Here, it is
important to remark that the values of contact pressure were nearly independent on the
outlet size [18]. Accordingly, a region resembling a free-fall arch (that should scale with
R) can not be inferred from these findings.

Complementary, we have anylized the strength of the kinetic pressure field calculating
the trace and the deviatoric of the mean kinetic stress tensor σk, defined by Eq.(5) (see
Fig. 5b). Although the strength of the kinetic pressure results several order of magni-
tude smaller than the contact pressure, its spatial pattern reveled novel micro-mechanical
details. The kinetic pressure field evidenced conclusively the existence of a well defined
transition region. Both, experimental and numerical outcomes suggest that above a well
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Figure 5: Trace and deviator of the a) contact stress mean field tensor σc
αβ and b) kinetic stress mean

field tensor, σk
αβ .

defined surface the particles follow the global macroscopic laminar flow [18]. The latter
correlates with the diminishing of the kinetic pressure with the height and indicates the
mass transport within the silo is mainly advective. However, as the particles get closer to
the orifice their individual movement decorrelates respect to the global flow and, accord-
ingly, the kinetic pressure shows a maximum value at the transition surface zc(r). After
crossing, the particles start to fall by gravity and the contacting stress gradient slowly
diminishes as one gets closer to the outlet.

In Fig.6, we present the universal surface zc/R that characterizes the transition region.
We illustrate outcomes corresponding to two different orifices obtained experimentally.
Remarkably, we have found the transition surface is independent of the outlet size. For
testing the consistency of our results, the post-processed experimental data was analyzed
using different coarse-graining scales. As it noticeable the findings are totally compati-
ble within our experimental errors. The data collapse clearly proves the existence of a
parabolic transition arch. For comparison, two truncate paraboloids α (1− (r/R)2) have
been included in the graph.

Astonishing, all the curves zc/R obtained for different outlet sizes can be collapsed [18].
Moreover, we have found excellent qualitative agreement in wide domain of apertures for
both experimental and numerical outcomes [18]. Hence, we have identified a region where
the collisional part of the stress tensor starts to diminish and the dynamics becomes
gradually dominated by the external field. The scaling of this surface with the size of the
aperture links the observed dynamics in the discharge process with the stress fields inside
the silo. This picture contrasts with the traditional view of the existence of a free fall

arch region where the velocity is negligible and grains start a free fall.
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for a scholarship.
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[20] R. M. Nedderman and U. Tüzün, Powder Technol. 22, 243 (1979)

10




