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Abstract—The advent of autonomous power-limited systems
poses a new challenge for system verification. Powerful processors
needed to enable autonomous operation, are typically power-
hungry, jeopardizing battery duration. Therefore, guaranteeing
a given battery duration requires worst-case energy consump-
tion (WCEC) estimation for tasks running on those systems.
Unfortunately, processor energy and power can suffer significant
variation across different units due to process variation (PV),
i.e. variability in the electrical properties of transistors and
wires due to imperfect manufacturing, which challenges existing
WCEC estimation methods for applications. In this paper, we
propose a statistical modeling approach to capture PV impact on
applications energy and a methodology to compute their WCEC
capturing PV, as required to deploy portable critical devices.

I. INTRODUCTION

Autonomous systems, including drones and electric cars,
become ubiquitous nowadays. These battery-powered systems
perform critical real-time tasks, and hence, must undergo a
rigorous Validation & Verification (V&V) process ensuring
that their functional and non-functional requirements are met.
In particular, energy consumption must be proven to be within
specific bounds to guarantee safe operation and specific battery
duration thresholds. Hence, the V&V process of autonomous
systems needs solutions for reliable and tight worst-case energy
consumption (WCEC) estimation.

Autonomous systems build upon complex software de-
manding high computing performance to execute timely. This
is achieved by deploying complex hardware, e.g. based on
multicores and accelerators, implemented with high integration
level. Therefore, WCEC estimation must (1) scale to arbitrarily
complex software-hardware systems and (2) account for the
impact of process variation (PV) intrinsic to highly-integrated
process technologies. PV is an inherent consequence of the
processor’s manufacturing process and makes transistors and
wires that were initially designed to be identical, end up having
significantly different electrical properties. As a result, energy
consumption varies significantly across different instances of
the same processor. This challenges WCEC estimation since
the WCEC estimates obtained for a given chip unit are not
valid for other chip units. Performing V&V activities on every
deployed chip poses a serious issue for autonomous systems
industry, because the number of units can be in the range of
millions and the costs are simply unaffordable (e.g. due to
the low cost of drones and high chip count in cars). Although
industry carries out several tests to all deployed units, the full
V&V process followed for certification is not repeated for each
system unit. In this context, our contributions are:

À We analyze the difficulties in deriving tight WCEC estimates
in the presence of PV, which emanate from the fact that PV
causes energy consumption variations and, therefore, different
WCEC across different nominally-identical processor units.
Á From the previous analysis, we capture the impact of PV on
energy and power with a statistical-based modeling approach.
We show how the input parameters of the model can be directly
provided by processor manufacturers and by using current
processors’ performance monitoring counters (PMCs).
Â Building on the previous model, we provide a well-
defined methodology for WCEC estimation. Our methodology,
performs the entire estimation on a single processor unit, while
delivering WCEC estimates that hold for all processor units
and simplify the V&V process of autonomous systems.

We evaluate our proposed model and methodology with
a variety of experiments with state-of-the-art power and PV
simulators. We apply our methodology to an embedded proces-
sor design resembling the LEON4 processor for autonomous
space systems. Results collected on representative benchmarks
and two space case studies show that the proposed statistical
approaches are a natural fit for WCEC estimation.

II. BACKGROUND ON POWER ESTIMATION

Power consumption has two main contributors: static and
dynamic power. Static power (Psta) corresponds to transistor
leakage currents and depends on the exact physical properties
of the manufactured circuits and thus, is affected by process
variations. Dynamic power (Pdyn) is a consequence of the
charging and discharging process of transistor’s gate capaci-
tance, which depends on the exact electrical features of the
processor unit that, in the presence of PV, can only be known
once the device is manufactured.

Model-based power estimation. The confidence on the
energy estimates derived with static (analytical) models lies
on the ability of deriving accurate power models, which in
turn, builds on a combination of the information in technology
libraries, usually simulated using standard electronic simulation
tools. Model-based techniques are slow in general, limiting
the window of analysis to a few thousands of cycles at
most. For instance, SPICE models to characterize a memory
macrocell with synthetic stimuli last several days of simulation
since a single CMOS transistor model may account for more
than 40 parameters [25]. Even with highly detailed models
of the hardware components, the fact that in reality these
components suffer from manufacturing deviations (PV) makes
it infeasible to estimate power at the desired accuracy if PV is
not conveniently accounted for.
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Fig. 1. Per-FUB power-variability for the CPU- and mem-intensive benchmarks

Measurement-based power estimation builds on the avail-
ability of power monitoring units. Several studies show how
to achieve fine-grain power measurement of processors using
existing activity power monitors [3]. Measurements are very
useful for power verification since they provide real power
consumption numbers of the processor. However, power
measurements are only possible once the processor (or a test-
chip) is manufactured, and hence they are used in the post-
silicon validation step.

Deriving tight WCEC estimates builds on the ability to
define representative scenarios. In general, maximum peak
power numbers can be obtained empirically using kernels
that generate the a-priori most stressing situations (power
viruses [8]). However, this process does not allow estimating
tightly the maximum energy a specific task can consume.

III. PV-RELATED POWER VARIABILITY

PV makes power consumption vary across different processor
units (instances) and Functional Unit Blocks (FUBs), i.e.
instances of functional units, on the same processor unit.

Within-chip PV, while less severe than chip-to-chip PV,
makes the effects of manufacturing deviations be different
across FUBs. Specific per-FUB PV creates an indirect depen-
dence between the specific software executed and the observed
PV related power variability. This dependence poses new
difficulties in the WCEC estimation process since accounting
for the impact of PV requires knowing the exact contribution
to the power variability of each FUB. To illustrate this, we
have performed an experiment using 2 synthetic software
applications: a memory-intensive application and a compute-
intensive one. The main features and FUBs of our reference
processor include: instruction fetch unit (IFU), load-store Unit
(LSU), register file (RegF), integer ALU (IALU), floating-point
unit (FPU), result broadcast bus (RBB), L2, NoC, and memory
controller (MC).

Intuitively, power variability caused by PV is not the same for
all programs. For instance, the PV power variability in the FPU
has no impact on the memory-intensive benchmark: Figure 1
shows the PV-related power consumption variability for each
FUB obtained with McPAT-PVT [22]. Probability distribution
functions are normalized to make their y-axis values match
the same range for visualization reasons. We observe that

TABLE I
SUMMARY OF MODELING DISTRIBUTIONS FOR PV FEATURES

Processor feature Distribution
PV-induced power variability Gaussian [23]
Manufacturing deviations Gaussian fields [21]
Power and Delay due to Gate Length PV Non-Gaussian [26]
Dynamic power per FUB Multi-modal [9]

for the compute-intensive benchmark the FUBs with greater
contribution to the power variability are the IFU and the FPU,
whereas for the memory benchmark the FUBs with higher
power variation are the IFU and LSU.

PV causes different impact on different FUBs, which makes
the power probability distribution function vary across FUBs.
For instance, some FUBs can follow a Gaussian distribution
while others chi-square, log-logistic, or Weibull distribu-
tions [23][21][9][26]. The combination of these distributions
can result in an arbitrary statistical distribution for the overall
processor.

IV. PV-AWARE ENERGY MODELING

Next we propose a methodology for capturing the impact
of PV through measurements. We describe our methodology,
its parameters, and its fitness for certification. The proposed
methodology builds on current industrial practice in CPU power
modeling [10], which facilitates its potential adoption.

A. Random Nature of PV

PV impacts the physical characteristics of devices (transistors
and wires), altering their nominal operation characteristics,
including power and delay. PV is usually decomposed into
systematic PV and random PV. The systematic component
of PV is usually subject to strong spatial correlation across
neighbor devices (transistors and wires). However, it has been
shown that systematic PV impact on the different physical
parameters can be accounted as an additive factor together
with random PV, thus simplifying model complexity [21]. The
random part of PV is a consequence of different uncontrolled
phenomena like random dopant fluctuations. Random PV is
modeled with probabilistic methods [11] that are applied either
across processor units or across devices (transistors and wires).
The particular implementation details of the circuits cause the
impact of PV in energy distribution to vary across FUBs.

Due to the diverse nature of PV, the treatment of PV requires
developing specific models to accurately capture its random
impact. We list some specific methods to capture the PV impact
of different parameters in Table I. It follows that the actual
random distribution of PV may have any shape. Hence, our
proposal needs to build on a non-parametric statistical method.
Extreme value theory (EVT) [12] is such a method, since it
is agnostic to the particular distribution of the phenomena
whose extreme behavior is to be predicted. EVT may incur
some pessimism due to the fact that it fits a tail model to the
maxima, as if all the population behaves as the maxima. EVT
inflates the expected probability of maxima in its application
process, thus bringing some limited, but not null, pessimism
as shown in Section VI. Yet, EVT ends up being a reliable
and tight choice as we show in this paper.



B. The Model
Let Esta and Edyn be the static and dynamic energy

consumption of a given task, respectively. Both can be further
broken down into the individual contributions across FUBs
(i.e. fetch unit, L2 cache, etc). Then, the static energy per
FUB is roughly proportional to execution time and depends
on the specific activity generated by each task in the case of
dynamic energy. Commonly, models describe dynamic energy
consumption per access type (e.g. read, write) per FUB and
static energy consumption per time unit (static power) and
FUB. Hence, energy consumption of a task can be described as
shown in Equation 1, where τa is the task under analysis and
ta its execution time. Our processor has F FUBs, and each
individual FUB, f , has fy access types. Hence, P sta

f stands
for the static power of the FUB f and Edyn

f,y for the dynamic
energy per access type y of FUB f . Finally, Accf,ya stands for
the number of accesses of type y on FUB f performed by τa.

Ea = Esta
a + Edyn

a =∑
f∈F

(
P sta
f · ta

)
+
∑
f∈F

∑
y∈fy

(
Edyn

f,y ·Acc
f,y
a

)
(1)

PV alters energy consumption, introducing random variations
into P sta

f and Edyn
f,y . In particular, and based on the fact that

dynamic and static energy consumption have a different nature,
each component suffers a different relative dynamic and static
energy variation. Still, all access types to a given component
are subject to the same relative amount of variation.

Task energy accounting for PV can be derived as shown in
Equation 2, where pvstaf and pvdynf stand for the correction
factors to account for the specific PV affecting static and
dynamic energy of each FUB respectively.

Epva =
∑
f∈F

(
P sta
f · pvstaf · ta

)
+

∑
f∈F

∑
y∈fy

(
Edyn

f,y · pv
dyn
f ·Accf,ya

)
(2)

The impact of PV on energy for each FUB depends on
the different devices used for their implementation. Therefore,
the impact of PV on energy can be modeled by means of
specific probabilistic distributions across FUBs, where each
FUB is subject to a relative power variation. This variation,
though different across FUBs, is regarded as homogeneous
for any given FUB, so it impacts all accesses to the FUB
homogeneously and does not change over time since it relates
to the particular effects of PV on the chip manufactured.

Hence, pvstaf and pvdynf can be modeled according to the
underlying distribution. For instance, if such distribution is
Gaussian, they would be modeled as follows:

pvstaf ∼ N
(

1,
(
σsta
f

)2)
(3) pvdynf ∼ N

(
1,
(
σdyn
f

)2)
(4)

where σsta
f and σdyn

f are the relative standard deviation for
static and dynamic power (and energy) consumption of FUB f
(e.g. 0.03 if the standard deviation for power variation is 3%).

Table II summarizes the inputs needed in our model and how
they can be derived. Processor related parameters estimates
are needed during the design and fabrication process to verify

TABLE II
PARAMETERS NEEDED FOR APPLYING THE METHODOLOGY

Processor
P sta
f Static power per FUB
Edyn

f,y Dynamic energy per FUB per access type
related σsta

f Std deviat. for static energy per FUB
σdyn
f Std deviat. for dynamic energy per FUB

Software ta Task’s execution time
related Accf,ya Per-type access count per component

that power dissipation will not exceed the Thermal Design
Point (TDP) before manufacturing the chip. Hence, chip
vendors model those parameters from information obtained
in process technology tests. Once power is verified to stay
below affordable levels with the electrical power model, chips
are fabricated and tested. Typically, chip manufacturers use
in-field data to feed models back and correct discrepancies.
Hence, chip vendors can estimate with high precision the power
parameters needed in Equations 2, 3, and 4. Software related
parameters can be measured during software tests by means
of the performance monitoring unit (PMU).

V. WCEC ESTIMATION METHODOLOGY

WCEC estimation is useful to provide guarantees about
software being compliant with strict energy consumption
constraints for autonomous systems. Our WCEC estimation
approach consists of two main steps: (1) collecting representa-
tive energy measurements of the task and (2) estimating the
energy budget needed so that it cannot be exceeded with a
relevant probability.

Measurement collection (sampling). Once the task has
been executed and software-related parameters obtained through
the PMU, our method produces energy measurements account-
ing for the impact of PV. To that end, we perform a Monte-
Carlo experiment where pvstaf and pvdynf in Equation 2 are
sampled from their reference distributions. Each observation
of the Monte-Carlo experiment, i.e., o ∈ O, delivers specific
pvstaf,o and pvdynf,o values for each FUB f ∈ F . These are used
to produce a specific PV corrected energy sample (Epvoa) from
the energy sample (Ea) of the task under analysis τa.

WCEC distribution. We regard EVT [12] as a convenient
method for WCEC estimation as it is used to predict extreme
(rare) events. EVT models the largest (tail) values measured
from the phenomenon under analysis. EVT has already been
used successfully in the context of WCET estimation, resulting
in probabilistic WCET estimates [2][14][19].

In applying EVT to WCEC estimation we resort to the
EVT application process in [2], which carries the following
application requirements: it applies to independent data and
processes and when an exponential tail is guaranteed to be a
reliable upper-bound. Energy measurements in the sample cor-
respond to independent and identically distributed observations
of the same phenomenon (random variable) by construction
of the process studied (energy consumption variation due to
PV) and measurement protocol used (not carrying any state
across measurements). From this observation, it follows that
no dependence exists across input measurements, which we
empirically assess with proper independence and identical
distribution (i.i.d.) tests [4], which are a prerequisite for the
reliable application of EVT.



The minimum sample size for a reliable application of EVT
is only dictated by EVT itself. We start generating 1,000 energy
measurements as initial sample size and increase the sample
size whenever the method requests it. In this work in particular
some of the experiments required 2,000 measurements, hence
we used 2,000 measurements for the sake of homogeneity.

Accounting for multiple program inputs. Our method-
ology covers a specific set of input values for the program.
However, test campaigns need to account for different operation
conditions, which are modelled using multiple input sets for
the program under analysis. The way to proceed resembles the
approach followed for WCET (timing) estimation [16]. Hence,
the methodology above needs to be applied independently for
each set of input values, and EVT used in each individual
set of measurements for a given input set. Then, the different
WCEC distributions obtained need to be combined using the
max envelope operator which, for each exceedance probability
selects the highest energy value across all WCEC distributions,
thus delivering the tightest WCEC distribution that upperbounds
all those for each individual input set.
A. WCEC Interpretation and Safety Standards

Once we obtain the WCEC distribution, we can select as
WCEC estimate the value whose exceedance probability is
sufficiently low. Since the only source of variation is PV and
it changes across chip units, a given exceedance probability
relates to the probability of having a processor unit that may
exceed such energy value systematically due to its specific PV.

In general, safety goals and safety requirements are defined
with the aim of mitigating – rather than eliminating – the risk
that hardware or software misbehavior causes a system failure.
For instance in automotive, ISO-26262 stipulates the maximum
allowable likelihood of occurrence of random hardware faults.
In doing so, ISO-26262 acknowledges that safety techniques
cannot achieve full coverage, allowing different diagnostic
coverage. Overall, the interpretation of the energy exceedance
probability matches that of defective hardware components (e.g.
the probability of having a defective processor or a defective
wheel). For instance, we can set the exceedance probability
down to 10−9, thus meaning that at most 1 every 109 processors
may lead to exceeding the WCEC estimate for this task.

VI. EXPERIMENTAL RESULTS

Architectural, power, and PV models. While processor
vendors have the data needed by our model, this information is
usually not released for commercial processors for autonomous
systems. Hence, we build on SoCLib [15], a cycle accurate
simulator, to model the timing behavior of a LEON4 processor
We integrated McPAT-PVT [22] power estimation methodology
into SoCLib to collect energy and power measurements. McPAT-
PVT is an extended version of the McPAT tool [13] that allows
accounting for the impact of PV in power measurements. For
our experiments, we model a process technology of 22 nm, an
operating voltage of 0.9 V, and an operating frequency of 700
MHz. Note that, the methodology is architecture and benchmark
agnostic and our set-up just a representative example of the
real-time domain.

Benchmarks and case studies. We evaluate two space case
studies: DEBIE and OBDP. The former, manages an instrument

TABLE III
MAX OBSERVED ENERGY, AND PWCEC (IN µJ) WITH PV

bench MAX ∆EPV pWCEC ∆EV T
pWCEC pWCEC ∆Gauss

pWCEC

EVT(10−7) Gauss
cac 202.7 92.9 % 239.4 18.1 % 249.2 23.0 %
ma 8259.2 92.7 % 9716.5 17.6 % 10031.2 21.5 %
ai 2070.1 95.0 % 2520.3 21.7 % 2486.2 20.1 %
pn 51.4 98.2 % 58.2 13.2 % 62.2 21.1 %
rs 15.0 104.7 % 18.4 22.8 % 17.9 19.8 %
pu 54.4 101.2 % 67.0 23.1 % 65.4 20.2 %
aif 39.4 94.3 % 53.3 35.4 % 48.7 23.8 %
aii 1914.5 94.7 % 2051.9 7.2 % 2301.6 20.2 %
a2 25.6 98.8 % 33.1 29.3 % 31.5 23.1 %
id 348.2 92.2 % 437.9 25.7 % 429.0 23.2 %
ii 38.3 103.5 % 49.5 29.2 % 46.5 21.5 %
ba 59.7 106.5 % 64.5 8.0 % 70.7 18.4 %
bi 196.8 98.2 % 231.1 17.4 % 236.1 20.0 %
tb 17.1 100.9 % 21.6 26.3 % 20.8 21.5 %
can 36.6 99.8 % 46.8 27.8 % 44.3 21.1 %
tt 37.6 103.7 % 46.2 22.9 % 44.4 18.4 %
obd 143817.0 94.6 % 205486.1 42.9 % 176506.2 22.7 %
deb 228420.7 100.2 % 263980.0 15.6 % 269121.3 17.8 %

Fig. 2. pWCEC distribution in µJoules and empirical CCDF of the PV-adjusted
energy measurement

for small space debris and micrometeoroids observation, that
is part of the PROBA-1 satellite. The latter is part of the near
infrared (NIR) HAWAII-2RG [1] detector, used in some real
missions to process raw frames provided by the detector. We
also use EEMBC automotive benchmarks [20] as reference
benchmark suite, since they represent a number of critical real-
time functions of some automotive systems. In particular we use
cacheb, a2time, aifftr, aifirf, aiifft, basefp,
bitmnp, canrdr, idctrn, iirflt, matrix, pntrch,
puwmod, rspeed, tblook, ttsprk.

Statistical Characterization of PV. We randomly generate
a population of processor instances, Np, whose FUB’s PV
behaves according to the specific distributions that would be pro-
vided by the processor manufacturer for real processors. In our
setup used for illustration and evaluation purposes, we obtained
those values from the McPAT-PVT power estimation tool due to
the lack of this information from a real processor. However, in a
practical case, such information would be provided by the chip
vendor. Note, however, that our methodology holds regardless
of the actual values used and hence, the representativeness of
McPAT-PVT values, although it has already been discussed in
[22], has no impact on the method proposed in this paper. This
approach delivers Np independent energy measurements per
benchmark that resemble the chip-to-chip energy variations.
Unless stated otherwise, we focus on Gaussian distributions in
the remaining of the paper.

PV-generated power variability. In our setup, from the
execution of each benchmark in the simulator we obtain the
number of accesses to each FUB (Accf,ua ) and the task’s
execution time (ta), which we fed into the power model of
McPAT-PVT. McPAT-PVT provides static power per FUB



and cycle (P sta
f ) and dynamic energy per access type per

component (Edyn
f,y ). Building on these parameters, we obtain the

power dissipation per component as well as a power variation
σ per component due to PV, as presented in Section IV.

The first two columns (after the benchmark names) in
Table III show the absolute maximum energy consumption
per benchmark, and the magnitude of the impact of variations,
labelled as ∆EPV . The latter is computed as max−avg

avg . We
observe increments as high as 117% (the maximum is ≈2.2x
the average), while average variations are of 100% (≈2x). This
means that the maximum value observed is, on average, 2x
times the average, thus further emphasizing the importance of
accounting for PV in WCEC estimation.

Probabilistic WCEC Estimates. Starting from a set of
measurements o ∈ O of the energy for the modelled processor
unit under analysis , Eo

a, we use specific statistical correction
factors pvstaf,o and pvdynf,o values for each FUB f to produce a PV
corrected energy sample (Epvoa). This sample is passed as an
input to EVT to generate a probabilistic WCEC (pWCEC) esti-
mation that describes the probability of an arbitrary processor
unit to exceed an energy consumption value.

Figure 2 shows 3 plots – 2 ESA applications, and the
EEMBC with the highest pWCEC over-estimation (aif) –
with their corresponding pWCEC distributions. Red dashed
lines correspond to the empirical complementary cumulative
distribution functions (empirical CCDF) of the measurements,
whereas straight black lines stand for the pWCEC distributions.

To provide evidence on the confidence in deriving WCEC
estimates, we collected 107 measurements for each benchmark.
Note that performing such an experiment is not needed
(and it is infeasible in the general case). We use it for
comparison purposes and hence, pWCEC is estimated with
2,000 measurements. For the lowest probability for which we
measured the actual distribution, 10−7, pWCEC curves are
22.6% higher than observations on average.

We observe that pWCEC distributions upper-bound observed
energy consumption for all benchmarks, and gently follow the
observed distributions. We also observe that the slope (the
vertical variation) of the observed distribution is also gentle.
This shows that the impact of PV is high and emphasizes the
importance of properly accounting for PV in the process of
WCEC estimation, as PV can produce large energy variations.

VII. RELATED WORK
Powerful tools exist to measure power at electrical level (e.g.

SPICE [6]). Other tools estimate power at higher abstraction
levels by modeling resistances and capacitances of memory
structures (e.g. CACTI [24]). McPAT [13] and WATTCH [5],
among other tools, estimate the power of full processors at
system level building upon CACTI. Some authors analyze
the dependence between WCEC and input values of different
components [18]. Others [17] assess the validity of current
WCEC methods, showing that WCEC cannot be estimated
with models that work at an instruction level. The use of EVT
has also been proposed to estimate circuits peak power [7].
However, unlike our approach where the exercised workload
is known, this approach relies on the ability of the user to
define representative testing scenarios and thus, faces the same
problems of state-of-the-art power verification approaches.

VIII. CONCLUSIONS

We analyzed PV impact on the processor energy consump-
tion, and presented a methodology based on statistical-modeling
that deals with PV during the WCEC estimation process of
autonomous systems. This enables the estimation of WCEC
by accounting for the probabilistic nature of PV and using
probabilistic approaches for WCEC estimation, such as EVT.
Our results show that the impact on energy of PV is large, and
can be appropriately bounded with probabilistic means.

ACKNOWLEDGMENTS

This work has been partially supported by the Spanish
Ministry of Economy and Competitiveness (MINECO) under
grant TIN2015-65316-P and the European Research Council
(ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No. 772773).
MINECO partially supported Jaume Abella under Ramon y
Cajal fellowship RYC-2013-14717.

REFERENCES

[1] A. Jung et al. The H2RG infrared detector: introduction and results of
data processing on different platforms. In ESA, 2012.

[2] J. Abella et al. Measurement-based worst-case execution time estimation
using the coefficient of variation. New York, NY, USA, 2017. ACM.

[3] R. Bertran et al. Voltage noise in multi-core processors: Empirical
characterization and optimization opportunities. In MICRO, 2014.

[4] G. Box et al. Distribution of residual autocorrelations in autoregressive-
integrated moving average time series models. In JASA, 1970.

[5] D. Brooks et al. Wattch: a framework for architectural-level power
analysis and optimizations. In ISCA, 2000.

[6] EECS Department of the University of California at Berkeley. Spice.
2001.

[7] N. Evmorfopoulos et al. A monte carlo approach for maximum power
estimation based on extreme value theory. TCAD, 2002.

[8] K. Ganesan et al. System-level max power (sympo) - a systematic
approach for escalating system-level power consumption using synthetic
benchmarks. In PACT, 2010.

[9] H. Chen et al. Statistical power analysis for high-performance processors.
JOLPE, 2009.

[10] Intel. Measuring processor power: TDP vs. ACP. 2011.
[11] K.Bowman et al. Impact of die-to-die and within-die parameter

fluctuations on the maximum clock frequency distribution for gigascale
integration. IEEE, 2002.

[12] S. Kotz et al. Extreme value distributions: theory and applications.
World Scientific, 2000.

[13] S. Li et al. McPAT: An Integrated Power, Area, and Timing Modeling
Framework for Multicore and Manycore Architectures. In MICRO, 2009.

[14] G. Lima et al. Extreme value theory for estimating task execution time
bounds: A careful look. In ECRTS, 2016.

[15] LiP6. SoCLib, 2011. http://www.soclib.fr/trac/dev.
[16] S. Milutinovic et al. On uses of extreme value theory fit for industrial-

quality WCET analysis. In SIES, 2017.
[17] J. Morse et al. On the infeasibility of analysing worst-case dynamic

energy. In arXiv preprint arXiv:1603.02580, 2016.
[18] J. Pallister et al. Data dependent energy modeling for worst case energy

consumption analysis. In arXiv preprint arXiv:1505.03374, 2015.
[19] K. Palma et al. On using GEV or gumbel models when applying evt for

probabilistic wcet estimation. In RTSS, 2017.
[20] J. Poovey. Characterization of the EEMBC Benchmark Suite. NCSU,

2007.
[21] S. Saragi et al. VARIUS: A model of process variation and resulting

timing errors for microarchitects. T-SM, 2008.
[22] A. Tang et al. McPAT-PVT: Delay and Power Modeling Framework for

FinFET Processor Architectures Under PVT Variations. In TVLSI, 2014.
[23] R. Teodorescu et al. Variation-aware application scheduling and power

management for chip multiprocessors. In ISCA, 2008.
[24] S. Thoziyoor et al. Cacti 5.1 - HP labs technical report. 2008.
[25] X. Xi et al. BSIM4.3.0 MOSFET Model - User’s Manual. 01 2003.
[26] Y. Zhan et al. Correlation-aware statistical timing analysis with non-

gaussian delay distributions. In DAC, 2005.


