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Abstract—Autonomous driving (AD) builds upon high-
performance computing platforms including (1) general purpose
CPUs as well as (2) specific accelerators, being GPUs one of
the main representatives. Microcontrollers have reached ASIL-D
compliance by implementing diverse redundancy with lockstep
execution. However, ASIL-D compliant GPUs rely on either fully
redundant lockstep GPUs (i.e. 2 GPUs), which doubles hardware
costs, or fully redundant systems with a GPU and another
accelerator, which virtually doubles design and validation/ver-
ification (V&V) costs. In this paper we analyze the degree of
diversity achieved when implementing redundancy on a single
GPU, showing that diverse redundancy is not achieved in many
cases, and propose software strategies that guarantee achieving
diverse redundancy for any kernel on systems using commercial
off-the-shelf (COTS) GPUs, thus showing how to achieve ASIL-D
compliance on a single COTS GPU in controlled scenarios.

I. INTRODUCTION

Autonomous driving (AD) systems require integrating a
number of high-performance computing (HPC) platforms in
the car. While performance provided by many existing High-
Performance Computing (HPC) platforms suffices to meet the
computing requirements of AD systems – as confirmed by
existing AD systems demonstrations [1] – it is unclear how
these computing systems may meet the highest Automotive
Safety Integrity Levels (ASIL) as dictated by ISO26262 [2].
Thorough validation and verification (V&V) processes must be
followed to retrieve evidence on whether safety requirements
are effectively met under the most stringent, yet plausible,
circumstances [3]. The level of assurance needed depends on
the actual ASIL of the target application.

Automotive systems usually have a safe state upon a failure,
either by stopping the car or by resorting to the driver to man-
age unexpected situations. This allows computation-related
components not to be certified at the highest ASIL (ASIL-
D) since ASIL-D monitoring facilities are in place to detect
failures timely and transfer the system to a safe state within
the fault-tolerant time interval (FTTI), thus being failures in
the computation components an availability concern, but not
a safety concern. Hence, specific ASIL-D cores are used to
run monitoring software, which requires specific strategies
for lockstep execution to provide redundancy and diversity,
thus avoiding common cause failures (CCFs), whereas other
components intended to deliver higher performance (e.g. ac-
celerators) require cheaper safety measures (if any). However,
safe states may not exist any longer in the context of AD since
it may be unacceptable to transfer the control to a hypothetic
driver. Instead, the system must keep operating correctly upon
a failure, which makes that computing components in ASIL-
C/D functionalities must also reach ASIL-C/D.

Processor manufacturers have already released a number
of products targeting AD systems, such as the RENESAS
R-Car H3 [4] and the NVIDIA Xavier [5] platforms among

others. Those platforms include a number of general purpose
cores (e.g. ARM-based) paired with some accelerators, being
the GPU a key actor to process huge amounts of sensed
data in AD. So far, those platforms have been regarded as
ASIL-B compliant and have been claimed to enable ASIL-
C/D, but based on details available, this is achievable, for
instance, by using redundant functionalities (e.g. based on
GPUs and Deep Learning accelerators) [6]. Unfortunately,
fully-redundant functionalities double or triple the design and
V&V costs, which is highly undesirable. Hence, it becomes
critically important enabling some form of lockstep in the GPU
part of AD platforms to reach ASIL-C/D to avoid using fully-
redundant functionalities. Moreover, such lockstep operation
must occur on-chip, as in the case of general-purpose cores
(e.g. Infineon AURIX processors [7]), for efficiency and cost
reasons, since setting up two GPUs increases hardware costs
and reliability concerns.

In this paper we tackle this challenge by enabling diverse
redundancy on a single GPU with software-only means. In
particular, the contributions of this work are as follows:

• A thorough analysis of the features of GPUs, with focus
on an NVIDIA representative, and how they enable or
limit diverse redundancy.

• An analysis of some compute intensive applications on
the GPU identifying different kernel categories depending
on whether software redundancy achieves also diversity
and, if not, the cause impeding to achieve diversity.

• Software strategies to achieve diversity on those ker-
nels failing to achieve it, so that diverse redundancy is
achieved for any kernel size.

Overall, our approach enables ASIL-C/D compliance on
GPUs without needing fully-redundant systems, thus contain-
ing design and V&V costs.

II. BACKGROUND ON ISO26262

Safety-related automotive functionalities are classified into
different ASIL based on their functional safety risks, from
A to D, where ASIL-D corresponds to the highest safety
risk. The higher the ASIL of an item, the more stringent
the safety measures needed to avoid hazardous situations. For
instance, error detection (e.g. lockstep execution) and recovery
(e.g. reset and restart) features may be required to preserve
safety of an ASIL-D microcontroller. Apart from detecting and
correcting faults, safety measures may also need to adhere to a
specific Fault-tolerant time interval (FTTI), which determines
the maximum time allowed since the fault occurs until either
the affected functionality delivers a correct output or a safe
state is reached. Exceeding the FTTI may lead to a hazardous
situation.
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Fig. 1: Examples of ASIL decomposition.

A. ASIL decomposition

A given ASIL can be reached by using redundant items with
lower ASIL if they are proven to be sufficiently independent.
For instance, ASIL-C can be reached with ASIL-B and ASIL-
A items (see examples in Figure 1). Such a solution is
often used because lower ASIL items are cheaper to design
and verify than higher ASIL ones. For instance, an ASIL-D
CPU can be implemented with two ASIL-B processor cores
operating in lockstep. To allow this decomposition, redundant
cores must be proven to have independent behavior, i.e. a
fault must not affect all cores in the same way. In particular,
evidence is needed proving that a single fault (e.g. a voltage
droop) does not lead redundant cores to the same failure,
which might remain undetected. Hence, solutions such as
staggered execution across cores are used to ensure that, upon
a fault, cores perform distinct activities simultaneously and
hence, faults cannot lead to identical errors in both cores, so
that any error will be timely detected.

While redundancy with sufficient independence is needed
in general to reach a higher ASIL by means of ASIL de-
composition, it is explicitly requested in ISO26262 to reach
ASIL-C/D.

Finally, ASIL decomposition is also used for cost reduc-
tion trading off availability. In particular, a component of a
given ASIL (e.g. ASIL D) can be decomposed into multiple
components, being at least one of them ASIL-D and the
rest, lower ASIL or QM (Quality Managed), as shown in
Figure 1. In this case, the ASIL-D component must be able to
preserve safety despite failures of the other components. For
instance, the computational part may be deemed as QM (no
safety requirements), and monitoring capabilities as ASIL-D,
being the ASIL-D component in charge of detecting failures
in the QM component and transferring the system to a safe
state within the FTTI. However, in the context of AD, a
number of ASIL-D systems related to steering and braking
become fail-operational so that a safe state does not exist
and hence, their computational parts must remain as ASIL-
D since correct operation is mandatory. In this case, ASIL
decomposition can only be used to combine lower ASIL
components providing sufficiently independent redundancy.For
instance, if we combined an ASIL-D low-performance CPU
with a QM GPU, being the latter in charge of running ASIL-D
processes (e.g. object detection), on a GPU failure, the ASIL-
D CPU would be able to detect it, but will not be able to
guarantee safety due to the lack of a safe state (i.e. the car
must keep taking driving decisions). Hence, the GPU must
reach ASIL-D on its own.

B. Redundancy, Diversity and Sphere of Replication

Software faults and some hardware faults are regarded as
systematic, and it must be proven that their failure risk is
residual. However, random hardware faults cannot be avoided,
and means are required to prevent them from causing hazards.
Those faults can be caused by, for example, voltage droops,
crosstalk, process variations, etc. In order to reach a given

ASIL, it must be proven with appropriate diagnostic coverage
and failure rate targets that any such single fault cannot lead
the system to a hazard.

Diverse redundancy is used to avoid hazards due to a single
random hardware fault (i.e. no CCF exists), since it allows
proving that the effects of a single fault – if any – are different
in the redundant copies so that the fault can be effectively and
timely detected. For instance, Dual Core LockStep (DCLS)
has been deemed as an appropriate solution in ISO26262.
However, some random hardware faults (e.g. a voltage droop)
could affect simultaneously and identically both cores. Hence,
DCLS is often implemented with staggered execution so that
relevant transient CCFs are avoided by construction (or their
residual risk can be deemed as sufficiently low).

ISO26262 provides no explicit recommendations on how
to assess whether diversity has been achieved to a sufficient
degree, and quantifying to what extent two different imple-
mentations performing the same functionality are diverse is
an open challenge [8]. Hence, diversity is typically assessed
qualitatively by safety experts.

While different means exist to achieve redundancy and
diversity, using diverse software or hardware designs may
double design and verification costs due to having to build
two different components for the same functionality. Hence,
although DCLS execution also halves performance efficiency
(the corresponding functionality is executed twice), it allows
reusing the same design (e.g. the same core design) for
the primary and the redundant paths (e.g. with staggered
execution), thus containing design and verification costs.

Redundancy can be applied at different granularities accord-
ing to the sphere of replication (SoR). Choosing the right
SoR depends on several tradeoffs like area overheads, re-
design costs, fault detection time, and overall system costs.
In the context of DCLS, the SoR is placed at the level of the
CPU (core), as done for the AURIX processors. This requires
including two replicas of the same core and compare their
memory transactions, which requires roughly duplicating com-
putational resources in the chip and being able to ensure that
replicas can provide independent behavior. On the other hand,
storage (memories, caches) and communication means (buses,
crossbars) do not need to be fully replicated and can build upon
Error Correction Codes (ECC) and Cyclic Redundancy Check
(CRC) as a form of lightweight redundancy with diversity.

III. COST-EFFECTIVE ASIL-D CAPABLE HPC
AUTOMOTIVE PLATFORMS

HPC ASIL-D capable platforms typically combine a low-
performance microcontroller amenable for the automotive do-
main (i.e. ASIL-D capable) and an HPC accelerator deliv-
ering high computation throughput, but whose adherence to
ISO26262 requirements is unknown, so its appropriate use
for ASIL-C/D systems needs to be investigated. Without loss
of generality, we consider an NVIDIA GPU accelerator, thus
analogous to those in NVIDIA Drive and Xavier families for
the automotive domain. However, the findings in this paper
can easily be extrapolated to other products.

In this platform, the sequential (control) code is executed in
the microcontroller in lockstep mode to achieve diverse redun-
dancy, as needed for ASIL-D compliance. Instead, complex
and parallel algorithms required for the continuous rendering
of the surrounding environment (e.g. object detection and
tracking) among other functionalities are offloaded to the



Fig. 2: Proposed Computing Platform architecture

GPU accelerator. Figure 2 shows a schematic of the proposed
hardware platform.

In the rest of this paper, we investigate how to enable
diverse redundancy on the GPU, analogous to that already
had in the automotive microcontroller. In particular, we ex-
ploit the characteristics of kernel offloading and execution in
accelerators (with special focus on a GPU) to reach the level
of redundancy needed and appropriate diversity support for
ASIL-D compliance.

Our proposal incurs lower design and V&V costs than
having heterogeneous accelerators that would also require spe-
cific algorithm implementations, as has been recently proposed
by NVIDIA [6]. Using multiple heterogeneous components
(either at hardware or software level) requires designing,
verifying and testing all those components, thus incurring high
costs, which is against commercial interests. The other side
of the coin is that achieving independent redundant execution
with homogeneous components (i.e. the same software running
in two identical hardware components or twice in the same
hardware component) requires proving that the implemented
diversity techniques suffice to protect the system against the
relevant CCFs.

IV. ENABLING ASIL-D GPU OPERATION

In this section we describe how to protect end-to-end the
computations offloaded by the microcontroller onto the GPU.
Our aim is to show that ASIL-B COTS GPUs can be used
to reach ASIL-D without the need of using fully redundant
systems. Due to space constraints, we assess dual modular
redundancy; however, analogous reasoning can be applied in
the case of triple modular redundancy.

A. Offloading Process
The computation offloading process from the microcon-

troller to the GPU has 3 steps: a) preparation of the offloading
(¬ memory allocation and code/data transfer ­ in Figure 4),
b) kernel launching (®) and c) retrieval of the generated results
(¯ and ° memory deallocation). The preparation step requires
sending the code that has to be executed in the GPU and
transferring the data from the microcontroller memory to the
GPU memory. Although typically the microcontroller and the
GPU share the same physical memory, each device retains
its own mappings and separate address spaces. Hence, even
though the data are not physically transferred, there is still
a certain amount of bookkeeping and some data transferring
required, e.g. due to cache flushing for consistency reasons,
which makes this process not immediate.

The offloading process goes beyond the SoR of the micro-
controller (e.g. the DCLS) and involves the memory and/or

DMA controllers (see Figure 2). Memory data and on-chip
communication during the execution phase occur on the same
resources as those used by the ASIL-D microcontroller and
hence, are protected by specific ECCs, as indicated before.
Thus, data movements during the preparation of the offloading
process, kernel launching and the retrieval are already pro-
tected by appropriate safety measures to comply with ASIL-
D requirements. However, the redundant execution elements
in the GPU used during the computation phase remain unpro-
tected. To protect kernel execution, safety measures analogous
to those in the microcontroller must be implemented during
GPU operation, which can be achieved as follows (see Fig-
ure 3):

1) Two independent redundant kernels are set up.
2) Input data is duplicated.
3) Computation occurs in the GPU avoiding CCFs.
4) Output data from both redundant kernels is transferred

back to the microcontroller for reliable comparison.
5) Comparison is performed in the ASIL-D compliant

microcontroller (e.g. DCLS cores).
The steps above are performed on ECC/CRC protected com-

munication means or on ASIL-D compliant microcontrollers,
except GPU computation, which we analyze in the rest of
this section. Note also that read-only input data could be
used without replication. However, this would impose data
protection in the GPU (e.g. ECC), which may not exist. Thus,
for the sake of simplicity, we stick to fully redundant input
data for the redundant kernels and leave considerations on
non-replicated input data for future work.

B. Exploiting GPUs Intrinsic Redundancy
GPUs include abundant replicated resources such as, for

instance, the elementary processing units – CUDA cores
according to NVIDIA’s terminology – that are in charge of
the execution part of the GPU pipeline. As an example,
the NVIDIA-Pascal GPU inside the Jetson TX2 (NVIDIA
Driving platform) includes 256 CUDA cores divided into two
Streaming Multiprocessors (SMs). SMs are also sub-divided
into four components, each containing a single warp scheduler
that is responsible for feeding 32 CUDA cores, 8 load/store
units and 8 special function units. Thus, redundancy is intrinsic
to the GPU architecture at multiple granularities: CUDA cores,
subdivisions inside an SM, and SMs.

Several independent jobs can be executed concurrently in
a GPU by using NVIDIA CUDA streams. A CUDA stream
is a FIFO queue whose operations execute serially in the
GPU. However, operations from kernels in different streams
can overlap their executions. Kernels will execute, therefore,
concurrently as long as there are enough resources for all
of them. This, ultimately, enables redundant simultaneous
execution, which helps achieving diversity since it may enforce
the use of separate sets of resources by the two kernels, which
diminishes the risk of CCFs by construction.

C. Achieving Diverse Redundancy
In the context of COTS GPUs, diverse (independent) redun-

dancy can be achieved for two or more kernels if the following
requirements are met:
Req1: Replicated computations do not use the same functional
unit block (FUB) to execute the same code on the same data.
Req2: Functionally identical computation units (e.g. CUDA
cores) produce different error manifestations in the presence
of a single fault affecting several of those computation units.



/ / I n p u t and Outpu t d a t a a l l o c a t i o n on GPU
f l o a t *d A , *d C ;

cudaMal loc ( d A , N* s i z e o f ( f l o a t ) ) ; cudaMal loc ( d C , N* s i z e o f
( f l o a t ) ) ;

c u d a S t r e a m t S t r eams [ 1 ] ; / / S t ream c r e a t i o n
c u d a S t r e a m C r e a t e (& St reams [ 0 ] ) ;

/ / I n p u t d a t a t r a n s f e r t o t h e GPU
cudaMemcpy ( d A , A, N* s i z e o f ( f l o a t ) ,

cudaMemcpyHostToDevice ) ;

/ / K e r ne l l a u n c h
k e r n e l<<<NumBlocks , ThreadsPe rBlock , 0 , s t r e a m [0]>>>(d A ,

d C , N) ;

/ / R e s u l t s t r a n s f e r t o t h e CPU
cudaMemcpy (C , d C , N* s i z e o f ( f l o a t ) ,

cudaMemcpyDeviceToHost ) ;

/ / No compar i son

(a) Original CUDA code

/ / I n p u t and Outpu t d a t a a l l o c a t i o n on GPU
f l o a t *d A , * d A redundant ;
f l o a t *d C , * d C redundan t ;

cudaMal loc ( d A , N* s i z e o f ( f l o a t ) ) ; cudaMal loc (
d A redundant , N* s i z e o f ( f l o a t ) ) ;

cudaMal loc ( d C , N* s i z e o f ( f l o a t ) ) ; cudaMal loc (
d C redundant , N* s i z e o f ( f l o a t ) ) ;

c u d a S t r e a m t S t r eams [ 2 ] ; / / S t ream c r e a t i o n
c u d a S t r e a m C r e a t e (& St reams [ 0 ] ) ; c u d a S t r e a m C r e a t e (& St reams

[ 1 ] ) ;

/ / I n p u t and R e p l i c a t e d i n p u t d a t a t r a n s f e r t o t h e GPU
cudaMemcpy ( d A , A, N* s i z e o f ( f l o a t ) ,

cudaMemcpyHostToDevice ) ;
cudaMemcpy ( d A redundant , A, N* s i z e o f ( f l o a t ) ,

cudaMemcpyHostToDevice ) ;

/ / Redundant K e r ne l l a u n c h
k e r n e l<<<NumBlocks , ThreadsPe rBlock , 0 , s t r e a m [0]>>>(d A ,

d C ) ;
k e r n e l<<<NumBlocks , ThreadsPe rBlock , 0 , s t r e a m [1]>>>(

d A redundant , d C redundan t ) ;

/ / R e s u l t s and Redundant r e s u l t t r a n s f e r t o t h e CPU
cudaMemcpy (C , d C , N* s i z e o f ( f l o a t ) ,

cudaMemcpyDeviceToHost ) ;
cudaMemcpy ( C redundant , d C redundant , N* s i z e o f ( f l o a t ) ,

cudaMemcpyDeviceToHost ) ;

/ / Comparison of C and C redundan t

(b) Applying Redundant Kernel Execution

Fig. 3: Original and modified CUDA code
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Fig. 4: Common CUDA Workflow

Req3: Unique resources (e.g. non-replicated buses or inter-
faces) implement intrinsic diverse redundancy (e.g. ECCs).

Req1 guarantees that permanent faults escaping testing or
due to aging cannot cause the same error in the replicated
executions. Achieving Req1 requires having a kernel schedul-
ing policy controlling which FUBs (SMs in NVIDIA GPUs)
each kernel will use. This is currently done by the kernel
scheduler whose policy is often unknown since some GPU
vendors, such as NVIDIA, do not release this information [9].
In our evaluation, we show empirically that Req1 is naturally
achieved for those kernels that can run simultaneously. In
general, we classify kernels into three categories regarding
their potential concurrency:

• Short kernels: Kernels that are too small to run concur-
rently so that, by the time the second kernel is issued,
the first one has already completed its execution.

• Heavy kernels: Kernels that use more than half of the
shared resources of the GPU. Thus, two heavy kernels
cannot fit at the same time on the GPU.

• Friendly kernels: Kernels that can run concurrently.

Note that kernel classification is platform and data-size
dependent, so, for instance, a heavy kernel on a particular
GPU could be a friendly kernel on another GPU with more
resources. Instead, most automotive applications have a fixed
data size since the input data comes always from the same
sensor (e.g. images from a camera). This reduces the data size
variability for most of the kernels. Short and heavy kernels
challenge the achievement of diversity.

Solution for short kernels. Short kernels may be executed
directly in the ASIL-D (lockstep) microcontroller, since they
do not demand huge computation power. Executing them in
the ASIL-D microcontroller guarantees Req1, although it must
be assessed whether their likely larger execution time in the
microcontroller still adheres to the corresponding FTTI. In
general, this is the case since short kernels need to take at
most few µs of execution in the GPU not to overlap, and even
if they run 100x slower in the CPU, they will stay typically
below 1ms only, which is a very low latency for functions
executing typically every few tens of ms at most.

Solution for heavy kernels. Redundant copies for heavy
kernels are executed sequentially due to lack of resources to
run them concurrently, potentially using the same resources for
the same computations of both copies, thus defeating diversity.
However, heavy kernels run a number of threads in parallel.
By reorganizing computations, some parallel threads can be
serialized (e.g. splitting the kernel into multiple kernels or
simply rearranging threads) so that the amount of resources
is reduced sufficiently to allow two redundant copies to run
concurrently, thus becoming the heavy kernel one or several
friendly kernels. Such a solution is always feasible due to the
nature of thread execution on GPUs because coherence across
parallel threads is not controlled, so any sequential order of
the operations across threads is semantically correct. Hence, by



Fig. 5: Staggered kernel execution of a vector addition, ob-
tained using NVIDIA’s Visual Profiler

serializing parallel threads in any way semantics are preserved.
Solution for friendly kernels. Finally, in the case of friendly

kernels, we can use CUDA Streams and launch each replica
with a different CUDA Stream. Since SMs can only execute
threads from the same CUDA Stream, the two redundant
executions will use different SMs (FUB), thus guaranteeing
Req1.

Req2 guarantees that a single fault does not lead to a CCF
despite redundant computations occur on different resources.
Hence, Req2 imposes the use of some additional form of
diversity. For instance, a usual technique to achieve diversity
in functionally identical computational units is using staggered
lockstep execution, so that redundant computations, apart from
being performed on physically different resources, are also
performed at different times. Interestingly, staggered execu-
tion, which we discuss in detail in the next subsection, can be
implicitly achieved with COTS GPUs, and this provides them
with protection against some of the most relevant sources of
CCFs such as high-voltage pulses or voltage droops. Providing
independent redundancy beyond the aforementioned CCFs
could also be achieved using some of the techniques (e.g.
layout diversity) already employed to achieve diversity in front
of the most relevant CCFs in ASIL-D lockstep processors [7],
[10]. However, this is not yet provided in COTS GPUs.

Req3 guarantees that diverse redundancy is achieved in
unique resources. In general, those resources include intercon-
nects and interfaces, where data and control signals transmitted
can be properly protected with ECCs or CRCs. In the case
of storage, either it is also ECC-protected or contents are
stored redundantly. Finally, combinational logic is usually hard
to protect with any form of ECC. For instance, this is the
case of the thread scheduler. However, by making redundant
kernels run simultaneously in different SMs, each kernel uses
different thread schedulers. Moreover, the SM scheduler, used
to send thread blocks to SMs, also operates with some degree
of diversity since the same thread block in redundant copies
is dispatched to different SMs. However, diverse redundancy
requires physical replication in general. As detailed before,
this is practically in place for computation resources in a
GPU, but other components, such as the kernel scheduler,
may lack such support. In general, whether unique resources
adhere to specific ASIL requirements cannot be assessed by
industrial users due to the lack of detailed documentation,
and observability or controllability means. Thus, whether the
failure probability of those components can be deemed as
residual risk cannot be assessed directly with software only
approaches. Still, our work shows that most GPU resources can
be leveraged by software means to ensure diverse redundancy.

D. Implementing Staggered Kernel Execution
As explained, all kernels have been made friendly or made

to run in ASIL-D CPUs (short kernels). However, we must
guarantee staggered execution for friendly kernels. The kernel
invocation performs the offloading of the application. Data
sets transfer, explicitly initiated by the programmer, must be

performed for both kernels before starting any of them to
minimize the risk of having short kernels. In other words, the
slack between the initiation of both kernels is kept as low as
possible. Kernels have small constant and implicit parameters
for each kernel launch. Those are set by a configuration
call, which performs the arguments passing, followed by a
CUDALaunch operation performed by the CUDA Runtime
for each kernel called. The CUDA Runtime performs all
those operations serially, since it is executed on the CPU,
thus serializing the launch of the two kernels with some
delay (slack time) between the two concurrent executions, as
illustrated in Figure 5. The figure, generated with the NVIDIA
Visual Profiler, shows the serialization of the CUDA calls
(top yellow bar) and how the kernel copies start with some
slack in-between (bottom purple and light red bars). Therefore,
staggered execution start is guaranteed by construction. Note
that, although identical kernels are expected to progress almost
identically – thus preserving the staggering, this cannot be
guaranteed in general due to the lack of controllability had in
COTS GPUs. We leave for future work the analysis of how
staggering is preserved during the execution. In the rest of
the paper, we assume that such staggering had at the start is
preserved during the rest of the execution.

V. EXPERIMENTAL VALIDATION

A. Experimental Setup
We use a Pascal-based NVIDIA COTS GPU, the same GPU

micro-architecture used in the NVIDIA PX2 AutoChauffer
product, found in modern high-end cars, and only available to
affiliated NVIDIA automotive partners. We use an NVIDIA
GeForce GTX 1050 Ti as an example of a COTS GPU. It
contains 768 Pascal based CUDA cores grouped into 6 SMs
and has a 4GB GDDR5 memory. Note, however, that our
analysis holds directly for other NVIDIA GPUs, and can be
extrapolated to GPUs from other vendors.

For benchmarking, due to the lack of AD or ADAS (ad-
vanced driver-assistance systems) benchmarks, we selected
a widely used benchmark suite in the GPGPU domain, the
Rodinia Benchmark Suite [11], [12]1. For a more compre-
hensive evaluation, we are currently in the process of gen-
erating benchmarks for the GPU parts of the Apollo AD
framework [14], which is a cumbersome process due to the
high degree of coupling of the framework and the difficulties
to replace closed-source libraries by open-source ones.

In our evaluation, we implemented kernel redundancy man-
ually. Part of our future work is creating an automatic frame-
work to generate diverse redundant kernels.

B. Slack Measurements Results
We measured the slack time of redundant kernel executions

and analyzed its relationship with the offloading preparation
of the CUDA Runtime calls, discussed in Section IV-D,
namely the configuration call, the arguments setup and the
CUDALaunch. We execute 100 times an application from Ro-
dinia Benchmark Suite (myocyte) modified to use redundant
kernel execution and collect measurements using the NVIDIA
Profiler.

1The EEMBC (Embedded Microprocessor Benchmark Consortium) re-
leased just some months ago ADASMark [13], an ADAS Benchmark suite
that would be highly relevant for our study. While we have performed all the
necessary actions since its release to get access to it, access has not been yet
granted, so we could not evaluate it. However, some information about the
pipeline is publicly available and some Rodinia benchmarks have similarities
with ADASMark (e.g. those for image processing and pattern recognition).



(a) Short kernel, no overlapping at all (gaussian application).

(b) Heavy kernel, small overlapping (NN application).

(c) Friendly kernel, large overlapping (Myocyte application).

Fig. 6: Timelines of redundant executions extracted using the
NVIDIA Visual Profiler.
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Fig. 7: Redundant (rdn) execution results for the different
classes of kernels.

We observed that the slack time highly correlates with the
accumulated cost of the offloading preparation elements. For
this reason, there is always a minimum slack time of a few
microseconds, which has been measured in our case to 9µs,
and could reach up to 18. NVIDIA acknowledged this effect
as launch performance or kernel latency [15].

C. Applying Staggered Kernel Execution

In order to assess the effectiveness of GPUs to meet Req1,
we have selected one representative case for each type of be-
havior explained: one short, one heavy and one friendly kernel.
We can observe the concurrency of the three applications in
the snapshots of the timelines in Figure 6 extracted from the
NVIDIA Visual Profiler, which is the kind of tool an industrial
user would have at hand. In particular, the timeline of the
execution of each redundant kernel is shown in the two bottom
bars of each plot, one in purple and another in light red. Note
that time scales change across plots, being around 2.2µs for
the short kernel, 0.1 ms for the heavy one and 2,200ms for
the friendly one. As shown, each copy of the short kernel,
which should be better executed in the CPU, runs for less than
5µs. Hence, although its execution may take much longer on a
CPU (typically around 10x-100x), such time is still very low in
absolute terms (lower than typical response times of physical
actuators) and, additionally, using the CPU would avoid the
overhead caused by GPU configuration and data transfer.

This effect is better shown with the detailed results pre-
sented in Figure 7, grouped per kernel classes, where “1”
corresponds to the normalized execution time of the original
benchmark without redundancy.

Short Kernels: In the leftmost part, we have the back-
prop benchmark, which belongs to the short kernel class.
We observe that the redundant kernel execution takes longer
than twice of the non-redundant version, since there is no
overlapping between the replicas. Note also that, due to the
small duration of the kernel, the relative overhead of the
GPU redundancy is very large due to redundant transfers and
comparison. However, when we execute the CPU version of
the kernel on the CPU, it takes 7 times longer, which is
affordable for this type of tiny kernels. This is the only short
kernel that comes along a CPU version of the code. For gaus-
sian, execution time does not double w.r.t. normal execution
because kernel duration includes kernel launching (CPU) and
kernel execution (GPU), and these steps overlap across kernels
(first kernel execution with second kernel launch) as shown in
Figure 6a.

Friendly Kernels: These kernels overlap significantly.
Thus, their redundant kernel execution is smaller than twice
the original version. In general, the overheads of the redundant
execution are small. High overheads for some kernels relate
mostly to large data transfers and result comparison. Hence,
while not explored in this work, the cost of those operations
can be mitigated by issuing redundant comparisons onto the
GPU, so that results do not need to be transferred back for
one of the kernels, and comparison is parallelized.

Heavy Kernels: For these kernels, the cost of their re-
dundant kernel execution is above 2x due to the inability to
achieve overlapping. As explained before, these kernels can
be modified to become friendly. In particular, for bfs and nn
we increased the amount of work performed by each thread
and changed the kernel grid organization of threads in blocks.
This change allows kernels to overlap, thus becoming friendly.
However, it comes at the expense of longer execution times.
In particular, bfs and nn execution times grow by around
2.5x w.r.t. their heavy redundant version. Note that in the
case of nn, its redundant version takes much longer than its
non-redundant version (32.5x) due to (1) the doubled data
transfer, which moves from fitting in L2 caches to exceeding
cache space, and due to the effect of then comparing this
large set of data. Part of our future work consists on studying
more flexible redundant and friendly kernel generation with
lower slowdowns. For instance, part of the overheads may be
mitigated by performing result comparison in the GPU, as
discussed for friendly kernels.

D. Result Comparison

In order to guarantee that kernel executions on the GPU are
correct, a comparison must be done between the two results in
the lockstep CPU. Such comparison could be parallelized and
performed (redundantly) on the GPU. However, our results
show that comparison time is, below 1% for most of the
kernels, thus not making worth the effort of porting the
comparison to the GPU for most of them.

Differently to CPUs, which typically implement the IEEE
754 floating point (FP) standard, GPUs may not fully adhere
to specific standards, or may simply schedule work so that
FP operations of the redundant kernels occur in different
order [16]. This may lead to different rounding choices which,
ultimately, cause fault-free results be (slightly) different in



practice. Hence, when implementing the result comparison in
the CPU, we had to provide some flexibility to tolerate minor
deviations.

VI. RELATED WORK

ASIL-D capable processors like the Infineon AURIX [7]
and the ST Microelectronics SPC56XL70 [10] deployed in
current cars implement DCLS. DCLS may not suffice for
some fail-operational ASIL-D systems with tight FTTI [17].
To improve the reaction time in case of an error detection,
several works have proposed mechanisms to achieve timely
error detection [18] and recovery by means of low-latency
checkpointing and roll-back recovery [19]. However, compu-
tational power requirements of AD systems greatly exceed the
ones of current ASIL-D applications and thus, more powerful
– yet safe – computing platforms are needed to realize AD
systems [20].

NVIDIA has recently announced the first functionally safe
autonomous driving platform [6], which includes support
to achieve fail-operational capabilities by allowing complex
software algorithms run on the CPU, the CUDA GPU, a deep-
learning accelerator and a programmable vision accelerator to
enhance redundancy and diversity. According to the announce-
ment, ASIL-D rating is achieved by an NVIDIA DRIVE
Xavier GPU and an ASIL-D rated safety microcontroller
with appropriate safety logic. However, to the best of our
knowledge, ASIL-D compliance for functionalities requiring
high performance can only be achieved with diverse software
implementations, which ultimately increase drastically design
and V&V costs.

Some authors evaluate the use of GPU, FPGA and ASIC de-
signs for AD applications, showing that each design provides a
different performance and power tradeoff, so the best hardware
platform may change across different AD applications [21].
However, GPUs have already been suited to automotive sys-
tems, which provides GPUs with an advantage w.r.t. other
hardware platforms [1], [4].

While redundancy is a well known reliability measure to
combat random (independent) faults, such as radiation, either
by means of time-redundancy [22], [23], space-redundancy
[24], [25] or both indistinctly [26], none of those works
considers the case of CCFs, which may lead the system to
failure despite redundancy. Differently to those works, in this
paper we consider specifically CCFs, which are the faults of
relevance for the highest ASIL in automotive, and show how
CCFs can be avoided – and to what extent – by enforcing
diverse redundancy.

VII. CONCLUSIONS

In this work we analyze how COTS GPUs can be used
to provide diverse redundancy by means of qualitative and
quantitative assessments, reaching the following findings:
¬ GPUs offer the degree of physical redundancy needed to
enable some form of loose lockstep execution. In particular,
plenty of redundant computation units are in place, and storage
and communication means could be protected analogously to
those in the microcontroller (e.g. with ECC and CRC).
­ Some kernels can be executed redundantly and simultane-
ously in a staggered manner in a GPU, thus achieving diverse
redundancy naturally, whereas others cannot be executed si-
multaneously due to being either too short or too resource
demanding.

® For those kernels failing to achieve diversity, appropriate
software transformations allow them achieve it, either by
reducing the amount of resources used simultaneously, or by
executing them on the microcontroller if they are too short.
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