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Abstract. The hierarchy of numerical schemes is developed for the solution of the
boundary integral equation which arises in the vortex particles method. Two differ-
ent approaches are considered and numerical schemes are presented, which provide 1-st
and 2-nd order of accuracy with respect to two different norms. The developed finite
element-type schemes have nearly the same computational cost as the simplest scheme
with piecewise-constant solution. The necessary formulae are presented for linear system
coefficients for the considered schemes.

1 Introduction

One of the key questions which arise in implementations of meshless Lagrangian vortex
particle methods for viscous incompressible flow simulation around the airfoil, is the
choice of numerical approach for no-slip (or no-through in case of inviscid flow simulation)
boundary condition satisfaction on the surface line of the airfoil.

The airfoil in the flow in the most general case can be replaced with vortex sheets (at-
tached and free) and attached source sheet. In coupled hydroelastic problems intensities
of all these sheets are unknown; if law of motion for the airfoil is known, or it is rigid and
immovable, only free vortex sheet intensity is unknown.

The boundary condition according to one of two possible approaches (which will be
described later) to its satisfaction can be written down in form of integral equation of the
first or the second kind [1]. The kernels of such equations have very different properties.
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In the present paper the surface line of the airfoil is assumed to be approximated by
polygon, which consists of rectilinear segments (usually called “panels”). The unknown
vortex sheet intensity is approximated by piecewise-constant or piecewise-linear distribu-
tion. In the last case, it can be continuous or discontinuous, or continuous everywhere
except some specified points that correspond to sharp edges and angle points of the airfoil.
Some numerical schemes are considered and estimations for their accuracy and computa-
tional cost are obtained.

2 Brief description of vortex methods

Vortex particles methods of flow simulation around airfoils are based on considering
the vorticity as a primary computed variable and on the fundamental principle, which was
discovered by prof. N.E. Zhukovsky in 1906: an immovable airfoil influences the inviscid
incompressible flow just as attached vortex sheet placed on its surface line [2]. So it is
possible to replace airfoil with vortex sheet and the main problem is how to determine
the intensity of this vortex sheet. For some airfoil shapes (elliptical and Zhukovsky wing
airfoils) it can be found by using conformal mappings technique [3], we use such solutions
as benchmarks for verification of the numerical schemes being developed.

When solving the Navier-Stokes equations the classical Zhukovsky approach remains
correct in principle. However, it is required to account for the transfer of vorticity from the
body surface to the flow which lead the vortex sheet to be free instead of being attached,
Therefore, according to Lighthill’s approach [4] the phenomena can be modelled as a result
of vorticity generation on the surface line K due to vorticity flux action within the small
time period. Then the vorticity, which is concentrated in this vortex sheet with intensity
γ(r), r ∈ K, becomes part of the vortex wake and moves in the flow according to the
governing equations.

When we consider a hydroelastic problems, — where either the law of motion is known
a priori or coupled hydroelastic problem is being solved — in addition to free vortex
sheet also attached vortex sheet (γatt) and attached source sheet (qatt) should be intro-
duced [5, 6]. In the simplest case, when velocity of the surface line points V K(r) can
be expressed explicitly as the function that depends on point position and time, the
intensities of the attached sheets can be found explicitly:

γatt(r) = V K(r) · τ (r), qatt(r) = V K(r) · n(r), r ∈ K,

where τ (r) and n(r) are tangent and normal unit vectors to the airfoil surface line,
respectively, n(r)× τ (r) = k (k is unit vector orthogonal to the flow plane).

Attached and free vortex sheet intensity vectors defined as

γatt(ξ) = γatt(ξ)k, γ(ξ) = γ(ξ)k,

are then introduced to reconstruct the velocity field in flow domain S, by employing the
generalized Biot — Savart law [7]:
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V (r) = V ∞ +
1

2π

∫

S

Ω(ξ)× (r − ξ)

|r − ξ|2
dSξ +

1

2π

∮

K

γ(ξ)× (r − ξ)

|r − ξ|2
dlξ +

+
1

2π

∮

K

γatt(ξ)× (r − ξ)

|r − ξ|2
dlξ +

1

2π

∮

K

qatt(ξ)(r − ξ)

|r − ξ|2
dlξ, (1)

where Ω(ξ) = Ω(ξ)k = curlV is vorticity distribution in the flow domain.
The crucial point is that the computation of the limit value of flow velocity on the

surface line of the airfoil directly by using (1) is impossible. In fact, velocity field V (r)
has jump discontinuity there [8]: vortex and source sheets from mathematical point of
view are the curves at which tangent and normal components of velocity have jumps,
respectively. In order to take them into account, the corresponding non-integral terms
should be considered as elaboration of expression (1):

V −(r) = V (r)− γ(r)− γatt(r)

2
τ (r) +

qatt(r)

2
n(r), r ∈ K. (2)

3 Integral equation for vortex sheet intensity distribution

Attached vortex sheet intensity distribution can be found from boundary integral equa-
tion which follows from boundary condition satisfaction on the surface line:

V −(r) = V K(r), r ∈ K. (3)

It can be shown [1], that there are two equivalent sufficient conditions for equality (3)
satisfaction:

• equality between normal components of velocities (N -scheme):

V −(r) · n(r) = V K(r) · n(r), r ∈ K, (4)

• equality between tangent components of velocities (T -scheme):

V −(r) · τ (r) = V K(r) · τ (r), r ∈ K. (5)

It is required to notice at this point that the resulting integral equations with respect
to unknown γ(r), which can be derived from (4) and (5) after substituting there (2), have
quite different properties.

Usually in vortex methods boundary condition is being written down in form (4) and
it leads to the 1-st kind singular integral equation:

1

2π

∮

K

Qn(r, ξ)γ(ξ) dlξ = fn(r), r ∈ K, (6)

where the kernel Qn(r, ξ) is unbounded (singular) of Hilbert-type

Qn(r, ξ) =
k × (r − ξ)

|r − ξ|2
· n(r) = −τ (r) · (r − ξ)

|r − ξ|2
.
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The right-hand side fn(r) depends on the airfoil shape, incident flow velocity, airfoil
surface line velocity and vorticity distribution in the flow domain:

fn(r) = −1

2
qatt(r)− n(r) ·

(
V ∞ − V K(r) +

1

2π

∫

S

Ω(ξ)× (r − ξ)

|r − ξ|2
dSξ +

+
1

2π

∮

K

γatt(ξ)× (r − ξ)

|r − ξ|2
dlξ +

1

2π

∮

K

qatt(ξ)(r − ξ)

|r − ξ|2
dlξ

)
. (7)

For approximate numerical solution of equation (6) specific quadrature formulae are re-
quired, it can be discrete vortices-type quadrature formulae [8], which permits to pick out
the principal value in Cauchy sense of the corresponding singular integral.

When the numerical scheme of vortex method is being constructed on the basis of
“tangent” approach (5), the resulting integral equation is the 2-nd kind Fredholm-type:

1

2π

∮

K

Qτ (r, ξ)γ(ξ) dlξ −
1

2
γ(r) = fτ (r), r ∈ K, (8)

where the kernel

Qτ (r, ξ) =
k × (r − ξ)

|r − ξ|2
· τ (r) = n(r) · (r − ξ)

|r − ξ|2

is uniformly bounded function when K is smooth curve and unbounded only in proximity
to angle points or sharp edges of non-smooth airfoil surface line K, and right-hand side
has the following form:

fτ (r) = −1

2
γatt(r)− τ (r) ·

(
V ∞ − V K(r) +

1

2π

∫

S

Ω(ξ)× (r − ξ)

|r − ξ|2
dSξ +

+
1

2π

∮

K

γatt(ξ)× (r − ξ)

|r − ξ|2
dlξ +

1

2π

∮

K

qatt(ξ)(r − ξ)

|r − ξ|2
dlξ

)
. (9)

It should be noted, that both equations (6) and (8) have infinite set of solutions. In
order to select the unique solution, the additional equation should be added, which usually
is being written down in the following form:

∮

K

γ(ξ)dlξ = Γ. (10)

The assignment of the value of the integral from solution over the surface line is the most
common type for the additional condition for unsteady problems.
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4 Problem discretization

When solving problem using vortex methods, vortex wake (vorticity distribution in the
flow) is normally being simulated by discrete vortex-type singularities — vortex elements:

Ω(r, t) =
n∑

w=1

Γwδ̃(r − rw). (11)

Here n is number or vortex elements; Γw and rw are intensities and positions of vortex
elements, respectively; δ̃ is two-dimensional Dirac delta function. Taking into account
(11), we obtain for the integral term, which corresponds to the integral over the flow
domain in right-hand side functions (7) and (9)

1

2π

∫

S

Ω(ξ)× (r − ξ)

|r − ξ|2
dSξ =

n∑
w=1

Γw

2π

k × (r − rw)

|r − rw|2
.

The simplest way to discretize the surface line K of the airfoil is to approximate it
by polygon consisting of N rectilinear legs Ki, which we call hereinafter “panels”. Let’s
denote lengthes of the panels as Li, their normal and tangent unit vectors as ni and τ i,
respectively, i = 1, . . . , N . Now all the integrals over the surface line in the previous
formulae can be written down as sums of integrals over the panels.

5 Numerical schemes for vortex sheet intensity computation

For numerical solution of the integral equations (6) or (8) with additional condition
(10) the ideas of the Galerkin method are used. According to this approach vortex sheet
intensity distribution can be expressed as linear combination of some basis functions φk(r)
with unknown coefficients, which can be found from the orthogonality condition of the
residual p(r) of the corresponding integral equation to projection functions ψk(r):

∮

K

p(r)ψk(r)dlr = 0. (12)

Number of projection functions should be equal to number of unknown coefficients.
For simplicity in this paper we suppose that there is no vorticity in the flow and the

airfoil is immovable and non-deformable, so the intensities of the attached vortex and
source sheets are equal to zero. These assumptions do not however limit the generality
of the following considerations. The discretization procedure of the corresponding terms
of the right-hand side (7) or (9) should be constructed similarly to free vortex sheet
discretization.

In this section we describe several numerical schemes, which follow from the different
ways of the basis and projection functions choice. Four of them are based on T -scheme
and one scheme corresponds to N -scheme.

In order to estimate the accuracy of the numerical schemes the measures used are
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• a measure ‖∆γ‖Ch , which allows the average values γ̄i of computed vortex sheet
intensity over the panels to be compared with average values of exact solution γ̄∗

i :

‖∆γ‖Ch = max
i

|γ̄i − γ̄∗
i |;

• the traditional L1 norm of the error:

‖∆γ‖L1 =

∮

K

|γ(s)− γ∗(s)|J(s)ds ≈
N∑
k=1

sk+1∫

sk

|γ(s)− γ∗(s)|Jk ds,

where γ(s) is approximate solution, parameterized by arbitrary variable s whose
change corresponds to motion along the panels; J(s) is the Jakobian of such paramet-
rization and Jk is its average value over the k-th panel; γ∗(s) means the projection
of the exact solution to the corresponding point of the panel; sj is parameter value
which corresponds to the beginning of the j-th panel.

In all schemes the resulting system of linear algebraic equations is dense and non-
symmetric, so the most suitable way to solve it is Gaussian elimination method.

5.1 Scheme with piecewise-constant solution

Introducing piecewise-constant basis functions φi
0(r), i = 1, . . . , N :

φi
0(r) =

{
1, r ∈ Ki,
0, r /∈ Ki,

we construct solution as piecewise-constant function γ(r) =
N∑
i=1

γiφ
i
0(r).

In this case the residual of integral equation (8) has the following form:

p(r) =
1

2π

N∑
j=1

(
γj

∫

Kj

Qτ (r, ξ)dlξ

)
− 1

2

N∑
i=1

γiφ
i
0(r)− fτ (r).

Choosing projection functions equal to the basis functions: ψi(r) = φi
0(r), we obtain the

following system of linear algebraic equations from condition (12):

1

2π

∫

Ki

( N∑
j=1

γj

∫

Kj

Qτ (r, ξ)dlξ

)
dlr −

1

2
γiLi =

∫

Ki

fτ (r)dlr, i = 1, . . . , N, (13)

with additional equation which follows from approximation of (10):

N∑
i=1

γiLi = Γ. (14)
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The linear system (13), (14) is overdetermined; in order to regularize it the approach
suggested by I.K. Lifanov [8] is used. The resulting system has the following matrix form:

(
A IN
L 0

)(
γ
R

)
=

(
b
Γ

)
, (15)

where A is square matrix block of size N ×N ;

Aij =
1

2π

∫

Ki

(∫

Kj

Qτ (r, ξ )dlξ

)
dlr −

Li

2
δ̃ij, i, j = 1, . . . , N ;

δ̃ij is Kronecker delta; IN is column consists of ones; L = (L1, . . . , LN) is row consists of
panel lengthes; b is right-hand side vector with components

bi =

∫

Ki

fτ (r )dlr, i = 1, . . . , N.

γ = (γ1, . . . , γN)
T is vector of unknown coefficients; R is regularization variable.

Matrix of this system has size (N + 1) × (N + 1), so Gaussian elimination procedure
has computational cost (N + 1)3/3 ≈ N3/3.

Piecewise-constant approximation provides the 2-nd order of accuracy for average val-
ues of vortex sheet intensity over the panels and only the 1-st order of accuracy in L1 norm:

‖∆γ‖Ch ∼ N−2, ‖∆γ‖L1 ∼ N−1.

5.2 Scheme with discontinuous piecewise-linear solution

The simplest way to improve accuracy is by piecewise-linear solution representation
over the panels as to substitute the piecewise-constant one.

In addition to the earlier mentioned piecewise-constant basis functions φi
0(r), piecewise-

linear basis functions φi
1(r) can be introduced, that vary from the value −1

2
to 1

2
over the

i-th panel and are equal to 0 over the other panels:

φi
1(r) =



(r − ci) · τ i

Li

, r ∈ Ki,

0, r /∈ Ki,

where ci is center of the i-th panel.
Thus, the numerical solution is piecewise-linear discontinuous function which has the

following form: γ(r) =
N∑
i=1

(
γiφ

i
0(r) + δiφ

i
1(r)

)
, where γi and δi are unknown coefficients.

Residual of the integral equation (8)

p(r) =
1

2π

N∑
j=1

(
γj

∫

Kj

Qτ (r, ξ)dlξ + δj

∫

Kj

Qτ (r, ξ)φ
j
1(ξ)dlξ

)
− 1

2
γ(r)− fτ (r)

7
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should be orthogonal to projection functions, which again are chosen equal to basis func-

tions: ψk(r ) =
{
φi
0(r ), φ

i
1(r )

}N

i=1
.

Total vorticity over the i-th panel doesn’t depend on δi coefficient, because the aver-
age value of φi

1 basis function is equal to zero, so the approximation of the additional
condition (10) has the same form (14).

After regularization procedure, which is carried out similarly to the previous case, the
resulting linear system has size (2N + 1)× (2N + 1) and can be written down in form



A00 A01 IN
A10 A11 ON

L ON 0






γ
δ
R


 =



b0

b1

Γ


 , (16)

where Apq, p, q = 0, 1 are square matrix blocks of size N ×N

Apq
ij =

1

2π

∫

Ki

(∫

Kj

Qτ (r, ξ )φ
j
q(ξ )dlξ

)
φi
p(r )dlr−DpLiδ̃ij δ̃pq, p, q = 0, 1, i, j = 1, . . . , N ;

δ̃ij and δ̃pq are Kronecker deltas; D0 = −1
2
, D1 = − 1

24
; γ = (γ1, . . . , γN)

T and
δ = (δ1, . . . , δN)

T are vectors of unknown coefficients; IN is column consists of ones;
ON is row/column consists of zeros; L = (L1, . . . , LN) is row consists of panel lengthes;
b0 and b1 are vectors which form together the right-hand side:

bpi =

∫

Ki

fτ (r )φ
i
p(r )dlr, i = 1, . . . , N.

This numerical scheme provides the 2-nd order of accuracy both for ‖∆γ‖Ch and
‖∆γ‖L1 errors, but the computational cost of this scheme is (2N + 1)3/3 ≈ 8N3/3 and it
is 8 times higher than the previously considered piecewise-constant scheme.

5.3 Finite element type numerical scheme (tangent)

Note that in the framework of the piecewise-linear scheme numerical solution was con-
sidered to be discontinuous at the every node of the surface line discretization. However,
for smooth airfoils the exact solution for vortex sheet intensity is continuous. This fact
makes it possible to implement principles of the finite element method (FEM) and con-
sider linear shape functions φ̂i of the 1-st order (fig. 1) as basis and projection functions
(the governing equation is being solved in the framework of tangent approach (8)).

Functions φ̂i can be expressed through the previously introduced functions φi
0 and φi

1:

φ̂i(r) =




1

2
φi−1
0 (r) + φi−1

1 (r), r ∈ Ki−1,

1

2
φi
0(r)− φi

1(r), r ∈ Ki.

(17)

8
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1−iK iK 1+iK

1i−c ic 1i+c

1( )i−γ r
( )iγ r

1( )i+γ r

1 ˆ ( )iφ r

1−iK iK

1ˆ ( )i+φ r1ˆ ( )i−φ r

Figure 1: Linear shape functions

The resulting regularized linear algebraic system has the form
(
Â IN
L̂ 0

)(
γ̂
R

)
=

(
b̂
Γ

)
, (18)

where γ̂ = (γ̂1, . . . , γ̂N)
T is vector of unknown variables; γ̂i is the value of vortex sheet

intensity at the i-th node (which coincides with the beginning of the i-th panel).
Coefficients of matrix block Â (which size is N × N) can be expressed through the

previously introduced coefficients of matrices Apq, (p, q = 0, 1):

Âij =
1

4

(
A00

ij + A00
i−1,j + A00

i,j−1 + A00
i−1,j−1

)
+

1

2

(
−A01

ij − A01
i−1,j + A01

i,j−1 + A01
i−1,j−1

)
+

+
1

2

(
−A10

ij + A10
i−1,j − A10

i,j−1 + A10
i−1,j−1

)
+
(
A11

ij − A11
i−1,j − A11

i,j−1 + A11
i−1,j−1

)
.

Components of vector L̂ and right-hand side vector b̂ also can be expressed through
the coefficients introduced in section 5.2:

L̂i =
1

2

(
Li + Li−1

)
, b̂i =

1

2

(
b0i + b0i−1

)
−

(
b1i − b1i−1

)
.

The matrix size now is (N + 1) × (N + 1), so the computational cost of the solution
procedure remains the same as for piecewise-constant scheme (N 3/3), but it provides the
2-nd order of accuracy for both errors ‖∆γ‖Ch and ‖∆γ‖L1 in case of flow simulation
around smooth airfoils. If the surface line of the airfoil has sharp edges or angle points,
the exact solution is discontinuous and can be unbounded in proximity to these points,
so the developed approach can’t be applied.

5.4 Finite element type numerical scheme (normal)

This section presents a common approach widely employed in bluff body aerodynam-
ics e.g. in bridge aerodynamics [9], which is the counterpart of the scheme devised in
section 5.3. The present scheme considers the “normal” approach framework to enforce
the boundary conditions. In order to solve numerically the integral equation (6), basis
functions are chosen the same (linear shape functions (17)), but the projection functions
now are Dirac delta functions:

ψi(r) = δ̃(r − ci),

where ci is center of the i-th panel.

9
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The resulting linear system has the form

(
A∗

L∗

)
γ∗ =

(
b∗

Γ

)
, (19)

where matrix coefficients A∗
ij and right hand-side coefficients b∗i are expressed as the

following:

A∗
ij =

1

2π

∫

Kj

Qn(ci, ξ )φ̂
j(ξ )dlξ, b∗i = fn(ci), i, j = 1, . . . , N ;

row L∗ consists of the same coefficients as earlier, L∗
i = L̂i = 1

2
(Li + Li−1); γ∗ =

(γ∗
1 , . . . , γ

∗
N)

T is vector of unknown variables; γ∗
i is the value of vortex sheet intensity

at the i-th node (which coincides with the beginning of the i-th panel)
The main difference with the previous numerical scheme (18) is that here no regulariza-

tion parameter is employed. The matrix size now is (N + 1)×N , and linear system (19)
is being solved by using least squares technique. Thus, the computational cost of the
solution procedure proportional to 2N3/3, and this method provides the 2-nd order of
accuracy for both errors ‖∆γ‖Ch and ‖∆γ‖L1 in case of flow simulation around smooth
airfoils.

5.5 FEM-type approach with discontinuities extraction

In order to simulate correctly the flow around non-smooth airfoils, the numerical
scheme (5.3) can be improved: the solution has discontinuities at angle points and sharp
edges, their positions are known, and at the corresponding nodes two discontinuous basis
functions φ̃+ and φ̃− can be introduced instead of function φ̂ (17).

Let’s consider that angle point corresponds to the node with index i, than φ̃i
+ and φ̃i

−
over the panels Ki−1 and Ki adjoined the i-th node are shown in fig. 2

1−iK iK 1+iK

1−ic ic 1+ic

)(1 ri


−γ
)(ri


γ )(1 ri


+γ

1( )i
−φ r

1−iK iK

1( )i+φ r1( )i−φ r

Discont. point

( )i
+φ r

Figure 2: Discontinuous basis functions in neighborhood of angle point

The numerical solution in this case has the form γ(r) =
∑
i/∈D

γ̃iφ̃
i +

∑
i∈D

(
γ̃−
i φ̃

i
− + γ̃+

i φ̃
i
+

)
,

where D is the set of d nodes where vortex sheet intensity is discontinuous. Coefficients
γ̃−
i and γ̃+

i mean limit values of the solution on both sides of such points.

10
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The “modified” basis functions also can be expressed through the functions φi
0 and φi

1:

φ̃i
−(r ) =

1

2
φi−1
0 (r ) + φi−1

1 (r ), r ∈ Ki−1,

φ̃i
+(r ) =

1

2
φi
0(r )− φi

1(r ), r ∈ Ki,

The other basis functions remain the same as in (17): φ̃i(r) = φ̂i(r), i /∈ D.
Projection functions are chosen to be equal to basis functions; for simplicity we assume

that there is only one angle point, and it coincides with node i = 1, which is placed
between the panels K1 and KN . So resulting linear system

(
Ã IN+1

L̃ 0

)(
γ̃
R

)
=

(
b̃
Γ

)

has size (N + 2)× (N + 2), its coefficients are expressed through Apq
ij from section 5.2:

Ã11 =
1

4
A00

11 −
1

2
A01

11 −
1

2
A10

11 + A11
11;

Ã1j =
1

4

(
A00

1j + A00
1,j−1

)
− 1

2

(
A01

1j + A01
1,j−1

)
− 1

2

(
A10

1j + A10
1,j−1

)
+
(
A11

1j + A11
1,j−1

)
;

Ã1,N+1 =
1

4
A00

1N +
1

2
A01

1N − 1

2
A10

1N − A11
1N ;

Ãi1 =
1

4

(
A00

i1 + A00
i−1,1

)
− 1

2

(
A01

i1 + A01
i−1,1

)
− 1

2

(
A10

i1 + A10
i−1,1

)
+
(
A11

i1 + A11
i−1,1

)
;

Ãi,N+1 =
1

4

(
A00

iN + A00
i−1,N

)
+

1

2

(
A01

iN + A01
i−1,N

)
− 1

2

(
A10

iN + A10
i−1,N

)
−

(
A11

iN + A11
i−1,N

)
;

ÃN+1,1 =
1

4
A00

N1 −
1

2
A01

N1 +
1

2
A10

N1 − A11
N1;

ÃN+1,j =
1

4

(
A00

Nj + A00
N,j−1

)
− 1

2

(
A01

Nj + A01
N,j−1

)
+

1

2

(
A10

Nj + A10
N,j−1

)
−

(
A11

Nj + A11
N,j−1

)
;

ÃN+1,N+1 =
1

4
A00

NN +
1

2
A01

NN +
1

2
A10

NN + A11
NN ; i, j = 1, . . . , N.

The first and last components of vectors L∗ and b∗ are

L̃1 =
L1

2
, L̃N+1 =

LN

2
, b̃1 =

b01
2
− b11, b̃N+1 =

b0N
2

+ b1N .

The other coefficients of matrix Ã and vectors b̃ and L̃ remain the same as in section 5.3:

Ãij = Âij, b̃i = b̂i, L̃i = L̂i, i, j = 2, . . . , N.

So, every discontinuity extraction adds one extra unknown variable and in general case
matrix size is (N +d+1)× (N +d+1), where d � N , and computational cost of solution
procedure remains nearly the same as earlier: (N + d+ 1)3/3 ≈ N3/3.

This scheme provides the 2-nd order of accuracy for both errors ‖∆γ‖Ch and ‖∆γ‖L1

in case of flow simulation around arbitrary airfoils.
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Conclusions

The developed numerical schemes for boundary integral equation solution in vortex
particles method provide 1-st and 2-nd order of accuracy with respect to average value of
vortex sheet intensity over the panels and in L1 norm. Expressions for the corresponding
linear system coefficients are presented. In order to compute the integrals the exact
analytical formulae [10] can be used.
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