
Smooth Plasticity and Damage Model for the Material Point Method

V International Conference on Particle-based Methods – Fundamentals and Applications 
PARTICLES 2017 

P. Wriggers, M. Bischoff, E. Oñate, D.R.J. Owen, & T. Zohdi (Eds) 
 
 
 

SMOOTH PLASTICITY AND DAMAGE MODEL FOR THE 
MATERIAL POINT METHOD 

CHRISTOS D. SOFIANOS¹, VLASIS K. KOUMOUSIS² 

 ¹National Technical University of Athens 
Institute of Structural Analysis & Aseismic Research 

Zografou Campus, 15780 Athens, Greece 
e-mail: sofianoschristos@yahoo.gr  

 
² National Technical University of Athens 

Institute of Structural Analysis & Aseismic Research 
Zografou Campus, 15780 Athens, Greece 

e-mail: vkoum@central.ntua.gr 
 
 

Key words: MPM, Damage, Plasticity. 

Abstract. In the Material Point Method (MPM) the structure is discretized into a set of 
material points that hold all the state variables of the system [1] such as stress, strain, 
velocities etc. A background grid is employed and the variables are mapped to the nodes of 
the grid. The conservation of momentum equations with energy and mass conservation 
considerations are solved at the grid nodes and the updated state variables are again mapped 
back to the material points updating their positions and velocities. The background grid is 
used only to solve the governing equations at the end of each computational step and then it is 
reset back to its original undeformed configuration. It is used only as a scratchpad for 
calculations and thus mesh distortion that constitutes a problem in Finite Element simulations 
is avoided. In this work the explicit formulation of the MPM is employed. According to the 
strain decomposition rule the strains are uncoupled into an elastic and an inelastic part. The 
constitutive law follows a Bouc-Wen [2] type formulation for smooth transition from the 
elastic to the inelastic regime. In the same manner the constitutive equations for 
elastoplasticity coupled with damage are smoothed according to Lemaitre’s elastoplastic 
damage theory [3,4]. The above formulation is expressed and incorporated in the tangent 
modulus of elasticity as Heaviside type functions that control the inelastic behavior and 
damage. Results are presented that validate and verify the proposed formulation in the context 
of the Material Point Method.  

 
 
1 INTRODUCTION 

The Material Point Method is an extension of the Particle in Cell (PIC) method. It is a 
hybrid method in a sense that it is based both on a Lagrangian and a Eulerian description. In 
Lagrangian methods the computational grid is embedded and deformed with the material. On 
the contrary in Eulerian methods the computational grid is fixed and the material moves 
through the grid. Eulerian methods are more appropriate in problems in which the material 
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becomes heavily distorted. 
The MPM tracks the deformation history of the material points and drastically reduces the 

numerical dissipation that can be found in Eulerian methods. In MPM since the grid is fixed 
and the particles track the deformation, problems related to mesh distortion and element 
entanglement are alleviated. It has been used successfully in slope stability problems, sea ice 
dynamics [11], multiphase flows [9], hypervelocity problems [10] etc. 

The method is considered a hybrid method since it takes advantage of both the Eulerian 
and Lagrangian description. At the beginning of each time step a Eulerian background grid is 
employed. The material is discretized into a number of material points that hold the properties 
and the state of the material (such as position, velocity, density, mass, stresses, strains etc.). 
The properties are then transferred to the background grid nodes where the governing 
equations are solved. The material points are then updated and the background grid is reset to 
its original form. Although the background grid nodes can be moved it is not necessary and in 
practice is often avoided. This happens mainly because in a structured grid the identification 
of the element that each material point lies in is straightforward and computationally 
inexpensive. This is in contrast with mesh-free methods like the Smoothed Particle 
Hydrodynamics where the nearest neighbor search takes a significant percentage of the 
computational time. 

 

2 THE MATERIAL POINT METHOD 
The material points hold all the properties: position, velocity, mass, stress, strain. The 

governing equations consist of conservation equations, the constitutive equation, kinematic 
condition as well as boundary conditions and initial values. These equations, in their general 
form, are presented below: 

 

(1) 

where σ denotes the Cauchy stress, p the current density, b the body force per unit mass and 𝑣̇𝑣 
is the acceleration. As in the Finite Element Method the MPM also uses the weak form 
formulation. In the Material Point Method each particle represents a sub-domain of the whole 
domain  . Using the Dirac delta function the mass density can be expressed as a function of 
the material point positions and the material point masses as: 
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The material gradients are calculated on a background computational grid in a similar manner 
to Finite Elements. The solution is approximated with the use of shape functions. This way 
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the velocities and accelerations of the material points are expressed by the following relations, 
in terms of the grid nodal accelerations: 

 
1
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p i i
i

v x v N


   ,   
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p i
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In both relations the summation is over element nodes of the background grid that the material 
point resides in. In this work the shape functions used are cubic B-Splines [5]. They have 
been shown to reduce the quadrature errors and the grid crossing errors associated with 
discontinuous shape functions [6]. Applying the Galerkin method and using the previous 
relations in the momentum equation, integrals are replaced by sums and the momentum 
equation is stated as: 
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   (4) 

where the internal and the external forces are defined as: 
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Subscript ,p i  denotes the material point i .  
The main algorithm of the MPM is the following: firstly, the mass momentum and 

internal forces are mapped from the particles to the background grid nodes. The nodal force 
vector is computed and the nodal momenta are updated. Then information is transferred back 
to the material points by updating their velocities and positions. The last step based on the 
Modified Update Stress Last scheme of MPM is to recalculate the grid nodal momenta based 
on the new particle velocities and calculate the new stress based on the strain increments. In 
this last step for an elastic material the plane stress elasticity matrix is used. Based on the 
theory of plasticity and damage, the stress increments will be calculated from the strain 
increments times the tangent elasticity matrix. 

    tE   (6) 

 

3 SMOOTH PLASTICITY AND DAMAGE 
The elastoplastic model coupled with damage that is used in this work is Lemaitre’s model 

[3-4]. It can simulate the evolution of internal damage as well as isotropic or kinematic 
hardening. The additive decomposition of the strain rates tensor is: 

     e pl     (7) 

while the yield function has the following form: 
.  
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where   is the back stress tensor and D  is the damage parameter, which can take values from 
zero to one, 0

y  is the initial yield strength and 'H  is the hardening modulus. The coupled 
elastoplastic damage constitutive law is stated as: 

     1 plD C      (9) 

Differentiating equation (9) and using the expression for the plastic strains based on the flow 
rule the following relation is derived: 

           1 plD C D C    


              
 (10) 

The evolution equation for the damage variable is given by [4]: 

3

1

sH YD
D r

      
 (11) 

where 3H  is a Heaviside function that holds a critical value (damage threshold) such as 
damage growth can start only at this critical value. Parameters r  and s  are material constants 
and are identified from experimental procedures, while Y  is the thermodynamical force 
conjugate to the damage internal variable and is given by: 

    1
2

Te eY C    (12) 

Using equations (10) and (11) the following relation is obtained: 
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The consistency condition states that: 
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 (15) 

Substituting relation (13) into (15) and solving for the plastic multiplier the following relation 
is derived: 

      1 1D D C  



       

 (16) 

where 1
D  is given by the following formula: 
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 (17) 

The previous equations hold when yielding has occurred. In order to generalize the plastic 
multiplier in the whole domain [7-8] and smooth the transition from the elastic to the inelastic 
regime two Heaviside type functions are used [2,12], thus making redundant the need for a 
piece wise approach for the domains of the Kunh-Tucker conditions: 

    1 2
0
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n

TH H sign  
  


 (18) 

This way the final expression for the plastic multiplier becomes: 
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 (19) 

Plugging the plastic multiplier back to the strain rate equation (13) and after some algebraic 
manipulation the following relation is derived: 
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 (20) 

This way the tangent constitutive matrix can be directly calculated for each material point by 
replacing the classic elasticity matrix in (6) thus facilitating the solution and neglecting the 
need for a demanding bookkeeping mechanism. 
 

4 NUMERICAL EXAMPLES 

4.1 Cantilever beam considering plasticity only 
This example is about a cantilever beam subjected to a tip point load. Material is steel with 

E=210GPa, and yield strength of sy=240MPa. The dimensions of the beam are 1m by 0.1m. 
In this analysis the beam was discretized with 360 material points and 1440 points. The force 
is applied gradually over time until its maximum value. The force-displacement diagram at 
the tip of the beam is presented in Figure 1 and is compared with results from Finite Element 
code. In addition, the Von Mises stresses are presented in Figure 2. Results are in good 
agreement and the hysteretic MPM model can accurately predict both the displacement 
history of the beam as well as its stress state. 
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Figure 1: Beam force – displacement diagram. 

 
Figure 2: Von Mises stresses.  

 

4.2 Cantilever beam considering plasticity and damage 
For this example, the same cantilever beam is analyzed but this time damage is also 

considered. The beam is again discretized using 360 and 1440 material points. In both cases 9 
points per element are used. In the first case the element size (of the background grid) is taken 
as 0.05m while for the second case 0.025m. Parameters regarding plasticity are kept the same. 
In Figure 3 the stress – strain diagram for the material point that lies on the left corner of the 
beam is presented. In Figure 4 the value of the damage index D across the whole beam is 
plotted for both discretizations. The maximum value of D is 1 and represents a failed material 
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while when it is close to 0 the material is considered undamaged. As expected the damaged 
region is focused around the fixed end of the beam. 

 
Figure 3: Von Mises Stress – Strain diagram. 

 
Figure 4: Damaged regions and damaged index. 

 

5 CONCLUSIONS 
- The Material Point Method is used in an explicit formulation scheme to model 

plasticity and damage under dynamic loading. 
- The hysteretic - plasticity model for nonlinear analysis accounts for smooth transition 

from the elastic to the inelastic regime. 

× 10−2 
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- The damage model is also smoothed. 
- The plasticity and damage model have been incorporated into the MPM framework 

by modifying the tangent modulus of elasticity. 
- Use of higher order cubic B-Splines effectively minimizes the grid crossing errors 

and improves the accuracy of the MPM method. 
- Numerical examples are presented that verify the proposed model ability to simulate 

plastic and damage phenomena. 
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