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Abstract. The Material Point Method (MPM) has been very successful in providing solutions
to many challenging problems involving large deformations. The nonlinear nature of MPM
makes it necessary to use a full nonlinear stability analysis to determine a stable timestep. The
stability analysis of Spigler and Vianello is adapted to MPM and used to derive a stable timestep
bound for a model problem. This bound is contrasted against a traditional CFL bound.

1 Introduction

The Material Point Method (MPM) may be viewed as being a solid mechanics method that is
derived from the fluid implicit particle, FLIP and PIC methods and which has had considerable
success on large deformation problems. Despite this success many theoretical issues to do with
MPM remain unresolved. One such issue is the stability of the method, given its nonlinear
nature. Currently either a fourier-based analysis e.g. [3, 10] or energy-conservation approach
e.g. [1] is taken. However Wallstedt and Guilkey [14] rightly point out that the nonlinear nature
of the MPM scheme makes classic linear stability analysis inappropriate. Similarly while energy
conservation is of great importance it does not necessarily imply stability [11]. One way to start
to address this is to note that the standard time integration methods used in MPM corresponds
to the use of the semi-implicit Euler method, or symplectic Euler-A [9]. There is convergence
and stability analysis of this method in [12] and this analysis is sufficiently general to be applied
to the MPM, providing that care is taken with the nonlinear nature of MPM. The intention here
is to use this approach to shed some light on the nonlinear stability of MPM by considering a
one dimensional model problem as an ordinary differential equations system in the values at
particles and nodes. While this does not address the well-known issues to do with ringing that
we have previously considered [7, 3], the aim is to consider how to bound the timestep when
nonlinearity is taken into account. Consequently Section 2 described the MPM method and
the model problem used, while Section 3 provides the theoretical framework for the stability
analysis in Section 4 which is summarized in Section 5.
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2 A Simplified Form of MPM Method for Analysis

The description of MPM used here follows [7] in that the model problem used here is a pair of
equations connecting velocity v, displacement u and density ρ (here assumed constant):

Du
Dt

= v, (1)

ρ
Dv
Dt

=
∂σ
∂x

+b, (2)

with a linear stress model σ = E ∂u
∂x for which Young’s modulus, E, is constant, a body force b

and with appropriate boundary and initial conditions. For convenience a mesh of equally spaced
N +1 fixed nodes Xi with intervals Ii = [Xi,Xi+1] , on on the interval [a,b] is used where

a = X0 < X1 < ... < XN = b, (3)

h = Xi −Xi−1. (4)

Further it is assumed that there are m particles between each pair of nodes, situated at xn
p points

where at each time step, tn = δ t ∗ n, where n is the nth time step, and the computed solution
at the pth particles will be written as un

p = u(xn
p, t

n). Suppose that the particles in interval i lie
between Xi and Xi+1 and have positions xim+ j, j = 1, ..,m. The calculation of the internal forces
in MPM at the nodes requires the calculation of the volume integral of the divergence of the
stress, [14], which is written as

f int
i =−1

h ∑
p

D∗
ipσpVp. (5)

The coefficients DS∗ip may be chosen to reproduce derivatives of constant and linear functions
exactly, [7], in a similar way to that used in other particle methods e.g. [4]. A further sim-
plification is to assume uniform particle masses and that the initial volume of the particles is
uniform for the m particles in an interval. The particle volumes are defined using the absolute
value of the deformation gradient, |Fn

p |, and the initial particle volume,

V n
p = |Fn

p |
h
m
, where F0

p = 1. (6)

From (5) the acceleration equation in MPM method after cancelling h and using constant density
is:

an+1
i =

−1
m

(
∑

xp∈Ii−1

Dn∗
ip σn

p |Fn
p |+ ∑

xp∈Ii

Dn∗
ip σn

p |Fn
p |

)
(7)

In the case of GIMP, [2], two extra terms involving particles Xp ∈ Ii−1 and xp ∈ Ii+2 are also
needed. The equation to update velocity at the nodes, as denoted by vn

i is then given by

vn+1
i = vn

i +dtan+1
i . (8)
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Using linear interpolation gives the equation for the update of the particle velocity:

vn+1
p = vn

p +dt[λipan+1
i +(1−λip)an+1

i+1 ],xp ∈ Ii (9)

where λip =
xp−Xi

h ,xp ∈ Ii. The use of GIMP basis functions would give rise to an extended
stencil involving an+1

i−1 and an+1
i+2 . The equation for the particle position update is

xn+1
p = xn

p + vn+1
p dt. (10)

The immediate use of the updated velocity vn+1
p in this and subsequent equations is the Sym-

plectic Euler Method. The update of the deformation gradients and stresses is given using their
linear spatial derivative defined by :

∂vn+1

∂x
(xp) =

(vn+1
i+1 − vn+1

i )

h
,xp ∈ Ii. (11)

The displacement is updated using

Fn+1
p = Fn

p +
∂vn+1

∂x
(xp)Fn

p dt,xp ∈ Ii. (12)

While stress is updated using the appropriate constitutive model and Young’s Modulus, E,

σn+1
p = σn

p +dtE
∂vn+1

∂x
(xp),xp ∈ Ii. (13)

In the case of GIMP the derivative
(vn+1

i+1 −vn+1
i )

h is replaced by a four point stencil.

∂vn+1

∂x
(xp) =

i+2

∑
j=i−1

γ j,ivn+1
j ,xp ∈ Ii. where

−1
h

≤ γ j,i ≤
1
h
. (14)

3 Stability of Time Integration Using the Spigler and Vianello Approach

Spigler and Vianello [12] consider ordinary and partial differential equations of the form

u̇ = f (t,u,u),0 < t ≤ T,u(0) = u0 (15)

and apply the semi-implicit Euler method used by MPM to this as given by:

un+1 = un +dt f (tn,un+1,un). (16)

It is assumed that the exact solution ū to the PDE satisfies the perturbed equations given by

ūn+1 = ūn +dt f (tn, ūn+1, ūn)+δ n+1, (17)
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where δ n+1 is the local truncation error. Spigler and Vianello introduce a perturbed scheme
given by

v̄n+1 = ũn +dt f (tn+1, v̄n+1, ũn)+δ n+1, (18)

ũn+1 = v̄n+1 + σ̃n+1 (19)

where σ̃n+1 is a local error on the current timestep. Subtracting equation (17) from (18) and
adding and subtracting a term then gives

v̄n+1 −un+1 = ūn −un +dt f (tn+1, v̄n+1, ũn)−dt f (tn+1, v̄n+1,un) (20)

+dt f (tn+1, v̄n+1,un)−dt f (tn+1,un+1,un)+δ n+1. (21)

Defining the error as
εn = v̄n −un. (22)

taking the inner product of equation (21) with εn ,using Cauchy-Schwartz on the right hand side
of this equation, and taking norms and using a Lipshitz condition gives the error inequality [12]

||εn+1|| ≤ (1+dtK2)||ũn −un||+dtK1||εn+1||+ ||δ n+1||. (23)

While the quantity K1 is defined by [12] via a one-sided Lipshitz condition constant, here the
stronger, but equivalent, condition [8] is used

|| f (tn, v̄n+1,un)− f (tn,un+1,un)|| ≤ K3||v̄n+1 −un+1|| (24)

that ensures that the one-sided condition also holds if K1 is replaced by K3. K2 is defined by
[12] as being a Lipshitz constant that satisfies the equation

|| f (tn, v̄n+1,un)− f (tn, v̄n+1, ũn)|| ≤ K2||ũn −un||. (25)

Regardless of which approach is used we arrive at the equation (20) in [12]:

||ũn+1 −un+1|| ≤ 1+dtK2

(1−dtK3)
||ũn −un||+ ||δ n+1||

(1−dtK3)
+ ||σ̃n+1||. (26)

The stability condition stated by [12] is then given by

dt(K2 +K3)≤ 1. (27)

In showing how to apply such stability results to nonlinear problems Fekete and Farago [5, 6]
reference extensive earlier work, that uses locally Lipshitz continuous functions, In this case it
is necessary to find a constant R such that a function, say, f (x) satisfies a Lipshitz condition on
an open ball of center z and radius L denoted by BR which may depend on the timestep where

BL(z) := {y ∈ Rm : ||y− z|| ≤ L} (28)
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and the Lipshitz condition is then given on this ball by

|| f (x)− f (y)|| ≤ K||x− y||,∀x,y ∈ BL. (29)

In order to use the [12] theory, we now define vector quantities over the number of particles. Let
the total number of particles be npt. Then vectors of particle velocities vn

p, and nodal velocities
vn

N are defined as:

vn
p =

[
vn

1, ...,v
n
npt

]T
, (30)

vn
N = [vn

1, ...,v
n
N ]

T . (31)

The vectors of particle positions xn
p, stresses σn

p and deformation gradients fn
p are given by

xn
p =

[
xn

1, ...,x
n
npt

]T
, (32)

σn
p =

[
σn

1 , ...,σ
n
npt

]T
, (33)

fn
p =

[
Fn

1 , ...,F
n
npt

]T
. (34)

The MPM vectors that correspond to those used by [12] are now defined by:

un =




vn
N

vn
p

σn
p

fn
p

xn
p



, v̄n =




v̄n
N

v̄n
p

σ̄n
p

f̄n
p

x̄n
p




and ũn =




ṽn
N

ṽn
p

σ̃n
p

f̃n
p

x̃n
p



. (35)

The vector norm used is given by the 2 norm given by

||yn
p||2 =

√√√√Ntot

∑
i=1

(yn
i )

2, where Ntot = N +4Nm. (36)

It is useful to have the elementary result
[

m

∑
j=1

bi

]2

≤ m
m

∑
j=1

b2
i , f or bi ≥ 0. (37)

4 MPM with Symplectic Euler A Integration (Stress Last)

The approach of [12] is now applied to the stress-last case as described by Bardenhagen [1]
which uses the Euler-A symplectic scheme discussed by [9]. The vector form of the equations
for the update of velocities, stresses and deformation gradients and then positions are given by
the following equations. The vector form of equations (7, 8) and (7, 9) are:

vn+1
N = vn

N +dtHN(xn
p,σ

n
p , f

n
p), (38)

vn+1
p = vn

p +dtHp(xn
p,σ

n
p , f

n
p). (39)
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The vector form of equations (13), (12) and (10) are written as:

σn+1
p = σn

p +dtS(vn+1
N ), (40)

fn+1
p = fn

p +dtG(fn
p,v

n+1
N ), (41)

xn+1
p = xn

p +dtvn+1
p . (42)

Using this notation and that used to define the vectors (35) the MPM method may be written as




v̄n+1
N

v̄n+1
p

σ̄n+1
p

f̄n+1
p

x̄n+1
p



−




vn+1
N

vn+1
p

σn+1
p

fn+1
p

xn+1
p



=




v̄p+1
N
v̄n

p
σ̄n

p
f̄n

p
x̄n

p



−




vn+1
N

vn+1
p
σn

p
fn

p
xn

p



+dt




HN(x̃n
p, σ̃n

p , f̃n
p)−HN(xn

p,σn
p , fn

p)

Hp(x̃n
p, σ̃n

p , f̃n
p)−Hp(xn

p,σn
p , fn

p)
0

G(f̃n
p,v

n+1
N )−G(fn

p,v
n+1
N )

0




+dt




0
0

S(v̄n+1
N )−S(vn+1

N )

G(fn
p, v̄

n+1
N )−G(fn

p,v
n+1
N )

v̄n+1
p −vn+1

p



. (43)

4.1 Lipshitz constants

The results of [12] require the determination of the Lipshitz constants K2 and K3 where:
∥∥∥∥∥∥∥∥∥∥




HN(x̃n
p, σ̃n

p , f̃n
p)−HN(xn

p,σn
p , fn

p)

Hp(x̃n
p, σ̃n

p , f̃n
p)−Hp(xn

p,σn
p , fn

p)
0

G(f̃n
p,v

n+1
N )−G(fn

p,v
n+1
N )

0




∥∥∥∥∥∥∥∥∥∥
≤ K2

∥∥∥∥∥∥∥∥∥∥




v̄n
N −vn

N
v̄n

p −vn
p

σ̄n
p −σn

p
f̄n

p − fn
p

x̄n
p −xn

p




∥∥∥∥∥∥∥∥∥∥
(44)

∥∥∥∥∥∥∥∥∥∥




0
0

S(v̄n+1
N )−S(vn+1

N )

G(fn
p, v̄

n+1
N )−G(fn

p,v
n+1
N )

v̄n+1
p −vn+1

p




∥∥∥∥∥∥∥∥∥∥
≤ K3

∥∥∥∥∥∥∥∥∥∥




v̄n+1
N −vn+1

N
v̄n+1

p −vn+1
p

σ̄n+1
p −σn+1

p
f̄n+1

p − fn+1
p

x̄n+1
p −xn+1

p




∥∥∥∥∥∥∥∥∥∥
. (45)

4.2 Bounding the Lipshitz Conditions K2

At particle position xp ∈ Ii, the local part of the equation for L2 is

[
G(fn

p, v̄
n+1
N )−G(fn

p,v
n+1
N )

]
p = Fp

(∆vi −∆vi−1)

h
(46)
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where ∆vi =
[
v̄n+1

N −vn+1
N

]
i. Writing this as a vector equation and taking norms gives:

||G(fn
p, v̄

n+1
N )−G(fn

p,v
n+1
N )||= (

npt

∑
p=1

(Fp
(∆vi −∆vi−1)

h
)2)1/2,

||G(fn
p, v̄

n+1
N )−G(fn

p,v
n+1
N )|| ≤

Fmaxp

h
√

m
N

∑
i=1

(∆vi −∆vi−1)
2)1/2,

≤
Fmaxp

h
2
√

m||∆v||, (47)

where Fmaxp = maxp|Fp| and where the factor of
√

m appears as the same gradient is used at
each of m particles in an interval. Similarly at the same particle position

[
S(v̄n+1

N )−S(vn+1
N )

]
p = E

(∆vi −∆vi−1)

h
(48)

and so

||S(v̄n+1
N )−S(vn+1

N )|| ≤ |E|2
√

m
h

||∆v||. (49)

The final equation of (45) is satisfies by a Lipshitz constant with value one. Combining these
results, after noting that they apply to different parts of the right side of (45), gives

K3 ≤ max(1,
2
√

m
h

(|E|+Fmaxp)). (50)

4.3 Defining the Lipshitz Conditions for the Function G(...) in Equation (44)

From equation (46) at particle position xp ∈ Ii

[
G(f̄n

p,v
n+1
N )−G(fn

p,v
n+1
N )

]
p = (F̄n

p −Fn
p )

(vn+1
i − vn+1

i−1 )

h
. (51)

Squaring both sides gives

|
[
G(f̄n

p,v
n+1
N )−G(fn

p,v
n+1
N )

]
p |

2 ≤ |(F̄n
p −Fn

p )
2(
(vn+1

i − vn+1
i−1 )

h
)2, p = 1, ...Nm, (52)

where i is defined by which xp ∈ Ii. Summing over the number of particles p and using a similar
argument as in Section 4.2 gives

||
[
G(f̄n

p,v
n+1
N )−G(fn

p,v
n+1
N )

]
|| ≤ K∗

2 ||(f̄p−, fp)|| (53)

where

K∗
2 = Maxi|

(vn+1
i − vn+1

i−1 )

h
|. (54)

7
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4.4 Defining the Lipshitz Conditions for the Function HN(...) in Equation (44)

Applying the triangle inequality to the first equation in the equations defined by (44) gives:

||HN(x̃n
p, σ̃

n
p , f̃

n
p)−HN(xn

p,σ
n
p , f

n
p)|| ≤ ||HN(x̃n

p,σ
n
p , f

n
p)−HN(xn

p,σ
n
p , f

n
p)||+

||HN(x̃n
p, σ̃

n
p , f

n
p)−HN(x̃n

p,σ
n
p , f

n
p)||+ ||HN(x̃n

p, σ̃
n
p , f̃

n
p)−HN(x̃n

p, σ̃
n
p , f

n
p)||. (55)

This condition may be broken down into three parts

||HN(x̃n
p,σ

n
p , f

n
p)−HN(xn

p,σ
n
p , f

n
p)||+≤ KN

2,2||x̃n
p −xn

p||, (56)

||HN(x̃n
p, σ̃

n
p , f

n
p)−HN(x̃n

p,σ
n
p , f

n
p)|| ≤ KN

2,0||σ̃n
p −σn

p ||, (57)

||HN(x̃n
p, σ̃

n
p , f̃

n
p)−HN(x̃n

p, σ̃
n
p , f

n
p)|| ≤ KN

2,1||f̃n
p − fn

p||. (58)

For which by using the properties of vector norms if follows that

K2 ≤ KN
2,0 +KN

2,1 +KN
2,2. (59)

The ith component of the left side of equation (57) may be written as
[
HN(x̃n

p, σ̃
n
p , f

n
p)−HN(x̃n

p,σ
n
p , f

n
p)
]

i = ãn+1
i (60)

where

ãn+1
i =

1
m

(
∑
p∈Ii

Dn∗
ip δσn

p |Fn
p |+ ∑

p∈Ii−1

Dn∗
ip δσn

p |Fn
p |

)
(61)

and
δσn

p = σ̃n
p −σn

p . (62)

Upon defining
DFn = maxp|Dn∗

ip Fn
p | (63)

allows equation (60) to be written as

|
[
HN(x̃n

p, σ̃
n
p , f

n
p)−HN(x̃n

p,σ
n
p , f

n
p)
]

i | ≤
1
m

DFn ∑
xp∈Ii∪Ii−1

|δσn
p |. (64)

Squaring both sides, summing over i nodes and using (37) gives

||HN(x̃n
p, σ̃

n
p , f

n
p)−HN(x̃n

p,σ
n
p , f

n
p)||2 ≤ (

1
m

DFn)22m∑
p
(δσn

p)
2 (65)

which after taking the square root gives

||HN(x̃n
p, σ̃

n
p , f

n
p)−HN(x̃n

p,σ
n
p , f

n
p)|| ≤ (

1
m

DFn)
√

2m||δσ || (66)

8
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and so

KN
2,0 ≤ (

√
2
m

DFn. (67)

For equation (58) the pth component of the vector δ f is defined by

δ f n
p = f̃ n

p − f n
p . (68)

After defining
Dσn = maxp|Dn∗

ip σn
p |, (69)

and a similar argument as above leads to

|
[
HN(x̃n

p, σ̃
n
p , f̃

n
p)−HN(x̃n

p, σ̃
n
p , f

n
p)
]

i | ≤
1
m

Dσn ∑
xp∈Ii∪Ii−1

|δFn
p |. (70)

A similar argument as in equations (65, 66,67) then gives

KN
2,1 ≤

√
2
m

Dσn. (71)

In the case of equation (56) the original MPM method does not satisfy a Lipshitz condition.
This is seen from the dependence of the mapping constants Dn∗

ip on the particles xn
p. Let

δDn∗
ip = Dn∗

ip (x̃
n
p)−Dn∗

ip (x
n
p), (72)

then in the case of the original MPM method (see equation (5)),

Dn∗
ip (x

n
p) =−1,xp ∈ Ii−1

Dn∗
ip (x

n
p) = 1,xp ∈ Ii

Dn∗
ip (x

n
p) = 0xp /∈ Ii−1 and xp /∈ Ii

and so the values of δDn∗
ip are either 0 if the perturbed particle does not leave the interval of

the unperturbed particle or ±2/h or ±1/h if the perturbed particle does, regardless of the gap
between the particles. Given this jump discontinuity no Lipshitz constant is possible. In contrast
for the GIMP method, see (29) and Figure 4b in [13], it follows that

|Dn∗
ip (x̃

n
p)−Dn∗

ip (x
n
p)| ≤

2
l
|x̃n

p − xn
p| (73)

where l is the nominal width associated with the particle. Let

σFn = maxp|Fn
p σn

p |, (74)

then the change in acceleration in the left side of equation (56) as denoted by δan+1
i is given by

δan+1
i =

1
m

(
∑
p∈Ii

δDn∗
ip σn

p |Fn
p |+ ∑

p∈Ii−1

δDn∗
ip σn

p |Fn
p |

)
. (75)

9
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and satisfies the inequality

|δan+1
i | ≤ 2

lm
σFn ∑

p∈Ii∪Ii−1

|δxn
p| (76)

where
δxn

p = x̃n
p − xn

p. (77)

Similar arguments as in the previous section give the result

KN
2,2 ≤

2
l

√
2
m

σFn. (78)

4.5 Defining the Lipshitz Conditions for the Function Hp(...) in Equation (44)

Again this equation can be broken down into three parts

||Hp(x̃n
p, σ̃

n
p , f̃

n
p)−Hp(xn

p,σ
n
p , f

n
p)|| ≤ ||Hp(x̃n

p,σ
n
p , f

n
p)−Hp(xn

p,σ
n
p , f

n
p)||+

||Hp(x̃n
p, σ̃

n
p , f

n
p)−Hp(x̃n

p,σ
n
p , f

n
p)||+ ||Hp(x̃n

p, σ̃
n
p , f̃

n
p)−Hp(x̃n

p, σ̃
n
p , f

n
p)|| (79)

and three Lipstitz constants used to bound the terms on the right side of this equation:

||Hp(x̃n
p,σ

n
p , f

n
p)−Hp(xn

p,σ
n
p , f

n
p)|| ≤ K p

2,2||x̃
n
p −xn

p|| (80)

||Hp(x̃n
p, σ̃

n
p , f

n
p)−Hp(x̃n

p,σ
n
p , f

n
p)|| ≤ K p

2,0||σ̃
n
p −σn

p || (81)

||Hp(x̃n
p, σ̃

n
p , f̃

n
p)−Hp(x̃n

p, σ̃
n
p , f

n
p)|| ≤ K p

2,1||f̃
n
p − fn

p|| (82)

Equation (81) is considered first using the definition in (62). Let

ãn+1
i =

1
m

(
∑
p∈Ii

Dn∗
ip δσn

p |Fn
p |+ ∑

p∈Ii−1

Dn∗
ip δσn

p |Fn
p |

)
. (83)

ãn+1
i+1 =

1
m

(
∑

p∈Ii+1

Dn∗
i+1pδσn

p |Fn
p |+ ∑

p∈Ii

Dn∗
i+1pδσn

p |Fn
p |

)
. (84)

and note that from equations (7,9) the pth component of equation (81 is
[
Hp(x̃n

p, σ̃
n
p , f

n
p)−Hp(x̃n

p,σ
n
p , f

n
p)
]

p =
[
λipãn+1

i +(1−λip)ãn+1
i+1

]
. (85)

Using the same approach as in equations (64) to (66) gives the inequality

|
[
Hp(x̃n

p, σ̃
n
p , f

n
p)−Hp(x̃n

p,σ
n
p , f

n
p)
]

p | ≤=
1
m

DFn ∑
xp∈Ii−1∪Ii∪Ii+1

|δσn
p | (86)

and, as above, summing over 3 intervals and 3m particles gives

K p
2,0 =

√
3
m

DFn. (87)
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For equation (82) a similar argument as above again leads to

|
[
Hp(x̃n

p, σ̃
n
p , f̃

n
p)−Hp(x̃n

p, σ̃
n
p , f

n
p)
]

i | ≤
1
m

Dσn ∑
xp∈Ii−1∪Ii∪II+1

|δFn
p | (88)

and then

K p
2,1 =

√
3
m

Dσn. (89)

The final case gives

|
[
Hp(x̃n

p,σ
n
p , f

n
p)−Hp(xn

p,σ
n
p , f

n
p)
]

p | ≤
1

lm
σFn ∑

p∈Ii−1 ∪Ii∪Ii+1

|δxn
p| (90)

resulting in

K p
2,2 =

√
3

ml
σFn. (91)

5 Summary

It is now possible to define the constants in the stability condition (27). The constant K3 is
defined by equation (54). Collecting together the different local Lipshitz conditions with respect
to the vectors multiplied by those constants from equations (56,57,58,80,81,82) gives

K2 ≤ KN
2,0 +KP

2,0 +KN
2,1 +KP

2,1 +K∗
2 +KN

2,2 +KP
2,2) (92)

Bringing together (67,71,78,87,89,91), then gives

K2 ≤ K∗
2 +α(DFn +Dσn +

2
l

σFn) (93)

where α =
√

2+
√

3√
m . The only part of this that is a conventional CFL type condition is the co-

efficient K∗
2 , however even this term depends on the velocity gradients. This expression gives

additional weight to the comments in [10] about how more than a conventional CFL condition
is needed. As this approach uses a quite general ODE form and only general information about
stencils. It is thus possible to extend the idea to GIMP,simply be redefining the stencil widths
and associated coefficient values. An extension to multi-dimensions is also possible.
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