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Abstract. The Material Point Method (MPM) is a continuum-based numerical method 
especially suitable for solving large deformation problems. In this paper, we investigate the 
null-space errors present in MPM solutions. The paper establishes a null-space stability 
condition which is used to examine the null-space errors in different versions of the MPM. This 
analysis shows that a B-splines MPM satisfies the null-space stability condition and therefore 
reduces greatly the errors associated with the null-space. In contrast, the MPM, the Generalized 
Interpolation Material Point Method (GIMP) and the Dual Domain Material Point Method 
(DDMP) show non-trivial null-spaces in the mapping. To remove the null-space errors, this 
paper utilizes QR factorization method, which is similar to the Single Value Decomposition 
(SVD) method, but requires fewer computations. This paper simulates several problems with 
hydro-mechanical coupled Dual Domain Material Point Method (DDMP) formulation both 
with and without null-space error reduction. The simulations indicate that the null-space filter 
can improve significantly the accuracy of the pore water pressure for both gravity loading and 
consolidation in large strain simulation.  

1. INTRODUCTION 
Ringing instability problems have been defined by Brackbill [1] as a source of errors in the 

Particle-in-cell (PIC) method. The instability induced a large amplitude fluctuation of the 
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particle density in PIC caused by the mismatch of degree of freedoms between particles and 
grid. Edwards and Bridson [2] showed that this noise is unavoidable in PIC because of the 
greater number of particles than grid points. Subsequently, Gritton and Berzin [3] showed that 
there is a link between the ringing instability and the null-space mapping in the particle methods 
and adopted a Single Value Decomposition (SVD) to remove the null-space errors. Similarly, 
Hammerquist and Nairn [4] also proposed XPIC(m) to reduce the null-space errors from the 
mapping matrix. 

The Material Point Method (MPM) has been based on the Particle-in-cell method [5]. 
Unfortunately, the Material Point Method due to similar characteristic to PIC has similar issues 
related to the null-space errors. This paper investigates the null-space errors in the MPM 
framework. It also explains why the null-space errors can be reduced when a high order of 
interpolation is used or there is no null-space error for the case of 1 material point per cell.  

Shown results match convergence analyses of Bardenhagen and Kober [6] who proposed the 
Generalized Interpolation Material Point Method (GIMP). They also suggested that one 
material point per cell may be the optimal discretization scheme for the GIMP to minimize the 
errors although they could not decouple the cell-crossing errors and the ringing instability errors 
in the analyses. However, Tran et al. [7] showed that too few material points per cell may 
generate errors in the MPM when applied to gas dynamic. Therefore, reducing the number of 
material points per cell is not always feasible and removing the null-space errors in other way 
is critical. To achieve this goal, this paper develops the QR factorization method to remove the 
null-space to achieve the higher accuracy in the MPM formulations.  

To demonstrate the capability of the QR factorization method to remove the null-space filter, 
this work applies the method to the hydro-mechanical coupled Dual Domain Material Point 
Method (DDMP) formulation [8]. While the previous versions of hydro-coupled MPM are 
validated successfully in the small strain benchmarks, the large strain benchmarks have not 
been too successful as the null space errors accumulate in-line with strains. The paper shows 
that by using a null-space filter, the pore water pressure can achieve a desirable accuracy for 
the large strain benchmark simulations. Shown benchmarks include gravity loading and large 
strain consolidation problems. 

2. PROBLEM DEFINITION 
The MPM formulations [5] has been enhanced leading, among others, to GIMP [6], [9], B-

splines MPM [10] and DDMP [11]. This study utilises the stress mapping scheme in the MPM 
formulations as shown in Figure 1. The stress states associated with the material points and the 
current time step “k” (𝒑𝒑 

𝒌𝒌 ) are interpolated to the nodes, leading to the nodal internal forces 
(𝒇𝒇𝒏𝒏 

𝒊𝒊𝒏𝒏𝒊𝒊,𝒌𝒌). This interpolation uses the gradient of the shape function (𝐍𝐍). At the nodes, the 
balance equations are solved to obtain the nodal velocities at the end of the time step, denoted 
by “L” (𝐯𝐯𝒏𝒏 

𝑳𝑳 ). Subsequently, the nodal velocity is mapped back to the gradient velocity of the 
material points (𝐯𝐯𝒑𝒑 

𝒌𝒌+𝟏𝟏) and the compatibility and constitutive equations are used to determine 
the stress of material points in the next time step “k+1” (𝒑𝒑 

𝒌𝒌+𝟏𝟏). 
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Figure 1. Schematic of stress mapping scheme in MPM 

Consider a domain   discretised into 𝑁𝑁𝑝𝑝 material points on a background grid with 𝑁𝑁𝑛𝑛 
nodes. The linear mapping of stress can be written in the matrix form as follows: 
 𝐟𝐟𝒏𝒏,Nn x 1 

𝐢𝐢𝐢𝐢𝐢𝐢 = 𝐍𝐍Nn x Np  𝒑𝒑,Np x 1 (1) 

where 𝐟𝐟𝒏𝒏,Nn x 1 
int  is the global nodal internal forces vector, 𝒑𝒑,Np x 1 is the global vector containing 

stress in the material points and 𝐍𝐍Nn x Np is the linear mapping matrix, denoted as 𝐍𝐍. 
Similarly, the mapping of the velocity can be written as: 
 𝐯𝐯𝐩𝐩,Np x 1 = 𝐍𝐍Np x Nn 𝐯𝐯𝐢𝐢,Nn x 1 

L (2) 

where 𝐯𝐯𝐩𝐩,Np x 1  is the global gradient velocity vector for all material points, 𝐯𝐯𝐢𝐢,Nn x 1 
L  is the 

global nodal velocity vector at the end of time step and 𝐍𝐍Np x Nn = 𝐍𝐍N𝑛𝑛 x N𝑝𝑝
𝑻𝑻  is the linear 

transformation matrix, denoted 𝐍𝐍𝐓𝐓. 

In the linear algebra, the rank of the linear mapping, rank(𝐍𝐍), is defined as the number of 
independent vector spaces (dimensions) generated by the columns of the matrix. The null-space 
between two vector spaces 𝐟𝐟𝒏𝒏 

int and 𝒑𝒑 is the set of all elements 𝒑𝒑
𝐢𝐢𝐧𝐧𝐧𝐧𝐧𝐧 such that 𝐍𝐍.𝒑𝒑

𝐢𝐢𝐧𝐧𝐧𝐧𝐧𝐧 = 0. 
The nullity of the matrix, denoted null(𝐍𝐍) is the number of independent null-spaces generated 
by the columns of the matrix. According to the dimension theorem, the sum of rank and nullity 
is equal to either the number of columns or the number of nodes as: 
 rank(𝐍𝐍) + null(𝐍𝐍) = 𝑁𝑁𝑝𝑝 (3) 
 rank(𝐍𝐍) + null(𝐍𝐍𝐓𝐓) = 𝑁𝑁𝑛𝑛 (4) 

The presence of the null-space in the linear transformation leads to the instability of the 
solutions because the null-space can result in either no solution or infinite solutions for the 
eq.(1) and eq.(2). To derive an unique solution, it is necessary to produce a MPM formulation 
which the nullity of the transformation in eq.(3) and eq.(4) is zero. In other words, the MPM 
formulation can be more stable if the linear mapping N is full rank (the linear mapping 
achieves maximum rank with rank(𝐍𝐍) = min (𝑁𝑁𝑝𝑝, 𝑁𝑁𝑛𝑛)). In contrast, if N is rank deficient 
(rank(𝐍𝐍) < min (𝑁𝑁𝑝𝑝, 𝑁𝑁𝑛𝑛)), the MPM formulation may become unstable due to null-space 
errors. Therefore, the null-space stability condition for the MPM formulation is: 

 { stable formulation               if   null(𝐍𝐍) or null(𝐍𝐍𝐓𝐓) = 0   
unstable formulation          if   null(𝐍𝐍) and null(𝐍𝐍𝐓𝐓) > 0 (5) 

In the classical MPM, there is a non-trivial null-space in the linear mapping 𝐍𝐍. The null-
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space may induce errors in stress. However, the material point discretization affects the null-
space errors. For example, one material point per cell can remove the null-space error because, 
in MPM, rank(𝐍𝐍) is equal to the number of the cell. Therefore, the null-space stability 
condition is satisfied (rank(𝐍𝐍) = 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑁𝑁𝑝𝑝 therefore null(𝐍𝐍) = 0 in eq.(3)). However, in 
general, the number of material points are greater than the number of nodes (𝑁𝑁𝑝𝑝 > 𝑁𝑁𝑛𝑛). In these 
cases, the MPM formulation is susceptible to the null-space errors. Therefore, it is necessary to 
enhance the method with some algorithms which would lead to satisfying the null-space 
stability condition (5) or removing the null space errors. In the next sections, three such 
algorithms are presented in detail including: 

 algorithm 1 –improvements in the gradient of the shape function 
 algorithm 2 – employing a null-space filter  
 algorithm 3 – includes additional full rank mapping 

3. ALGORITHMS REMOVING THE NULL-SPACE INSTABILITY 

3.1. Algorithms 1 – improving the gradient of the shape function  

In case 𝑁𝑁𝑝𝑝 ≫ 𝑁𝑁𝑛𝑛, the rank of the matrix 𝐍𝐍 is restricted by the number of nodes 
(rank(𝐍𝐍) ≤ 𝑁𝑁𝑛𝑛). Therefore, null(𝐍𝐍) > 0 and the null-space stability condition can only be 
satisfied if null(𝐍𝐍𝐓𝐓) = 0. The rank(N) depends on both the material point discretization 
and the choice of the gradient of the shape function. Therefore, to satisfy the null-space stability 
condition, we can select higher order shape function, leading to higher order gradient of the 
shape function N such that rank(N) = 𝑁𝑁𝑛𝑛. Then it satisfies the null-space stability condition 
as null(𝐍𝐍𝐓𝐓) = 0. 

Figure 2. Irregular material point generation 

To further examine the influence of the gradient of the shape function in the null-space 
stability condition, we compute the null-space for different types of gradient of the shape 
function (MPM, GIMP, DDMP and cubic B-splines) in a one-dimensional example. The 
domain consists of 6 material points generated irregularly, with 2 material points per cell. The 
grid has four main nodes (𝑁𝑁𝑛𝑛

𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛 = 4). Figure 2 presents the geometry, where the material 
points position is indicated by the black dots and nodes are shown as empty squares. The 
Generalised Interpolation Material Point Method requires additional ghost cells for the mapping 
(extra nodes). Consequently, the linear mapping extends its dimensions thanks to the ghost 
nodes. In this example, the number of ghost nodes is equal to two (𝑁𝑁𝑛𝑛

𝑔𝑔ℎ𝑜𝑜𝑜𝑜𝑜𝑜 = 2). Therefore, the 
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total nodes for the GIMP are: 𝑁𝑁𝑛𝑛 = 𝑁𝑁𝑛𝑛
𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛 + 𝑁𝑁𝑛𝑛

𝑔𝑔ℎ𝑜𝑜𝑜𝑜𝑜𝑜 = 4 + 2 = 6  

Table 1. Null-space computations for different computations 

Choice of 𝐍𝐍 𝑵𝑵𝒑𝒑 𝑵𝑵𝒏𝒏 rank(𝐍𝐍) null(𝐍𝐍) null(𝐍𝐍𝐓𝐓) 
MPM 6 4 3 3 1 

GIMP 6 6 5 1 1 

DDMP 6 4 3 3 1 

Cubic B-splines 6 4 4 2 0 

Table 1 shows results of the null-space computation of the problem in Figure 2, based on 
equation (5). The results shown are for the linear mapping 𝐍𝐍𝐓𝐓 as in the four different 
formulations of the material point method. Based on the null-space stability condition, the linear 
mappings of the MPM, GIMP and DDMP were considered as unstable because they can 
generate the null-space leading to errors. In contrast, B-splines MPM in the shown example is 
a stable formulation because it satisfies the null-space stability condition.  

To additionally demonstrate the null-space errors, we simulate a one-dimensional 
propagation of a compression wave. A compression wave is generated in the middle of an 
elastic bar with Young’s modulus E = 0.04Pa and a length L = 4m. The initial strain is: 

 𝑜𝑜(𝑥𝑥, 𝑡𝑡 = 0) = −0.12𝑒𝑒−60(𝑥𝑥−𝐿𝐿/2)2  (6) 

The analytical solution for that problem at time t is: 

 𝑜𝑜(𝑥𝑥, 𝑡𝑡) = 0.0005 (𝑒𝑒−60((𝑥𝑥−𝐿𝐿/2)−0.01𝑜𝑜)
2
+ 𝑒𝑒−60((𝑥𝑥−𝐿𝐿/2)+0.01𝑜𝑜)

2
) (7) 

In the numerical model, the bar is discretized regularly with 2 material points per cell on a 
grid made from 400 cells. The problem aim is to investigate only the null-space noise. 
Therefore, the solution employs small amplitude of strain which means that no single material 
point crosses to a new cell. The gradient of the shape function for node “i” and the 
corresponding numerical simulations for the MPM, GIMP, DDMP and B-splines, compared 
with the analytical results are shown in  Figure 3 - Figure 10. These results show that the MPM, 
GIMP and DDMP produce unstable solutions after 500 time steps corresponding to the final 
time t = 5s. In contrast, the solution obtained using B-splines is stable replicating closely the 
analytical one. These numerical observations confirm the analyses based on the null-space 
stability condition. It is interesting to note that both DDMP and B-splines provide a second-
order gradient of the shape function but the DDMP shows a significant null-space errors while 
the B-splines MPM does not. The null-space errors in the DDMP is inherited from the classical 
MPM because DDMP uses a weight function to averaging the value in MPM (𝐍𝐍(MPM)) and 
node-based function (�̃�𝐍).  

In summary, the analysis shows that the null-space errors affect simulation results 
significantly. Removing the null-space errors – as shown with the B-splines MPM, leads to 
much better match of the simulation results with the analytical solution. 
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 Figure 3. linear-basis gradient of the shape function  Figure 4. MPM numerical solution 

Figure 5. GIMP gradient of the shape function  Figure 6. GIMP numerical solution 

Figure 7. DDMP gradient of the shape function  Figure 8. DDMP numerical solution 

2 material points/cell 
500 time steps 

2 material points/cell 
500 time steps 

2 material points/cell 
500 time steps 
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 Figure 9. Cubic B-splines gradient of the shape 
function 

 Figure 10. Cubic B-splines numerical solution 

3.2. Algorithm 2 – null-space filter  
When the MPM solution does not satisfy the null-space stability condition, the algorithm 

can be enhanced so it would remove the null-space errors in other way, i.e. 𝐯𝐯𝐩𝐩 
𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏. In this case, 

instead of satisfying the null-space stability condition as in the case above, we remove the null-
space components (errors) in the solutions at every time step (see Figure 11). Therefore, the 
non-null-space solution at the next time step “k+1” could be calculated as: 

 𝐯𝐯𝐩𝐩 
∗ = 𝐯𝐯𝐩𝐩 − 𝐯𝐯𝐩𝐩 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 (8) 

Figure 11. Schematic of solution 2 – null-space filter 

In the classical MPM, the matrix 𝐍𝐍 has a non-trivial null-space. Gritton and Berzin [12] 
proposed a SVD method to remove the null-space. Similarly, this paper adopts the QR method 
using Householder Triangularization algorithm [13] which is less numerically expensive than 
the SVD computation for both global and local filter. In the MPM formulation, the matrix 𝐍𝐍T 
can be written in the reduced QR factorization form as follows: 

 𝐍𝐍T Np x Nn = 𝐐𝐐Np x Nn𝐑𝐑Nn x Nn (9) 

where 𝐐𝐐 is the unitary matrix which the columns 𝒒𝒒𝑖𝑖 (𝑖𝑖 = [1 𝑁𝑁𝑛𝑛]) are orthonormal and span in 
the space ℝ𝑁𝑁𝑛𝑛. Considering an arbitrary vector 𝐯𝐯𝐩𝐩 , the null-space component (𝐯𝐯𝐩𝐩 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) of the 

2 material points/cell 
500 time steps 
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vector 𝐯𝐯𝐩𝐩  is orthogonal to the orthonormal set {𝒒𝒒1, 𝒒𝒒2, … , 𝒒𝒒𝑟𝑟} with 𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐍𝐍) =
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐑𝐑) . Therefore, the non-null-space solutions (𝐯𝐯𝐩𝐩 

∗ ) are the projections of the vector 𝐯𝐯𝐩𝐩  
in the subspace Q = span(𝐪𝐪𝒊𝒊) with {𝒒𝒒1, 𝒒𝒒2, … , 𝒒𝒒𝑟𝑟}. 

 𝐯𝐯𝐩𝐩 
∗ = ProjQ(𝐯𝐯𝐩𝐩 ) = ∑(𝒒𝒒𝒊𝒊

𝑻𝑻𝐯𝐯𝐩𝐩 )𝒒𝒒𝑖𝑖

𝑟𝑟

𝑖𝑖=1
 (10) 

In MPM, 𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐍𝐍) = 𝑁𝑁𝑐𝑐 with 𝑁𝑁𝑐𝑐 is the number of cells. Although equation (9) is 
written in a global form, in practice, we apply the null space filter locally, for each grid cell. 
Therefore, the size of the matrix 𝐍𝐍𝑙𝑙𝑙𝑙𝑐𝑐𝑙𝑙𝑙𝑙 is 𝑁𝑁𝑝𝑝𝑐𝑐 𝑥𝑥 𝑁𝑁𝑛𝑛𝑐𝑐 with 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐍𝐍𝑙𝑙𝑙𝑙𝑐𝑐𝑙𝑙𝑙𝑙) = 1 (𝑁𝑁𝑛𝑛𝑐𝑐 is the 
number of nodes of the cell and 𝑁𝑁𝑝𝑝𝑐𝑐 is the number of material points inside the cell). Application 
of the local filter is significantly less expensive numerically than the global filter. Figure 12 
shows the numerical solutions for the DDMP with null-space filter, using QR method. The 
results show that the local QR method can remove the null-space errors in the solutions at lower 
computational cost than the local SVD method. Figure 13 compares the computation costs for 
the given example in the section 3.1. The difference of computation costs between the SVD 
method and QR method will be larger when bigger, multi-dimensional problems are considered. 
The difference will also increase in line with the number of calculated time steps. 

Figure 12. Numerical solution in DDMP with and without null-space filter 

 Figure 13. Computation costs of the null-space filter 

2 material points/cell 
500 time steps 
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3.3. Algorithm 3 – additional full rank mapping 
Finally, if the mapping in the MPM does not satisfy the null-space stability condition, at the 

end of each time step, we can apply an additional full-rank mapping to remove the null-space. 
For example, in MPM, the shape function mapping (𝐍𝐍) can be used because the shape function 
mapping is full rank (rank(𝐍𝐍) = min (𝑁𝑁𝑝𝑝, 𝑁𝑁𝑛𝑛)). Similar solutions are applied in the literature 
to improve stress visualization [14] or local null-space filter [12] (see Figure 14). However, an 
additional mapping can cumulate additional errors through the mapping. Therefore, we do not 
present this solution in greater detail. 

Figure 14. Schematic of solution 3 

4. APPLICATION TO THE HYDRO-MECHANICAL PROBLEMS 
In this section, we show the application of null-space filter to the hydro-mechanically 

coupled problem. The hydro-mechanically coupled balance equations base on the velocity-
velocity formulation [15] The momentum balance equations for the liquid and solid phase are: 

 𝑛𝑛𝑤𝑤𝒂𝒂𝒘𝒘 = −𝑛𝑛𝑝𝑝𝑤𝑤 + 𝑛𝑛𝑤𝑤𝒃𝒃𝒘𝒘 − 𝒇𝒇𝒅𝒅 (11) 

 (1 − 𝑛𝑛)𝑠𝑠𝒂𝒂𝒔𝒔 = .′ − (1 − 𝑛𝑛)𝑝𝑝𝑤𝑤 + (1 − 𝑛𝑛)𝑠𝑠𝒃𝒃𝒔𝒔 + 𝒇𝒇𝒅𝒅 (12) 

where 𝑛𝑛 is the porosity, 𝑤𝑤 is the liquid density, 𝒂𝒂𝒘𝒘 is the liquid accelerations, 𝒃𝒃𝒘𝒘 is the liquid 
body force, 𝒇𝒇𝒅𝒅 is the dragging momentum determined from the Darcy law. For the solid phase, 
𝐚𝐚𝐬𝐬 is the solid accelerations, s is the solid density, 𝐛𝐛𝐬𝐬 is the solid body force. The hydro-
mechanical formulation was first implemented in MPM [16]. Later, it was extended to GIMP 
[17] and to DDMP [8] as those methods mitigate the cell-crossing errors. These formulations 
were validated for the small strain problems. In the small strain regime, usually the null-space 
errors in the pore water pressure profile are small in the hydro-coupled simulations. However, 
the null-space errors are cumulated significantly quicker in large deformation problems. In this 
paper, the algorithm 2 – additional null space filter with QR method was used to remove the 
null-space component of volumetric liquid strain in the solution. That led to a stable pore water 
pressure also in the large strain regime.  

To demonstrate the null-space filter in the hydro-mechanically coupled DDMP formulation, 
we simulate two examples including gravity loading and consolidation. The problem is one 
dimensional, where 1m high elastic column of fully saturated porous material is discretized in 
100 soil material points and 100 water material points. The grid cell size is lp = 0.02m leading 
to 50 cells with 2 material points per cell. Young’s modulus of the soil is 10 MPa, the density 
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s = 2143 kg/m3, the initial porosity no = 0.3 and the initial permeability ko = 10-3 m/s. The bulk 
modulus of the water is 2200 MPa with the water density w = 1000 kg/m3. The time step is 10-

6 which satisfies the Courant condition. To generate the null-space errors, we select in case (i) 
high value of gravity (alternatively the solution could be obtained with a low Young’s modulus) 
and in case (ii) high consolidating pressure. The obtained solutions of hydro-mechanically 
coupled DDMP with and without null-space filter are compared.  

Figure 15 presents the large strain gravity loading simulations with the gravitational 
acceleration g = 1500 m/s. The saturated soil column reached equilibrium condition after 2 
seconds, corresponding to 2 million time steps. Upon examination of Figure 15, it is evident 
that the accuracy of the pore water pressure using the null-space QR filter in the equilibrium 
condition is greatly improved and only minimal deviation from the analytical solution can be 
seen. For the large strain consolidation simulations, the consolidating pressure was equal to 2 
MPa. The numerical solution was compared with the large strain consolidation analytical 
solution [18] at the degree of consolidation (Us) of 0.05 and 0.5 respectively (see Figure 16 and 
Figure 17). The mismatch at the beginning of consolidation (Us =0.05) is due to the reflection 
from the boundary. Nevertheless, the consolidation simulations show a significant null-space 
errors accumulating with time while those errors were removed by using the QR method leading 
to accurate long-term solution. 

Figure 15. Large strain gravity loading using DDMP with null-space filter 

Figure 16. Large strain consolidation using DDMP with null-space filter, Us = 0.05 
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Figure 17. Large strain consolidation using DDMP with null-space filter, Us = 0.5 

5. CONCLUSION 
This paper investigates null-space errors in the MPM formulations. First, a null-space 

stability condition is established to examine the null-space errors. If the mapping in the MPM 
is full rank, the formulation becomes stable. In contrast, the formulation is unstable if the 
mapping is rank deficient. Furthermore, the null-space stability condition was used to analyse 
different MPM formulations. The results show that while the classical MPM, GIMP and DDMP 
contain a rank deficient mapping, the cubic B-splines MPM have a full rank mapping and 
therefore, B-splines MPM formulation can reduce the null-space errors.  

Alternative solutions are introduced such as a null-space filter formulation. As a novelty, we 
propose QR method to remove entirely null-space errors. The proposed method is similar to the 
SVD method [12] but requires significantly less computations. Finally, the QR method is used 
to the hydro-mechanical large strain simulations. The results show that the QR method can 
reduce greatly the noise due to null-space errors. Currently, we are working to scale up the 
method for multi-dimensional models and investigate the computational cost more closely. 
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