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Abstract. The Lattice-Boltzmann method (LBM) is an alternative and flexible approach for 
computational fluid dynamics (CFD). Unlike many other direct numerical simulation (DNS) 
techniques, LBM is not solving the Navier-Stokes equations but is based on the kinetic theory 
and the discrete Boltzmann equation. LBM utilizes a Cartesian mesh and hence does not require 
a complex mesh derivation or a re-meshing in case of moving boundaries. Thermal LBM 
(TLBM) which is capable of solving thermal convection/diffusion problems relies on a set of 
two distribution functions, the so called double distribution function (DDF) approach; one for 
the fluid density and one for the internal energy. For the carried out numerical investigations a 
3D TLBM framework is derived involving a multiple-relaxation-time (MRT) collision operator 
for both, the fluid and the temperature field which is yet not applied widely. Hydrodynamic and 
thermal boundary conditions are represented by interpolated bounce back schemes. The derived 
TLBM framework is applied to diffusion and convection-diffusion problems (e.g. forced 
convection) for plane and curved boundaries and is validated against analytical solutions, when 
available or compared to established correlations. The thermal MRT operator is further 
compared against an existing LBM model based on a thermal Bhatnagar-Gross-Krook (BGK) 
operator regarding accuracy and numerical stability. Averaged and local heat transfer 
coefficients are presented. The findings indicate that the double MRT framework with 
interpolated boundary conditions offers a highly accurate and efficient approach for the analysis 
of heat transfer problems especially for particle/fluid systems under detailed resolved flow.  

 
 
1 INTRODUCTION 

CFD simulations of particle/fluid systems – like packed beds, fluidized beds and pneumatic 
conveying – which resolve the flow around particles, have become increasingly important in 
the past [1–8]. Resolved flow approaches provide the most detailed level of insight and can e.g. 
be applied for creating closure correlations for momentum [2–4] and heat transfer [5–8] for 
single particles and particle packings. Derived closures can be used for large particle/fluid 
systems where the flow conditions are prescribed by a non-resolved CFD approach as it is often 
the case in the DEM/CFD.  

Established DNS methods rely mostly on solving the discretized Navier-Stokes equations 
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using particle surface-adapted meshes. A less frequently used technique to perform CFD 
simulations of particle/fluid systems is the so called lattice Boltzmann method (LBM). In 
contrast to other established DNS simulations, LBM relies on the discrete Boltzmann equation 
and is primary used in combination with an equidistant Cartesian grid. Thermal (LBM) relies 
on a double distribution function approach [9], where the hydrodynamic part is represented by 
density distributions 𝑓𝑓𝑖𝑖 and the thermal part by energy distributions 𝑔𝑔𝑖𝑖. Here the hydrodynamic 
side can be prescribed by the Bhatnagar–Gross–Krook [10] or by multiple-relaxation-time 
collision models [11] and the thermal side was solely represented by the Bhatnagar–Gross–
Krook model in the past [9]. MRT/MRT or double MRT models, meaning hydrodynamic and 
thermal part are solved by a MRT operator, were introduced most recently [12,13]. It should be 
noted, that the MRT collision operator is more advanced and is reported to be more accurate 
and stable than the BGK operator.  

Boundary conditions have also a great influence on the simulations results regarding 
accuracy and stability. The most common boundary condition is the so called half way bounce 
back rule. Based on that very native method interpolated bounce back routines were presented 
for hydrodynamic [14] and thermal side [1]. Besides interpolated bounce back methods 
boundary conditions using energy balancing of a node under the usage of summation and 
target/actual-value comparison were introduced by Liu et al. [15]. The present study deals with 
the evaluation of the thermal MRT collision operators and the influence of thermal boundary 
conditions. A double MRT framework is compared against a MRT/BGK model using different 
boundary conditions with regard to numerical accuracy. Local and global heat transfer is 
addressed and compared to analytical solutions or to results obtained from scientific literature.  

 

2 NUMERICAL METHOD 

2.1 Lattice Boltzmann Method 
The underlying numerical method of this investigation is a three dimensional double 

distribution function Lattice Boltzmann model. The fluid flow is represented by a multiple-
relaxation-time collision operator (MRT) with 19 discrete velocity directions (D3Q19) as 
proposed by d’Humiéres et al. [11] which is described by the following expression: 

𝑓𝑓𝑖𝑖(�⃗�𝑥 + 𝑒𝑒𝑖𝑖⃗⃗⃗ ⃗𝛥𝛥𝛥𝛥, 𝛥𝛥 + 𝛥𝛥𝛥𝛥) = 𝑓𝑓𝑖𝑖(�⃗�𝑥, 𝛥𝛥) − 〈𝑀𝑀−1 ∙ �̂�𝑆 ∙ [𝑚𝑚𝑖𝑖(�⃗�𝑥, 𝛥𝛥) − 𝑚𝑚𝑖𝑖
𝑒𝑒𝑒𝑒(�⃗�𝑥, 𝛥𝛥)]〉𝑖𝑖+𝐹𝐹𝑖𝑖, (1) 

where 𝑓𝑓𝑖𝑖 is the density distribution function, with 𝑒𝑒𝑖𝑖 being the discrete velocity of each 
distribution function. In eq. (1) 𝐹𝐹𝑖𝑖 is an external force which can be applied along the 𝑖𝑖 − 𝛥𝛥ℎ 
lattice direction if desired. 𝑀𝑀 is a 𝑛𝑛 × 𝑛𝑛 transformation matrix and �̂�𝑆 a 𝑛𝑛 × 𝑛𝑛 diagonal collision 
matrix, with 𝑛𝑛 being the number of discrete directions e.g. 𝑛𝑛 = 19 for D3Q19. For a detailed 
description e.g. of the choice of relaxation rates or equilibrium momenta 𝑚𝑚𝑖𝑖

𝑒𝑒𝑒𝑒 the reader is 
referred to [11]. 

For the thermal side three collision operators are investigated here: a D3Q19 Bhatnagar-
Gross-Krook operator (BGK) proposed by Peng et al. [16], which is given by:  

𝑔𝑔𝑖𝑖(�⃗�𝑥 + 𝑒𝑒𝑖𝑖𝛥𝛥𝛥𝛥, 𝛥𝛥 + 𝛥𝛥𝛥𝛥) = 𝑔𝑔𝑖𝑖(�⃗�𝑥, 𝛥𝛥) − 1
𝜏𝜏𝑔𝑔

[𝑔𝑔𝑖𝑖(�⃗�𝑥, 𝛥𝛥) − 𝑔𝑔𝑖𝑖
𝑒𝑒𝑒𝑒(�⃗�𝑥, 𝛥𝛥)], (2) 

a D3Q7 MRT and a D3Q19 MRT model proposed by Li et al. [12] which are based on the 
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model proposed by Yoshida and Nagaoka [13] and are represented by the following expression: 

𝑔𝑔𝑖𝑖(�⃗�𝑥 + 𝑒𝑒𝑖𝑖⃗⃗⃗ ⃗𝛥𝛥𝛥𝛥, 𝛥𝛥 + 𝛥𝛥𝛥𝛥) = 𝑔𝑔𝑖𝑖(�⃗�𝑥, 𝛥𝛥) − 〈𝑀𝑀−1 ∙ �̂�𝑆𝑔𝑔 ∙ [𝑚𝑚𝑖𝑖𝑔𝑔(�⃗�𝑥, 𝛥𝛥) − 𝑚𝑚𝑖𝑖𝑔𝑔
𝑒𝑒𝑒𝑒(�⃗�𝑥, 𝛥𝛥)]〉𝑖𝑖 . (3) 

In eqs. (2) and (3) 𝑔𝑔𝑖𝑖 is the energy distribution function and 𝑀𝑀 and �̂�𝑆𝑔𝑔 are transformation and 
collision matrix respectively. 𝑀𝑀 is given in [11] for a D3Q19 and in [13] for a D3Q7 model. Li 
et al. [12] propose equilibrium momenta 𝑚𝑚𝑒𝑒𝑒𝑒 for both D3Q7 and D3Q19 schemes. The 
underlying discrete velocities for the D3Q7 and the D3Q19 model are shown in Figure 1.  

 

(a) 
 

 
 

 

(b) 
 

 

 
Figure 1: Discrete velocity vectors in (a) D3Q7 and (b) D3Q19 model. 

2.2 Hydrodynamic Boundary Conditions 
The most common hydrodynamic boundary condition in LBM is the so called bounce back 

rule, where the distribution function pointing outside the numerical domain is reflected in the 
reversed direction: 

𝑓𝑓𝑖𝑖(𝑟𝑟𝑖𝑖, 𝛥𝛥 + 𝛥𝛥𝛥𝛥) = 𝑓𝑓𝑖𝑖
∗(𝑟𝑟𝑖𝑖, 𝛥𝛥), (5) 

where 𝑓𝑓𝑖𝑖 denotes the unknown incoming density distribution and 𝑓𝑓𝑖𝑖
∗ denotes the post collision 

distribution function which points outwards towards the fluid boundary. Here it is assumed that 
the wall is located in the middle between two lattice nodes. In case the wall is not located at 
 𝛥𝛥𝑥𝑥 2⁄  the interpolated bounce back rule proposed by Bouzidi et al. [14] can provide more 
accurate results. The unknown distribution functions can be prescribed by linear or by quadratic 
interpolation. In the present study only quadratic interpolation is used for the hydrodynamic 
boundary conditions. Figure 2 schematically shows the interpolated bounce back routine with 
dependence on the wall position q. For further details see [14]. 
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Figure 2: Schematic representation of the interpolated boundary condition [14].  

2.3 Thermal Boundary Conditions 
Based on the idea of the simple bounce back, Yoshida and Nagaoka [13] proposed the 

following thermal Dirichlet boundary condition: 
𝑔𝑔𝑖𝑖(𝑟𝑟𝑖𝑖, 𝑡𝑡 + 𝛥𝛥𝑡𝑡) = −𝑔𝑔𝑖𝑖

∗(𝑟𝑟𝑖𝑖, 𝑡𝑡) + 𝜀𝜀𝐷𝐷𝜙𝜙𝐷𝐷 (4) 

Similar to the hydrodynamic boundary conditions 𝑔𝑔𝑖𝑖 denotes the unknown energy 
distribution and 𝑔𝑔𝑖𝑖

∗denotes the known post collision energy distribution which points outwards 
of the fluid domain towards the fluid boundary. With 𝜙𝜙𝐷𝐷 being the Dirichlet source term 
representing the internal energy at the regarded node and ε𝐷𝐷 the Dirichlet coefficient which 
depends on the weighting factor of the LBM model [3,4]. Li et al. [1] extended this model to 
an interpolated thermal bounce back (similar to the hydrodynamic boundary condition proposed 
by Bouzidi et al. [14]) and proposed three different interpolation schemes of which scheme 1 

𝑔𝑔𝑖𝑖(𝑟𝑟𝑖𝑖, 𝑡𝑡 + 𝛥𝛥𝑡𝑡) = (−2𝑞𝑞)𝑔𝑔𝑖𝑖
∗(𝑟𝑟𝑖𝑖, 𝑡𝑡) + (2𝑞𝑞 − 1)𝑔𝑔𝑖𝑖

∗(𝑟𝑟𝑖𝑖 − 𝑒𝑒𝑖𝑖, 𝑡𝑡) + 𝜀𝜀𝐷𝐷𝛷𝛷𝐷𝐷 for 𝑞𝑞 < 1
2 , (5) 

𝑔𝑔𝑖𝑖(𝑟𝑟𝑖𝑖, 𝑡𝑡 + 𝛥𝛥𝑡𝑡) = − 1
2𝑞𝑞 𝑔𝑔𝑖𝑖

∗(𝑟𝑟𝑖𝑖, 𝑡𝑡) + (2𝑞𝑞 − 1)
2𝑞𝑞 𝑔𝑔𝑖𝑖

∗(𝑟𝑟𝑖𝑖, 𝑡𝑡) + 1
2𝑞𝑞 𝜀𝜀𝐷𝐷𝛷𝛷𝐷𝐷 for 𝑞𝑞 ≥ 1

2
(6) 

and scheme 3 

𝑔𝑔𝑖𝑖(𝑟𝑟𝑙𝑙⃗⃗⃗, 𝑡𝑡 + 𝛥𝛥𝑡𝑡) = − 𝑔𝑔𝑖𝑖
∗(𝑟𝑟𝑙𝑙⃗⃗⃗, 𝑡𝑡) +

(2𝑞𝑞 − 1)
(2𝑞𝑞 + 1) 𝑔𝑔𝑖𝑖

∗(𝑟𝑟𝑙𝑙⃗⃗⃗ − 𝑒𝑒𝑖𝑖⃗⃗⃗ ⃗, 𝑡𝑡) +
(2𝑞𝑞 − 1)
(2𝑞𝑞 + 1) 𝑔𝑔𝑖𝑖̅

∗(𝑟𝑟𝑙𝑙⃗⃗⃗ − 𝑒𝑒𝑖𝑖⃗⃗⃗ ⃗, 𝑡𝑡) + 2 𝜀𝜀𝐷𝐷𝛷𝛷𝐷𝐷
(2𝑞𝑞 + 1)

(7) 

are considered in the present study. Scheme 1 and scheme 3 reduce to the simple thermal bounce 
back in eq. (4) for 𝑞𝑞 =  1 2⁄ . 

Apart from the interpolated thermal bounce back other thermal boundary conditions were 
proposed in the near past. Liu et al. [15] proposed the following thermal boundary rule: 

𝑔𝑔𝑖𝑖(𝑟𝑟𝑖𝑖, 𝑡𝑡 + 𝛥𝛥𝑡𝑡) = 𝑔𝑔𝑖𝑖
∗(𝑟𝑟𝑖𝑖, 𝑡𝑡) +  𝑤𝑤𝑖𝑖𝐺𝐺𝑐𝑐, (8) 

where 𝑔𝑔𝑖𝑖 and 𝑔𝑔𝑖𝑖
∗ are the unknown and known distributions respectively, 𝑤𝑤𝑖𝑖 the weighting factor 

of the LBM model and 𝐺𝐺𝑐𝑐 is the corrector which is enforcing the internal energy and is given 
as: 

𝐺𝐺𝑐𝑐 = 𝜌𝜌0𝑒𝑒 − 𝜌𝜌0𝑒𝑒∗

∑ 𝜔𝜔𝑖𝑖
𝑛𝑛
𝑖𝑖=0

.
(9) 

Here 𝑒𝑒∗ is the target value for internal energy, and 𝑒𝑒 is the actual internal energy and which 
can be determined by linear  
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𝜌𝜌0𝑒𝑒𝐴𝐴 =  𝜌𝜌0(𝑒𝑒𝑊𝑊 + (𝑒𝑒𝐸𝐸 − 𝑒𝑒𝑊𝑊)) 𝐴𝐴𝐴𝐴̅̅ ̅̅ ̅
𝐸𝐸𝐴𝐴̅̅ ̅̅ ̅  ,

(10) 

or by quadratic interpolation 

𝜌𝜌0𝑒𝑒𝐴𝐴 = 𝜌𝜌0 (𝑒𝑒𝑊𝑊 + (𝑒𝑒𝐸𝐸 − 𝑒𝑒𝑊𝑊) 𝐴𝐴𝐴𝐴̅̅ ̅̅ ̅
𝐸𝐸𝐴𝐴̅̅ ̅̅ ̅ + (𝑒𝑒𝐸𝐸 − 𝑒𝑒𝑊𝑊

𝐸𝐸𝐴𝐴̅̅ ̅̅ ̅ − 𝑒𝑒𝐹𝐹 − 𝑒𝑒𝐸𝐸
𝐸𝐸𝐸𝐸̅̅ ̅̅ ) 𝐴𝐴𝐸𝐸̅̅ ̅̅ ∙ 𝐴𝐴𝐴𝐴̅̅ ̅̅ ̅

𝐸𝐸𝐴𝐴̅̅ ̅̅ ̅ ) .
(11) 

The internal energy for a lattice can be obtained by the summation of all energy distributions 
𝑒𝑒 = ∑ 𝑔𝑔𝑖𝑖

𝑛𝑛
𝑖𝑖=0 . If the regarded point (e.g. E, F) doesn’t coincide with the LBM mesh (curved 

boundary), trilinear interpolation is used to determine the value in this point. For details on the 
geometric properties / location of E, F see [17]. 

 

3 RESULTS 

3.1 Heat diffusion cases 
As an initial case a 1D diffusion problem is regarded. A simulation domain of the length 𝐿𝐿 

with constant boundary temperature 𝑇𝑇𝑠𝑠 = 10 and the initial Temperature 𝑇𝑇𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 = 0 was 
selected. To study the performance of the collision operators and boundary conditions the 
simulation domain was refined as follows: 𝐿𝐿 = 20, 𝐿𝐿 = 40, 𝐿𝐿 = 80, 𝐿𝐿 = 160 and 𝐿𝐿 = 320. The 
boundary wall was located between two nodes (simple half way bounce back rule). Thermal 
MRT collision operators for D3Q7 and D3Q19 [13] as well as the thermal BGK operator for 
D3Q19 proposed by Peng et al. [16] were studied. Furthermore, two different boundary 
conditions [1,15] were investigated. Thermal relaxation time was set to 𝜏𝜏𝑔𝑔 = 0.53 for all 
simulations. The obtained temperature profile was compared to an analytical solution.  

This analytical solution for a 1D diffusion problem with constant boundary conditions is 
given by the following expression: 

𝑇𝑇(𝑥𝑥, 𝑡𝑡) = 𝑇𝑇𝑠𝑠 + (𝑇𝑇𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 − 𝑇𝑇𝑠𝑠) ∑ 𝑎𝑎𝑛𝑛exp (− 𝑛𝑛2𝜋𝜋2𝛼𝛼𝑖𝑖
𝐿𝐿2 )  𝑠𝑠𝑠𝑠𝑠𝑠 (𝑛𝑛𝜋𝜋𝑛𝑛

𝐿𝐿 )∞
𝑛𝑛=0 , (12) 

where 𝑎𝑎𝑛𝑛 = 4 𝜋𝜋𝑠𝑠⁄  for odd n and zero for even n, 𝛼𝛼 is the thermal conductivity and 𝑡𝑡 the 
simulation time. The analytical expression can be used with physical or non-dimensional LBM 
quantities.  

Figure 3 shows the averaged relative error for each simulation. As can be seen from the 
obtained results all investigated collision operators and boundary conditions are second order 
accurate in space. For 1D diffusion problems MRT D3Q7 provides the greatest accuracy which 
is in good agreement with results presented by Li et al. [1]. It can be noted, that the investigated 
thermal MRT models proposed by Yoshida and Nagaoka [13] are superior in terms of accuracy 
compared to thermal BGK proposed by Peng et al. [16]. Boundary conditions proposed by 
Yoshida and Nagaoka [13] are three to five times more accurate compared to boundary 
conditions proposed by Liu et al. [15]. It should be stressed out in conclusion, that the boundary 
conditions have a major influence on the numerical accuracy.  
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Figure 3: Relative error over grid resolution 1/𝐿𝐿 for the 1D thermal diffusion problem. 

As second case a 3D diffusion problem is considered. The cubic domain of size 8 ∙ 𝑑𝑑𝑝𝑝 has 
periodic boundaries. The particle diameter is varied as follows: 𝑑𝑑𝑝𝑝 = 5,  𝑑𝑑𝑝𝑝 = 10, 𝑑𝑑𝑝𝑝 = 20 and 
𝑑𝑑𝑝𝑝 = 40. The thermal relaxation time was chosen as 𝜏𝜏𝑔𝑔 = 0.53. The analytical solution to the 
described problem is given by 

𝑇𝑇(𝑥𝑥, 𝑡𝑡) = 𝑇𝑇𝑠𝑠 + (𝑇𝑇𝑆𝑆 − 𝑇𝑇∞) 𝑅𝑅
𝑥𝑥 (1 − 𝑒𝑒𝑒𝑒𝑒𝑒 ( 𝑥𝑥−𝑅𝑅

√4𝑡𝑡𝑡𝑡))       𝑒𝑒𝑓𝑓𝑒𝑒 𝑥𝑥 > 𝑅𝑅, (13) 

where 𝑒𝑒𝑒𝑒𝑒𝑒 is the error function, 𝑥𝑥 is the distance from the sphere center and 𝑅𝑅 the particle radius. 𝑇𝑇∞ is 
the temperature of the undisturbed fluid and can be considered as the initial temperature for a 
sufficient small simulation time 𝑡𝑡. Figure 4 shows the temperature distribution of the described 
case. 
 

 
Figure 4: Distribution of dimensionless temperature 𝜃𝜃 = (𝑇𝑇 − 𝑇𝑇𝑖𝑖)/(𝑇𝑇𝑠𝑠 − 𝑇𝑇𝑖𝑖) around a fixed sphere.  

ϴ 

x 

y 
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In contrast to 1D diffusion problems – where the distance from wall to fluid node is constant 
for each node – curved boundaries have a different wall-node distance for every discrete node. 
This influences the numerical error as was shown by Li et al. [1]. It can be concluded from the 
presented results in Figure 5 that all investigated collision operators and boundary conditions 
provide second order accuracy for curved boundaries regarding the grid resolution. Thermal 
MRT collision operators [12,13] are more accurate compared to the investigated thermal BGK 
operator [16]. However, boundary conditions have a major influence on the numerical accuracy. 
It should be noted that boundary conditions proposed by Li et al. [1] have a greater numerical 
accuracy in the regarded case than the conditions proposed by Liu et al. [15]. 

In particular scheme 1 (eqs. (5)-(6)) provides the best accuracy. Linear and quadratic 
interpolated boundary conditions proposed by Liu et al. [15] rely on 3D interpolation routines 
to determine the exact node temperature which causes a greater numerical error and an irregular 
course. quadratic interpolated boundary conditions are superior to linear interpolated. Scheme 
1 provides the greatest accuracy among all investigated boundary conditions.  

  

 
 
 

 

 
 

Figure 5: Relative error over grid resolution 1 𝑑𝑑𝑝𝑝⁄  for diffusive heat transfer of an isothermal sphere: (a) 
thermal bounce back scheme 1, (b) thermal bounce back scheme 3, (c) linear interpolation and (d) quadratic 

interpolation. 
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3.2 Forced convection case  
Numerical investigations of an isothermal sphere passed by a fluid were performed in order 

to study the influence of the convective part of the thermal LBM model. The Reynolds number 
was stepwise increase up to 𝑅𝑅𝑅𝑅 = 800 and the Prandtl number was set to 𝑃𝑃𝑃𝑃 = 𝜈𝜈 𝛼𝛼⁄ = 1 for all 
simulations. To eliminate wall effects the simulation domain was chosen to be 30 ∙ 𝑑𝑑𝑝𝑝 × 15 ∙
𝑑𝑑𝑝𝑝 × 15 ∙ 𝑑𝑑𝑝𝑝 with 𝑑𝑑𝑝𝑝 = 40 with adiabatic and free slip boundary conditions at walls parallel to 
the flow. The flow is initiated at −𝑥𝑥 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 with a constant fluid velocity and temperature. To 
verify the correctness of the flow conditions and the accuracy of the implemented LBM 
framework the obtained drag coefficients 𝐶𝐶𝐷𝐷 were compared against established scientific 
closure correlations [18–24] and experimental data [25]. Obtained drag coefficients are 
presented in Figure 6. 

 

 
Figure 6: Drag coefficient over Reynolds number for a static sphere. 

It can be concluded that the LBM reflects the flow conditions very accurately and in very 
good agreement with published results. If we regard the most recent correlation proposed by 
Mikhailov and Silva Freire [18] we obtain an average error of 3.72% for the present study. 

 
For convection diffusion problems scheme 1 (eqs. (5)-(6)) proposed by Li et al. [1] with all 

introduced thermal collision operators were regarded. Particle averaged (or global) Nusselt 
numbers were evaluated and are presented in Figure 7 (a). Regarding the heat fluxes of the used 
set up, where the only heat sources are the domain inflow and the particle surface, and the heat 
sink is the domain outflow, the following relationship for the particle averaged Nusselt number 
can be derived: 

𝑁𝑁𝑁𝑁 = 𝑈𝑈0𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝜋𝜋𝑑𝑑𝑝𝑝𝛼𝛼

(�̅�𝑇𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − �̅�𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)
(𝑇𝑇𝑆𝑆 − �̅�𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) ,

(14) 

where 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the surface area of the inlet, 𝑈𝑈0 the fluid velocity (or superficial velocity) at the 
inlet, �̅�𝑇𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and �̅�𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 are the velocity averaged fluid temperatures at the inlet and outlet of the 
domain and 𝑇𝑇𝑆𝑆 is the particle surface temperature.  
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It can be concluded from the obtained results, that thermal BGK and MRT models prove 
high accurate results for convection-diffusion problems. However, the BGK operator remains 
stable only up to 𝑅𝑅𝑅𝑅 = 240 for 𝑑𝑑𝑝𝑝 = 40. Thermal MRT models are up to three times more 
numerically stable than the thermal BGK model. Please note that the thermal BGK referred in 
this work is the collision operator proposed by Peng et al. [16]. It should be noted that BGK 
operators with a different 𝑔𝑔𝑒𝑒𝑒𝑒 may behave differently. 

 
(a) 

 

(b) 

Figure 7: (a) Nusselt numbers over Reynolds numbers for a sphere attributed to forced convection at 𝑃𝑃𝑃𝑃 = 1 (b) 
Distribution of dimensionless temperature 𝜃𝜃 = (𝑇𝑇 − 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖)/(𝑇𝑇𝑠𝑠 − 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖) for 𝑅𝑅𝑅𝑅 = 800 and 𝑃𝑃𝑃𝑃 = 1 prescribed 

with a double MRT D3Q19 model and scheme 1 (eq. (5)-(6)) at the sphere surface. 

 
To evaluate local heat transfer coefficients, the temperature gradient at the boundaries is 

regarded: 

𝑁𝑁𝑁𝑁𝑖𝑖 = ℎ𝑓𝑓 ∙
𝑑𝑑𝑝𝑝
𝑘𝑘𝑓𝑓

= 𝜕𝜕𝑇𝑇𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

𝑑𝑑𝑝𝑝
(𝑇𝑇𝑆𝑆 − 𝑇𝑇𝑟𝑟𝑒𝑒𝑟𝑟)

,
(15) 

where Index 𝑖𝑖 represents the 𝑖𝑖 − 𝑡𝑡ℎ boundary node in which the local Nusselt number is 
evaluated. The particle diameter 𝑑𝑑𝑝𝑝 is the reference length, 𝑇𝑇𝑆𝑆 is the particle surface temperature 
and 𝑇𝑇𝑟𝑟𝑒𝑒𝑟𝑟 is the particle reference temperature which is here the temperature of the undisturbed 
fluid (�̅�𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖). Apart from eq. (14) particle averaged Nusselt numbers can also be obtained by 
surface integration: 

𝑁𝑁𝑁𝑁 = 1
𝜋𝜋𝑑𝑑𝑝𝑝2

∫𝑁𝑁𝑁𝑁𝑖𝑖𝑑𝑑𝑑𝑑
(16) 

If the treatment is discrete, we can simplify this equation to Nu = ∑𝑁𝑁𝑁𝑁𝑖𝑖 𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛𝑒𝑒𝑠𝑠⁄ . 𝑁𝑁𝑁𝑁𝑖𝑖 is the 
local Nusselt number (see eq. (15)) and 𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛𝑒𝑒𝑠𝑠 the number of considered discrete nodes. For 
more details on calculation of local heat transfer coefficients see [26].  

 Figure 8 (a) shows the obtained Nusselt numbers plotted over the corresponding polar angle 
𝜙𝜙 for Re = 200 and Pr = 1.The maximum of the Nusselt number is located at the front 
stagnation point (𝜙𝜙 = 0°) while the minimum can be found at 𝜙𝜙 ≈ 130° for the presented 
Reynolds number. The obtained results are compared to numerical studies by Dhole et al. [27]. 

BGK D3Q19 
stability limit 

x 

y 

ϴ 
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It can be concluded, that the thermal MRT and the BGK models in combination with scheme 1 
provide not only very accurate particle averaged Nusselt numbers but also accurately reflect 
their local distribution. The deviations to Dhole et al. [27] can be explained by the advantage 
of surface adapted meshes used in the introduced study. Especially the evaluation in a Cartesian 
mesh is regarded as a limiting factor. As can be seen in Figure 8 (a) and (b) D3Q7 suffers from 
notable over- and underestimation in the area of the curved boundary (𝜙𝜙 ≈ 20 − 70°). This can 
be explained by the lack of some of the discrete velocities in the D3Q7 model which are 
however provided in the D3Q19 model.  

 
(a) 

 

(b) 

 

 
Figure 8: (a) Local Nusselt numbers of a sphere over polar angle 𝜙𝜙 for 𝑅𝑅𝑅𝑅 = 200 and 𝑃𝑃𝑃𝑃 = 1 (b) Local Nusselt 

numbers normalized with results by Dhole et al. [27]. 

 

4 CONCLUSIONS 
- A thermal LBM framework based on a double MRT model has been derived and its 

performance has been evaluated. Diffusion and convection-diffusion problems for 
plane and curved boundaries have been studied. It was shown that the presented LBM 
models provide highly accurate results for particle averaged and local heat transfer 
coefficients. Second order accuracy in space for all cases was achieved. 

- MRT/MRT models [12] are superior to MRT/BGK [16] models in terms of numerical 
stability and accuracy. Double MRT models are up to three times more stable than the 
investigated thermal BGK operator.  

- For curved boundaries the D3Q19 model provides more accurate results than the D3Q7 
model, especially when the local heat transfer distribution is regarded. D3Q7 suffers 
from notable over- and underestimation in the area of the curved boundary (𝜙𝜙 ≈ 20 −
70°) due to possibly the lack of some discrete velocities in the D3Q7 model. 

- Thermal boundary conditions based on the thermal bounce back idea [1], are more 
accurate compared to boundary conditions based on energy balance and the usage of 
target/actual-value comparison [15]. Furthermore, methods based on the bounce back 
idea are far more efficient, since no 3D interpolation is required. 
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