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Abstract. We developed three continuum forms for brick structures, predicted the elas-
tic wave characteristics and investigated the range of validity of the predictions. One
of the continuum form is based on continuumnization by Hori et al. and the other two
are based on Taylor series expansion. Both continuumnization and second order Taylor
expansion based continuum forms can predict p- and s-wave characteristics accurately for
wavelengths larger than 7 times the brick dimensions. The second order Taylor expansion
can also predict the r-wave characteristics accurately in the same range of wavelengths. It
is demonstrated that the full Taylor series based continuum form can predict the elastic
wave properties to a remarkable accuracy for the whole range of frequencies and wave num-
bers. These predictions will be useful in verification of simulation codes, utilizing FEM
for analyzing brick structures and engineering applications like non-destructive testing,
vibration control, etc.

1 INTRODUCTION

We propose three equivalent continuum forms for identifying the elastic wave properties
of regularly packed brick-mortar systems and apply those to analytically predict the char-
acteristics of elastic waves properties. These analytical predictions can be used in wide
range of applications like verification of numerical codes, non-destructive identification of
material properties, vibration control, design, etc.

Two approaches are used in deriving continuum forms; Continuumnization proposed
by Hori et al.[1] and Taylor series expansion. A regularly packed brick mortar system is
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idealized as a discrete block spring system. Three continuum forms of governing equations
are obtained assuming the existence of smooth and continuous vector fields which can ap-
proximate the field variables of the idealized discrete system. Continuumnization utilizes
the limiting process to approximate difference operations in the discrete form of the gov-
erning equations, while the other two continuum forms approximate the field variables of
idealized discrete system using Taylor series expansion. One of the Taylor series based
continuum form uses second order Taylor expansion while the other uses the whole Taylor
series. The continuum from obtained with the whole Taylor series can predict the elastic
wave characteristics up to the smallest meaningful wavelength, while the predictions of
the other two are accurate within the wavelengths of engineering applications.

The rest of the paper is organized as follows. The section two presents the derivations of
the three continuum forms of equation of motion, and corresponding characteristic equa-
tions for predicting wave properties for regularly packed brick mortar systems. The third
section investigates the range of applicability of each continuum form. Some concluding
remarks are given in the last section.

2 CONTINUUM FORMS FOR REGULARLY PACKED BRICK SYSTEM

As the starting point to derive the three equivalent continuum forms, first the discrete
equations of motion for a regularly packed brick mortar system is obtained. The rest
of this section presents the derivation of the three continuum forms and the analytical
predictions of the elastic wave properties.

2.1 Regularly packed bricks as a discrete system

We idealize a single layer brick wall as a network of rigid rectangular blocks connected
with infinitesimally short linear elastic springs, as shown in Fig.1(a). The springs represent
elasticity of both the bricks and mortar layers while the domain of each rigid block includes
a portion of cement layers so that the domain occupied by the brick mortar system is
perfectly tessellated.

(a) Neighboring blocks of regularly packed bricks (b) Contact area of two neighboring blocks

Figure 1: Idealized block-spring model.
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Consider an arbitrary block µ of a regularly packed brick mortar system (see Fig. 1(a))
and let its centroid be xµ. The pair of neighbors located in the γth direction, rγ±, are
denoted as γ±, and let their centroids be xµ+2rγ±. Note that rγ± denote the relative
position vectors of the centroid of the contact areas with the neighbors γ±. Let nγ, tγ

and sγ be an orthonormal coordinate system on contact area with the neighboring block
in rγ+ direction (see Fig. 1(b)). Let the dimension of this rectangular contact area be
2bγt×2bγs . Let (xt,xs) be an arbitrary point on this contact area, with respect to this local
coordinate system.

Assume that the bricks are rigid and undergo infinitesimally small translations and
rotations. Let the translation and rotation of µth block be uµ and θµ, while those of
neighbors are uγ± and θγ±. The corresponding relative displacement at the point (xt,xs)
is

Lµγ+ =
(
uγ+−uµ

)
−
(
θγ++θµ

)
×rγ++

(
θγ+−θµ

)
×
(
xtt

γ++xss
γ+
)
.

If k and h are the normal and tangential spring constants, respectively, the elastic energy
stored in the spring due to the relative deformation Lγ+ is

V µγ+ =
1

2

bγs∫

−bγs

bγt∫

−bγt

k
(
nγ+·Lµγ+

)2
+h

{(
tγ+·Lµγ+

)2
+
(
sγ+·Lµγ+

)2}
dxtdxs,

and the Lagrangian for the whole discrete system is

L =
∑
µ

(
1

2
mu̇µ·u̇µ+

1

2
θ̇µ·I·θ̇µ−V µ

)
, (1)

where V µ= 1
2

∑
γ(V

µγ++V µγ−). m and I are the mass and inertia tensor of each block.

Applying the Hamilton’s principal of stationary action, δ
∫
Ldt=0, we can obtain the

following governing equations of motion for the discrete system

müµ =
∑
γ

Kµγ·
(
uγ+−2uµ+uγ−)−K̂µγ·

(
θγ+−θγ−)

I·θ̈µ =
∑
γ

(
K̂µγ

)T

·
(
uγ+−uγ−)−K

µγ·
(
θγ++2θµ+θγ−)+K

µγ
·
(
θγ+−2θµ+θγ−),(2)

where
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Kµγ = 4bγt b
γ
s (kn

γ⊗nγ+htγ⊗tγ+hsγ⊗sγ)

K̂µγ = 4bγt b
γ
s {knγ⊗(rγ×nγ)+htγ⊗(rγ×tγ)+hsγ⊗(rγ×sγ)}

K
µγ

= 4bγt b
γ
s {k(rγ×nγ)⊗(rγ×nγ)+h(rγ×tγ)⊗(rγ×tγ)+h(rγ×sγ)⊗(rγ×sγ)}

K
µγ

=
4

3

{
h
(
bγt b

γ3
s +bγ3t bγs

)
nγ⊗nγ+kbγt b

γ3
s tγ⊗tγ+kbγ3t bγss

γ⊗sγ
}

For the sake of brevity, γ denotes γ+ in the above set of equations. It is straight forward
to obtain expressions for γ− using the following relations: Kµγ+=Kµγ−; K̂µγ+=−K̂µγ−;

K
µγ+

=K
µγ−

; and K
µγ+

=K
µγ−

. The set of equations for discrete system given in Eq.
(2) can be used to simulate a brick structure as a mass spring system. Though the elastic
wave characteristics for given brick mortar properties can be obtained by analyzing the
results of such simulations, what is desired for design and verification purposes is the
predictability of wave characteristics for arbitrary material properties.

2.2 Equivalent continuum forms

The derivations of the different continuum forms presented in this paper are motivated
by Hori et al.’s work on Continuumnization. Hence we first briefly present the outline
of their formulation of continuum form, followed by the newly proposed Taylor series
approach. Both the approaches assume the presence of smooth vector fields u and θ which
satisfy u(xµ)=uµ and θ(xµ)=θµ, and make different approximations to the discrete terms
uγ±−uµ and θγ±±θµ of Eq. 2.

2.2.1 Continuumnization

In their original work on continuumnization, Hori et al. expressed the discrete terms
uγ±−uµ and θγ±−θµ with differential operators considering the limits lim‖rγ‖→0

uγ±−uµ

‖rγ‖ ≈
±rγ·∇u and lim‖rγ‖→0

θγ±−θµ

‖rγ‖ ≈±rγ·∇θ. As it will be shown in section 2.2.3, an equivalent
continuum form can be obtained by substituting these approximations to Eq. 2.

2.2.2 Taylor series

Instead of using the limiting process, here we use Taylor series expansion to obtain
continuous approximations for discrete terms uγ±−uµ and θγ±−θµ. As an example, uγ±

can be approximated as

uγ± ≈ uµ±2ri

[
∂u

∂xi

]

xµ

+2rirj

[
∂2u

∂xi∂xj

]

xµ

±23rirjrk
3!

[
∂3u(x)

∂xi∂xj∂xk

]

xµ

+... (3)

Based on the above expression, we can approximate (uγ+±uγ−) and (uγ+−uγ−) as

4

579



Sumet SUPPRASERT, Lalith WIJERATHNE, Muneo HORI AND Jian CHEN

uγ++uγ− ≈ 2uµ+
23rirj
2!

[
∂2u(x)

∂xi∂xj

]

xµ

+
25rirjrkrl

4!

[
∂4u(x)

∂xi∂xj∂xk∂xl

]

xµ

+...

uγ+−uγ− ≈
[
∂u(x)

∂xi

]

xµ

22ri+
24rirjrk

3!

[
∂3u(x)

∂xi∂xj∂xk

]

xµ

+... (4)

Similarly, it is straight forward to express (θγ+±θγ−). The Taylor series approach uses
the above expressions for approximating the discrete terms (uγ+±uγ−) and (θγ+±θγ−)
in terms of continuous vector fields u(x) and θ(x).

2.2.3 Equivalent continuum forms of discrete governing equations

Neglecting all the third or higher order derivatives terms of Eq. 4 and substituting to
Eq. 2, we can obtain the following second order accurate continuum form for the idealized
discrete brick mortar system.

m

Vb

ü = ∇·(c:∇u)−q :∇θ

1

Vb

I·θ̈ = qT :∇u−d·θ+∇·(v :∇θ), (5)

where Vb is the volume of a block. c, q, d, and v are 4th, 3rd, 2nd, and 4th-order tensors
composed of material and geometric (i.e. block geometry and packing) properties. Explicit
expressions for these tensors for the second order Taylor series based continuum form are

c =
16

Vb

∑
γ

bγt b
γ
s (kr

γ⊗nγ⊗rγ⊗nγ+hrγ⊗tγ⊗rγ⊗tγ+hrγ⊗sγ⊗rγ⊗sγ)

q =
16

Vb

∑
γ

bγt b
γ
s {knγ⊗rγ⊗(rγ×nγ)+htγ⊗rγ⊗(rγ×tγ)+hsγ⊗rγ⊗(rγ×sγ)}

d =
16

Vb

∑
γ

bγt b
γ
s {k(rγ×nγ)⊗(rγ×nγ)+h(rγ×tγ)⊗(rγ×tγ)+h(rγ×sγ)⊗(rγ×sγ)}

v =
16

3Vb

∑
γ

bγt b
γ
sr

γ⊗
{{

h
(
bγ2s +bγ2t

)
nγ⊗rγ⊗nγ+kbγ2s tγ⊗rγ⊗tγ+kbγ2t sγ⊗rγ⊗sγ

}

−3{k(rγ×nγ)⊗rγ⊗(rγ×nγ)+h((rγ×tγ)⊗rγ⊗(rγ×tγ)+(rγ×sγ)⊗rγ⊗(rγ×sγ))}}

In the original work by Hori et al.[1], a first order approximation is made for the term

(θγ++2θµ+θγ−)≈4θ(xµ), instead of 4θ+4rirj

[
∂2θ(x)
∂xi∂xj

]
xµ

used in the above second order

Taylor series approximation. Consequently, the term ∇·(v :∇θ) of Eq. 5 is not present in
the continuum form of governing equations from continuumnization.
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Table 1: Wave velocities and corresponding modes {u1,u2,θ3} for θξ=90◦ and θξ=0◦.
ζ=a2/a1 and η=h/k

wave type
θξ=90◦ θξ=0◦

phase velocity mode shape phase velocity mode shape

p
√

2ka2
ρ

{0,1,0}
√

ka2(η+4ζ)
2ρζ2

{1,0,0}

s
√

2ka2η(1+4ηζ)
ρ(1+4ηζ+4ηζ2)

{
1,0,− 4ηζ2ξi

1+4ηζ+4ηζ2

} √
2ka2η(1+4ηζ)
ρ(1+4ηζ+4ηζ2)

{
0,1,− (1+4ηζ)ξi

1+4ηζ+4ηζ2

}

r - {0,0,1} - {0,0,1}

While the above second order Taylor expansion based continuum form was indepen-
dently developed by the authors, Stefanou et al.[2] also have proposed similar idea of
obtaining equivalent continuum form of regularly arranged brick structures based on sec-
ond order Taylor expansion.

2.2.4 Prediction of elastic wave characteristics

A major advantage of Eq.(5) is that it makes it possible to analytically study the
dynamic characteristics of the approximated discrete system. As an example, consider
the two dimensional single layered brick wall shown in Fig.2. For this given packing,
we can evaluate the four tensors, c, q, d, and v, and obtain the equivalent continuum
form of equations of motion (i.e. Eq.(5)). Taking the Fourier transform of the resulting
equations, with the kernel of eı(ξ·x−ωt), where ξ=ξ{cosθξ,sinθξ}, and solving the resulting
characteristic equations, the relations between the wave frequencies and wave numbers for
in-plane deformations can be obtained. Since the system is anisotropic, the wave velocities
depend on the direction of the propagating wave. Table 1 shows the p-, s- and r- wave
charateristics based on the continuum form with the second order Taylor expansion.

Figure 2: A single layered 2 dimensional brick arrangement.

Though r-wave speed is undefined, we can obtain following expression for frequency of
rotational mode

ωspin=

√
3ka21+12ha1a2+12ha22

2ρa21a2+2ρa32
. (6)
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2.2.5 Prediction of elastic wave characteristics based on an arbitrary order
approximation

In the section 2.2.3, we used only the terms up to the second order derivatives in Eq.(4).
It surely is odd to consider all the infinite terms of the Taylor expansion in approximating
variables. However lets consider all the terms of Taylor series expansion and obtain a
continuum form, which is obviously too complicated for any practical use. The presence of
some series solutions make it is possible to obtain a quite compact characteristic equation
when all the infinite terms of Eq.(4) are used.

With a little bit of mathematical manipulations, the following two relations for the
Fourier transform of Eq.(4) can be established; note that all the infinite terms in the
Taylor series are included.

∫ (
uγ++uγ−)eı(ξ·x−ωt)dxdt ≈ 2

(
1−2sin2(ξ·rγ)

)
û

∫
(uγ+−uγ−)eı(ξ·x−ωt)dxdt ≈ 2ı{sin(2ξ·rγ)}û (7)

û and θ̂ are the Fourier transform of u and θ with respect to the kernel eı(ξ·x−ωt). Now, ap-
proximating the discrete terms (uγ+±uγ−) and (θγ+±θγ−) of Eq.(4) with the full Taylor
series and taking the Fourier transform, we can obtain the following set of equations.

0 = det


 −ω2M+

∑
γ4sin

2(ξ·rγ)Kµγ 2ı
∑

γ sin(2ξ·r)K̂µγ

−2ı
∑

γ sin(2ξ·rγ)
(
K̂µγ

)T

−ω2I+4
∑

γ

(
cos2(ξ·rγ)K

µγ
+sin2(ξ·rγ)K

µγ)



M=m1 is the mass matrix and I is the inertia tensor of a brick; 1 is the identity matrix.
Though the above is too complicated to solve for analytical relations between frequen-

cies and wave numbers, ω and ξ, we can numerically solve it to find relation between ω
and ξ. As it will be shown in the next section, the wave properties predicted with this
characteristic function is valid for much wider range of wave numbers, compared to above
obtained predictions from continuumnization and second order Taylor series approxima-
tion.

3 VERIFICATION OF THE PREDICTED WAVE PROPERTIES

To verify the elastic wave characteristics predicted in sections 2.2.4 and 2.2.5 and
identify the applicable range of these predictions, we compared the predicted properties
with the results obtained from a Rigid Body Spring Model (RBSM) simulation. The
details of this comparison is presented in this section.

7
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3.1 Basic problem settings

A brick wall of width 20.3m and height 13.0m shown in Fig.3 was used for the RBSM
simulations. The bricks are 60mm in width, 30mm in height, and 40mm in thickness.
The density of each block is assumed to be 1850kg/m3. k and h, are determined as
5.12×1011N/m3 and 2.22×1011N/m3, respectively.

For the sake of simplicity, 2D settings was assumed and the domain was excited with
an in-plane wave at center of the domain. We considered 3 cases with different inputs.
First and second cases were with transnational waves of vertical and horizontal excitation.
The third case was with a rotational wave input. In all the cases, the wave form shown
in Fig. 3b was used.

(a) Domain (b) Input wave f (t)= 4
3
√
3
A
(
sin ωt

2 − 1
2 sinωt

)

Figure 3: Domain and the wave form used in the numerical experiments.

A and ω are the amplitude and circular frequency of the input. For vertical and horizontal
inputs A=2mm while A=0.035 radians for the rotational input. To obtain narrow wave
fronts, so that peaks and valleys of waves are clearly visible, input circular frequency
ω is set 1.57×104radian/s for vertical and horizontal input, and 2.11×105radian/s for
rotational input.

In order to obtain accurate results, we used a second order velocity Verlet algorithm
with 1µs time step for time integration. As an indirect check of accuracy of the simulation,
energy and momentum of the whole system were monitored. Near perfect preservation of
energy and momentum was observed, indicating that the simulations were accurate.

3.2 Comparison of translational waves

The color contours of Fig. 4(a) and (b) show the distribution of translational wave am-
plitudes at time 2ms. The two black color curves indicate the analytically predicted wave
fronts based on the continuum form from the second order Taylor expansion presented in
the section 2.2.3.

8
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3.2.1 P-wave

As is seen, the analytically predicted p-wave fronts are in good agreement with numer-
ical results in the regions indicated with letter A. The wave profiles along section P-P,
shown in the left side pair of Fig.5 clearly indicate that the analytical predictions are in
good agreement with the numerical results. In Fig.4(a), since the input wave is oriented
in vertical direction, the p-wave amplitude is highest in up and down directions, while it
is extremely low in other directions. This is why no p-wave fronts are visible in the nu-
merical results except in up and down directions in Fig.4(a), and left and right directions
in Fig.4(b).

3.2.2 S-wave

Also, the Fig. 4(a) and (b) show that the theoretically predicated s-wave fronts are also
in good agreement with that of numerical results in the regions marked with letter B. The
right hand side pair in Fig.5 provides clear evidences to support this claim. Amplitude
of the main s-wave is weak in most directions, except orthogonal to the direction of
excitation. This is why there seems to be a significant mismatch between numerical and
analytical wave fronts in regions except B.

(a) with vertical input (b) with horizontal input

Figure 4: Comparison of predicted p- and s-wave fronts with those of numerical results,
at 2 ms. The colors indicate the amplitude of translational waves.

3.3 Comparison of rotational waves

Fig. 6 shows the distribution of the amplitudes of rotational waves (r-wave) generated
by the rotational wave input, at 2 ms. Unlike the translational wave inputs, dispersion of
the rotational wave occurs. In order to check the accuracy of predictions, we compared
the circular frequency ω versus the normalized wave number ξai where a1 and a2 are the

9
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verticle input horizontal input

(c) along sections P-P

verticle input horizontal input

(f) along sections S-S

Figure 5: P-wave profiles along sections P-P (left pair) and s-wave profiles along sections
S-S (right pair), at 2 ms. Arrows indicates the analytically predicted wave front.

half of the dimensions of a brick (see Fig.2). The ω versus ξai relations of the numerical
results are obtained by Fast Fourier Transform (FFT) with respect to space and time.
FFT was conducted for two narrow vertical and horizontal spatial domains shown with
yellow lines in Fig.6.

The results of the double FFTs are shown in Fig.7. As seen, in addition to the r-wave,
small amplitude p- and s-waves are also present. This gives us a good opportunity to
make a further check the accuracy of predicted p- and s- wave characteristics.

Figure 7 (a) and (b) compare the predictions with continuumnization by Hori et al.[1].
The analytical prediction of rotational frequency is in agreement only in a small neigh-
borhood of |ξa1|=|ξa2|=0, and it rapidly diverges when move away from this small neigh-
borhood. This is not surprising since continnumnization uses only the 0th-order approxi-
mation (θγ++2θµ+θγ−)≈4θµ.

As show in Fig. 7 (c) and (d), the predictions with the second order Taylor expansion
(see section 2.2.3) are in good agreement with the numerical solution within the range
|ξai|<0.5. P-, s- and r-wave predictions based on this continuum form are valid for the
wavelengths grater than 7 times the size of bricks.

The advantage of the continuum form obtained with the full Taylor series is clearly
seen in Fig. 7 (e) and (f). Analytical predictions for s- p- and r-waves are in near perfect
agreement with the numerical results for a whole range of wave numbers considered. Note
that we limited our analysis to the range ξai≤1.5 since it corresponds to the shortest
meaningful wavelength for the considered problem; ξai≤1.5 includes wavelengths two
times larger than the respective dimensions of a brick.

4 CONCLUDING REMARKS

Three equivalent continuum forms are developed for regularly packed brick structures
and utilized to predict the elastic wave characteristics. The predicted p- and s-waves char-
acteristics based on continnumnization and second order Taylor expansion are accurate for
wavelengths greater than 7 times the size of bricks. In case of r-wave, while the predictions
of second order Taylor expansion approach is accurate in the same wavelength range, that
of continnumnization is limited to narrow range of wavelengths. The full Taylor series
based continuum form can predict the elastic wave properties to a remarkable accuracy

10

585



Sumet SUPPRASERT, Lalith WIJERATHNE, Muneo HORI AND Jian CHEN

Figure 6: Magnitude of the rotational waves at 2 ms, generated by rotational wave input.
Two lines indicate the domains used for double FFT.

for the whole range of wave numbers. These predictions will be useful in verification of
numerical simulations and engineering applications like non-destructive testing, vibration
control, structural design, etc. For the ordinary design purposes the predictions based
on continnumnization or second order Taylor expansion is sufficient, while the full Taylor
series model will be useful in physics applications involving high frequencies. Further, it
is straight forward to develop Finite Element extensions based on these continuum forms
for analyzing brick structures.
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(a) Along the vertical domain (b) Along the horizontal domain
Continnumnization

(c) Along the vertical domain (d) Along the horizontal domain
Second order Taylor series

(e) Along the vertical domain (f) Along the horizontal domain
Full Taylor series

Figure 7: Comparison of numerical results and the analytical predictions based on dif-
ferent continuum forms. Contour plots show the numerically obtained amplitude of ω vs.
ξai relation. The curves shows the analytical prediction for p-, s- and rotational waves.
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