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ABSTRACT Recent research has shown that smartphones/smartwatches have a high potential to help
physicians to identify and differentiate between different movement disorders. This work aims to develop
Machine Learning models to improve the differential diagnosis between patients with Parkinson’s Disease
and Essential Tremor. For this purpose, we use a mobile phone’s built-in gyroscope to record the
angular velocity signals of two different arm positions during the patient’s follow-up, more precisely, in
rest and posture positions. To develop and to find the best classification models, diverse factors were
considered, such as the frequency range, the training and testing divisions, the kinematic features, and
the classification method. We performed a two-stage kinematic analysis, first to differentiate between
healthy and trembling subjects and then between patients with Parkinson’s Disease and Essential Tremor.
The models developed reached an average accuracy of 97.2±3.7% (98.5% Sensitivity, 93.3% Specificity)
to differentiate between Healthy and Trembling subjects and an average accuracy of 77.8±9.9% (75.7%
Sensitivity, 80.0% Specificity) to discriminate between Parkinson’s Disease and Essential Tremor patients.
Therefore, we conclude, that the angular velocity signal can be used to develop Machine Learning models
for the differential diagnosis of Parkinson’s disease and Essential Tremor.

INDEX TERMS Differential diagnosis, Parkinson’s disease, Essential tremor, Gyroscope, Kinematic
analysis, Machine learning.

I. INTRODUCTION

TREMOR is a compulsory and oscillatory movement of
a part of the body [1]. Its effects are primarily visible

in the limbs, head, and voice [2]. Physiological tremor is
usually of low amplitude and interferes only with fine motor
control. In most cases, it is not visible or symptomatic, except
when increased by fatigue or anxiety [1], [3]. On the con-
trary, pathological tremor is usually visible and constant [1].
Parkinson’s disease (PD) and Essential Tremor (ET) are the
most common tremor syndromes worldwide [4], [5]. Distin-

guishing between PD and ET can be difficult in the early
stages of the diseases or for patients without a family history
of PD. The risk of incorrect diagnosis is high; even specialists
in movement disorders may have a rate of up to 25% false
positives or negatives [4], [6]–[8]. Typically, resting tremors
are associated with PD, whereas postural or kinetic tremors
associate with ET [5]. However, some PD patients may de-
velop postural tremor [5], and some ET patients may develop
resting tremors during the progression of the disease [9], [10].
Early diagnosis is fundamental to ensure adequate treatment
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of the patient and to prevent harmful side-effects [4], [5],
[9]. Nowadays, dopamine transporter (DAT) imaging using
Single Photon Emission Computed Tomography (SPECT)
with appropriate tracers (123I-FP-CIT) is the most reliable
technique for diagnosing PD [4], [5], [11]. However, the test
is costly and therefore limited to economically developed
countries. Additionally, it is an invasive test with a radioac-
tive fluid that requires patient compatibility, which may limit
its applicability.

Therefore, it is a current topic of research to develop
fast and non-invasive techniques for the early and reliable
diagnosis of PD. Unlike the kinematic position information
captured with optical movement detection systems [12], the
accelerometry analysis is currently a hot topic in the biome-
chanical field. It records the motion information of physical
activity based on wearable devices. [13]. In this sense, ex-
tensive research on the use of wearable devices in the field of
movement disorders is underway, with numerous papers pub-
lished on these topics. Uchida et al. [10] employed a triaxial
accelerometer to measure the severity and frequency of hand
tremors in patients with ET and PD under conditions of rest,
posture, writing, and walking. They observed that resting
tremor is attenuated during walking in patients with ET and
increased in patients with PD. Recently, Bernhard et al. [14]
studied the gait and balance deficit by using wearables fixed
at the lower back and the ankle. They denoted that wearable
gadgets could assess the progression of movement disorders
and the response to the treatment of the disease. Wile et
al. [15] classified patients with PD and ET via calculation and
analysis of the Mean Harmonic Power using a smartwatch
accelerometer. They noted that, compared to an analog ac-
celerometer, a smartwatch device could provide accurate and
relevant information for the differential diagnosis between
PD and ET subjects. Locatelli et al. [5] recorded hand tremors
during resting, postural, and kinematic tasks using a wearable
sensor to differentiate PD and ET patients. They observed
that, in the frequency domain, the execution of resting tasks
showed a predominance of PD over ET tremors. In contrast,
the data provided by postural and kinetic tasks stand out in
ET subjects.

Some researchers have used Machine Learning (ML) to
differentiate between the two tremor conditions. Woods et
al. [3] developed an offline application that uses a mobile
phone accelerometer to perform the diagnosis and classifi-
cation of PD and ET patients. Surangsrirat et al. [9] classified
PD and ET patients based on temporal angular velocity
fluctuations, recorded with a 6-DOF inertial measurement
unit. Kramer et al. [16] combined Electromyography (EMG),
and Accelerometry (ACC) signals to distinguish between dif-
ferent types of tremor through Wavelet Coherence Analysis
(WCA). They stated that WCA is superior to a standard co-
herence analysis and could be a useful additional tool for dis-
criminating between tremor types when the result obtained
with other methods is inconclusive. Nanda et al. [7] used the
Wavelet transform to extract EMG and ACC signal features.
These features, combined with an Artificial Neural Network,

were used to perform a quantitative classification of ET and
PD. Finally, Raza et al. [17] compared the diagnosis obtained
by using wearable devices with the early diagnosis made
by a specialist. They also used ML methods to perform the
differential classification between PD and other movement
disorders. Besides, in previous works, we proposed different
methods for the differential diagnosis of the two diseases
using the mobile phone’s built-in triaxial accelerometer [4],
[18], [19]. The developed methods allow to characterize and
recognize the discriminative features of hand tremor in PD
and ET patients and to use ML algorithms to improve the
differentiation between them.

This work aims to use the same methodology to evaluate
the angular velocity data, recorded with the mobile phone’s
built-in gyroscope, and to build ML models to differentiate
healthy subjects (HS) and tremor patients (TP) and, subse-
quently, within the subjects identified as TP to discriminate
PD patients from ET patients. These models are performed
based on two different frequency ranges and three group
divisions. We expect this method to be an additional tool
to help the physician in case of uncertainty and undecided
diagnosis of the diseases.

II. MATERIALS AND METHODS
Fig. 1 illustrates the different steps that compose the method-
ology developed in this work: Signal recording with a mobile
phone, data analysis, and model training and testing. The
demographic characteristics of the subjects, the method of
recording, and the preprocessing of the dataset are described
in Barrantes et al. [4]. The whole process was carried out
in Matlab v. R2019b (MathWorks Inc., USA) on a computer
with an Intel i5-9600K processor at 3.70 GHz, 16 GB of
RAM and an NVIDIA GeForce GTX 1650 graphics card
with 4 GB of V-RAM.

A. PATIENTS AND DATASET DESCRIPTION

The dataset used in this study includes recordings of 19 PD
patients, 20 ET patients, and 12 HS from the Movement
Disorders Unit of the Hospital Clinic of Barcelona between
October 2015 and December 2016 [4]. All the patients had
visual evidence of hand tremors and were diagnosed with
strong indications of PD or ET. Patients had scores of 1 or
2 on the Fahn-Tolosa-Marín scale for ET and the Unified
Parkinson’s Disease Rating Scale (UPDRS) for PD patients.
A SPECT test confirmed all the patients with PD.

The angular velocity signals were collected with the built-
in triaxial gyroscope of an iPhone 5S using SensorLog ap-
plication [20]. The smartphone was placed on the dorsum
of the most affected hand in TP or the dominant hand in
HS while sitting in an armrest chair. Tremor signals were
recorded with a frequency of 100 Hz and an average duration
of 35.66±4.08 s, 35.42±3.42 s, and 33.30±3.27 s for HS,
ET, and PD subjects, respectively. As shown in Fig. 1, two-
arm positions were studied: 1) Rest (Position A), the subject
rests his forearm on the upper part of the armrest, and 2)
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FIGURE 1. Schematic of the methodology for the differential diagnosis of PD and ET patients.

Posture (Position B), the subject keeps both upper limbs fully
extended.

B. DATA ANALYSIS
One of the clinical signs and symptoms of PD is tremor at
rest with moderate amplitudes and low frequencies from 4 to
6 Hz [9], [21]. In contrast, ET is characterized by postural
or kinetic tremors with mean frequency values between of
5 to 8 Hz [15], [22]. Furthermore, physiological tremor is
in the frequency band of 8 to 12 Hz [23]. Based on this,
the dataset is preprocessed as follows in order to extract
the kinematic features: artifacts generated by starting and
ending the signal recording were eliminated by cutting ap-
proximately 2 seconds on both sides of the signals. Two
10th order Butterworth filters with cut-off frequencies of 3
to 10 Hz [11] and 1 to 16 Hz [24], where PD and ET are
found, were implemented separately in order to identify an
optimal frequency range for feature extraction. Additionally,
these filters allow reducing the sensor offsets and drifts due
to various physical phenomena such as motion artifacts [17],
[25]. Figure 2 shows the time-domain signal of PD, ET,
and HS subjects in posture position before and after signal
processing.

Since the analysis was performed in the frequency domain,
Power Spectral Density (PSD) was calculated. For each of
the three spatial directions, a Welch’s periodogram averaging
segments of the signal recording of 3s with a 50% overlap
of Hanning’s window was applied. The PSD average of the
angular velocity components was calculated and normalized.
The resulting average was used to calculate kinematic in-
dexes that allow the identification and classification of sub-
jects with pathological tremor and differentiate them between
PD and ET. The kinematic features are briefly explained
below:

• Median Power Frequency (MPF): Frequency at which
the PSD is halved.

• Power Bandwidth (PB): Frequency band, centered
around the MPF, which contains 90% of the total power.

• Peak Power Frequency (PPF): Frequency at which the
maximum power is located.

• Harmonic Index (HI): Quotient between the area un-
der the PSD curve and a rectangle bounded on the sides
by the frequency band of interest (fl - fh) and the Peak

FIGURE 2. Time-domain signal of PD, ET and HS subjects in posture position
before and after signal processing.

Power (PP).

HI =

∫ fh
fth

PSD(f) · df
PP · (fh − fl)

(1)

• Relative Power Contribution to the first harmonic
(RPC): Quotient between the PSD of harmonics found
between a frequency division threshold (fth) and fh and
the PSD between fl and fh.

RPC =

∫ fh
fth

PSD(f) · df∫ fh
fl

PSD(f) · df
(2)
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• Relative Energy (RE): Quotient between the normal-
ized PSD of resting (PSDA) and posture (PSDB) in the
frequency range of fl to fh.

RE =

∫ fh
fl

PSDA · df∫ fh
fl

PSDB · df
(3)

• Harmonic Index Ratio (HIR): Quotient between the
harmonic indexes of resting and posture position.

HIR =
HIA
HIB

(4)

• Sum of Maximum Power (SMP): Sum of the power
value at the PP of resting and posture position.

SMP = PPA + PPB (5)

After extracting the feature matrix of the subjects, they
were labeled as follows:

1) Case 1: TP vs. HS
• TP (Tremor patients) - Positive Class.
• HS (Healthy subjects) - Negative Class.

2) Case 2: PD vs. ET
• PD (Parkinson’s Disease) - Positive Class.
• ET (Essential Tremor) - Negative Class.

Since thirteen features have been extracted per subject, we
used feature selection algorithms [26] to reduce the dimen-
sionality of the resulting matrix and to select a subset of a
maximum of five features to create the classification models.
This allows to reduce the training time of the models and to
focus on the features that provide the highest differentiation
between both Cases’ classes. We used the Chi-square test
and the Unbiased Tree method to estimate, separately, the
importance of each feature [27], [28]. For each test, the five
features with the highest importance values were identified.
The features that matched in both tests were chosen for fur-
ther analysis. This process was carried out in two frequency
ranges: 1-16 Hz and 3-10 Hz.

C. MODEL TRAINING AND TESTING
The classification models designed differ in four aspects:

1) The frequency range of analysis. As mentioned in
the previous subsection, the kinematic features were
extracted in two different frequency ranges (1-16 Hz
and 3-10 Hz) to identify which range is optimal for
differentiating between physiological and pathologi-
cal tremors and, subsequently, between pathological
tremors.

2) The proportion of training and testing data. For
each of the cases presented, the dataset was randomly
divided into three different proportions (30/70, 50/50,
and 70/30), ensuring that both positive and negative
classes were distributed at the same ratio in each train-
ing and testing set. Table 1 details, for both cases in
all proportions, the class ratios obtained in the training
and testing sets.

TABLE 1. Training and testing set class ratios.

Case 1: TP vs. HS Case 2: PD vs. ET
Division Training Testing Training Testing

(%) PC NC PC NC PC NC PC NC
30 / 70 12 4 27 8 6 6 13 14
50 / 50 20 6 19 6 10 10 9 10
70 / 30 27 8 12 4 13 14 6 6

PC, Positive class. NC, Negative class.

The reason why we decided to use three different divi-
sions and not one, as commonly implemented in ML,
was to evaluate the influence of the data distribution to
obtain high-performance models.

3) The kinematic features used. Using the features ex-
tracted and selected during the data analysis, we iden-
tified all the possible combinations of features that
can be generated, from a single feature to the whole
of them. Since we set 5 as the maximum number of
features, for some cases, up to 31 combinations of
features were obtained. These feature combinations
allowed us to evaluate the discriminatory ability the
features can reach individually or in combination using
the classification methods that implement them.

4) The classification method used to train the model.
The classification methods used for training the models
were developed based on the Matlab Classification
Learner app. This app offers a variety of supervised
ML methods to classify data, including decision trees,
discriminant analysis, Support Vector Machines, Lo-
gistic Regression, Nearest Neighbors, Naive Bayes,
and ensemble classification. There are several default
configurations of hyperparameters of these methods in
the app, offering a total of 25 different configurations
for the training of classification models. We integrated
all configurations into a script and applied them to the
dataset.

Given the number of combinations of features that were
possible to obtain and the diverse configurations of the clas-
sification methods, we obtained 775 different classification
models for some cases. After setting the training sets, the
testing sets were used to calculate Accuracy, Sensitivity and
Specificity. We defined Sensitivity as the capacity of a classi-
fication model to identify positive cases, that is, to identify
TP in Case 1 or PD subjects in Case 2. On the contrary,
Specificity is defined as the ability of the classification model
to identify negative cases, being HS in Case 1 or ET subjects
in Case 2. All training and testing processes were randomly
iterated 100 times for the same combinations of features and
classification methods in each of the three training/testing
divisions. Consequently, a different level of performance was
obtained in each iteration for each model. After all iterations,
the average values of Accuracy, Sensitivity, and Specificity
obtained for each classification model were calculated. The
three best classification models for Cases 1 and 2 were
identified based on the output classification metrics. Fig. 3
summarizes the whole process that was implemented for the
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development and selection of the classification models.

III. RESULTS
We divide the results of this work into two subsections. In the
first part, we evaluate the model’s capacity to differentiate TP
from HS. In the second part, we analyze the model’s ability
to differentiate patients with PD and ET.

A. DIFFERENTIATION OF TREMOR PATIENTS AND
HEALTHY SUBJECTS
Table 2 shows the results of the evaluation and selection of
features for distinguishing between TP and HS. In the 3 to
10 Hz frequency analysis, the five features with the highest
values were identical in both tests. These features were: SMP,
RPCB, HIB, HIA, and PBB. In the 1-16 Hz frequency analysis,
four of the five features identified by both tests coincided:
SMP, RPCB, HIB, and PBB.

TABLE 2. Evaluation and selection of kinematic features for the
differentiation of tremor and healthy subjects.

Feature Position 3 - 10 Hz 1 - 16 Hz
CS UT CS UT

MPF A 3.23 0.04 3.02 0.07
B 3.36 0.02 3.98 0.03

PB A 3.98 0.03 3.98 0.06
B 8.12 0.07 11.74 0.14

PPF A 3.49 0.01 3.73 0.06
B 4.76 0.03 8.12 0.08

HI A 4.76 0.06 4.76 0.07
B 9.01 0.08 9.01 0.14

RPC A 3.42 0.01 4.96 0.10
B 6.97 0.07 10.82 0.15

RE A/B 1.87 0.00 3.98 0.00
HIR A/B 0.78 0.01 0.35 0.00
SMP A+B 11.74 0.12 10.82 0.16

A, rest position. B, postural position. CS, Chi-square test. UT, Unbiased
Tree method. Bolded values correspond to the five features with the highest
discriminative values in both tests.

The upper and left side of Figure 4 shows the best models
for the differentiation of TP and HS in the frequency range
of 3-10 Hz, sorted by the three training/testing divisions.
For each division, the top 3 models were identified and
listed based on their average metrics. The SMP feature is
present in all nine models, while PBB, HIB, and RPCB are
present in two of them. The best performing classification
model shows an average accuracy of 94.3±5.6% (95.9%
sensitivity, 89.5% specificity), and an average computational
cost of 6.7±0.7 ms. This model was achieved in a 70/30
division, using the SMP feature and the Linear SVM method.
Although there are a variety of classification methods among
the nine listed, in both the 30/70 and 50/50 divisions, the
best model implemented the Logistic Regression method and
the SMP feature. On the right side, the figure visualizes
the best models obtained in the frequency analysis from 1
to 16 Hz in all training/testing divisions. Again, the three
best models were selected based on their average perfor-
mances. All models in this frequency range use SMP as a
discriminatory feature, while the PBB feature is applied in

eight of them. The best model shows an average accuracy of
97.2±3.7% (98.5% sensitivity, 93.3% specificity), and an av-
erage computational cost of 105.8±1.9 ms. There is only one
model that implements a single feature, SMP, using a 70/30
division and the Medium Tree method. The rest of the models
implement Ensemble Subspace KNN method and combine
various features. Note that the average computational cost of
the models that use the Medium Tree method with a single
feature is considerably smaller than those obtained with the
models that use the Ensemble Subspace KNN method and
multiple features.

B. DIFFERENTIATION OF PARKINSON’S DISEASE
PATIENTS VS. ESSENTIAL TREMOR PATIENTS
Table 3 shows the evaluation and selection of features for
the differentiation of PD and ET patients. In the 3-10 Hz
frequency analysis, the for each test separately identified tests
were identical: SMP, HIR, RE, RPCA, and MPFA. In the
frequency range of 1-16 Hz, only three of the five features
coincided: HIR, RE, and RPCA.

TABLE 3. Evaluation and selection of kinematic features for the
differentiation of tremor subjects: PD vs. ET.

Feature Position 3 - 10 Hz 1 - 16 Hz
CS UT CS UT

MPF A 2.70 0.03 0.54 0.02
B 0.13 0.00 0.12 0.00

PB A 0.62 0.03 1.12 0.05
B 1.12 0.02 0.62 0.01

PPF A 0.62 0.02 0.62 0.01
B 0.05 0.01 0.01 0.00

HI A 0.62 0.02 0.62 0.04
B 1.63 0.03 0.34 0.02

RPC A 1.91 0.04 1.37 0.05
B 0.12 0.01 1.63 0.02

RE A/B 3.79 0.07 5.20 0.09
HIR A/B 3.34 0.07 2.10 0.06
SMP A+B 1.91 0.04 1.91 0.01

A, rest position. B, postural position. CS, Chi-square test. UT, Unbiased
Tree method. Bolded values correspond to the five features with the highest
discriminative values in both tests.

The bottom left side of Figure 4 depicts the best models
for the differentiation of PD and ET in the frequency range
of 3-10 Hz. The top 3 models in each training/testing division
are listed, sorted by their average performance values. The
HIR feature seems to provide significant information for the
differentiation of tremor patients, since it is present in all the
models depicted. The best overall performance was achieved
in the 70/30 division, combining the HIR and MPFA features
and using the Linear SVM method. This model showed an
average accuracy of 77.8±9.9% (75.7% sensitivity, 80.0%
specificity), and an average computational cost of 5.4±0.3
ms. The right side of the figure visualizes the models with
the best performances for the differentiation of PD and ET in
the frequency range from 1 to 16 Hz. Again, the best model
can be found in the 70/30 division, with an average accuracy
of 76.1±11.8% (72.5% sensitivity, 79.7% specificity) and an
average computational cost of 26.5±1.7 ms. The feature that
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FIGURE 3. Process diagram for the development and selection of classification models.

is present in most of the models is RE, being used in eight of
the nine models shown. In the 30/70 and 50/50 divisions, the
two best classification models use the Gaussian Naive Bayes
method. In contrast, in the 70/30 division, the two best per-
formances were obtained with two different configurations of
the KNN method, obtaining the same average accuracy.

IV. DISCUSSION
The results obtained in this work show that the characteriza-
tion and differentiation between tremor in PD and ET are pos-
sible with a mobile phone’s built-in gyroscope. The accuracy
of the tremor differentiation using this sensor is comparable
to the performance obtained using a mobile phone’s built-in
accelerometer [4], [19]. Although there is a clear difference
between the number of TP (39 in total) and HS (12 in total),
the accuracy of the models differentiating the two conditions
is high. This is due to the differences in the frequency
components of the tremors that characterize both classes. By
analyzing the entire data in the frequency domain, we were
able to highlight these differences. Since the PSD in HS can
be up to 1000 times lower than in trembling subjects, we
obtained higher accuracy values than in [17], (82.43%), even
though their dataset was considerably larger than ours. Other
studies [27], [29] reported accuracy values of 82% to 100%;
however, their groups of trembling subjects only included
PD patients. In [8], [30], wearable sensors (accelerometers
and gyroscopes) were used to extract features that allowed
the implementation of ML algorithms for the differentiation
between PD and ET, reaching accuracies of 96% to 100%.
In [8], the analysis was performed in the time domain and
kinetic tremors instead of tremors in posture were analyzed.
The study performed in [30] uses accelerometry data, reg-
isters each patient for a recording time of five minutes,
and uses a newly introduced posture as well as statistical

analysis of the data’s frequency components to differentiate
the subjects. Compared to those studies, our classification
models were developed to be used during clinical follow-up,
where simple postures and short recording times are required.
The accuracy values reaches in our study are lower than those
in [8], [30], for two reasons. Firstly, they both registered
more subjects which improves the predictive ability of the
models. Secondly, the accuracy values we represent in this
study are average values of 100 random iterations in three
training/testing divisions. In single iterations, the classifi-
cation models developed for PD/ET differentiation reached
similar values. Moreover, since the aim of this work was to
evaluate whether the angular velocity signal could help to
differentiate tremor subjects using ML, we considered the
use of the default configurations of the ML methods to be
enough. In future works, we intend to analyze in detail how
to adjust the hyperparameters of the implemented models to
optimize their discriminative capacity.

The frequency ranges used to develop the models gener-
ated significant differences regarding their performance. For
the differentiation of TP and HS, the average accuracy values
obtained in the frequency analysis from 1 to 16 Hz are higher
than those obtained in the analysis from 3 to 10 Hz. These
differences could exist because the frequency range from 3 to
10 Hz includes only a part of the area in which physiological
tremors occur (8 to 12 Hz) [23], whereas the analysis of 1 to
16 Hz includes its full range. Nevertheless, the models gener-
ated in the 1 to 16 Hz range require complicated methods and
more kinematic features. For the differentiation of PD and
ET patients, the models analyzed in the 3-10 Hz frequency
range show better performance compared to those in the 1-
16 Hz frequency range. These performance differences could
be directly related to the dominant frequencies of the two
tremor types. As mentioned in the Data Analysis subsection,
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FIGURE 4. Output results of the machine-learning algorithm based on study case, range of frequency, kinematic features, and classification methods.

ST - Simple Tree, MT - Medium Tree, CT - Complex Tree, LR - Logistic Regression, LD - Linear Discriminant, QD - Quadratic Discriminant, KNB - Kernel
Naive Bayes, GNB - Gaussian Naive Bayes, LSVM - Linear Support Vector Machine, MKNN, Medium k-nearest neighbor, CKNN - Cubic k-nearest
neighbor, ESD - Ensemble Subspace Discriminant, ESKNN - Ensemble Subspace KNN.

both PD and ET tremors are located in a frequency range
between 4 and 8 Hz [9], [15], [21], [22]. Thus, the extraction
of kinematic features within a frequency range of 3 to 10 Hz
eliminates unwanted effects that are introduced by frequen-
cies outside the area of interest.

It is noticeable that the variability in the performance of the
PD/ET models listed is relatively high (5.2% to 11.8%). This
variability is influenced by the presence of atypical patient

data in each iteration since, as mentioned previously, there
are PD patients who experience postural tremors [5] and ET
patients who show tremors at rest during disease progres-
sion [9], [10]. Other variability factors are the training/testing
divisions, as the data distribution influences the performance
of the classification models. As expected, the classification
models show better performances the higher the percentage
of data in the training set. Analyzing Figure 4, the models
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for differentiating TP and HS exhibit a difference of 3.1%
when comparing 30/70 and 70/30 divisions combined with
identical features (SMP, RPCB, and PBB) and the same clas-
sification method (Ensemble Subspace KNN). The models
for differentiating PD and ET show a difference of 4.0%
when comparing 30/70 and 70/30 divisions combined with
the same features (HIR) and classification method (Logistic
regression).

Based on the presumption that the frequency components
of the pathological tremor are higher in either of the two
positions studied, SMP and HIR were introduced to improve
the differentiation between the tremor types. RE and RPC
features were proposed in [4] to improve the differentiation
between PD and ET patients, as their tremor frequency com-
ponents are different under resting or postural conditions.
Theoretically, PD patients should have higher amplitudes of
tremor at rest (position A) than postural tremor (position B),
and vice versa for patients with ET. The results obtained in
this work supported the above, the most significant feature
for the differentiation of patients with PD and ET seems to
be the novel HIR feature, as it was implemented in 12 of
the 18 best models depicted in Figure 4. Also, as already
observed in previous works [4], [19], RE and RPC features
provide essential information. The RPC feature also contains
relevant information for the differentiation of TP and HS in
both analyzed frequency ranges. However, the SMP feature
introduced in this study was most discriminative in several
of the best models; high accuracy values were reached by
only using this relative feature. Analyzing the implemented
features, it is noticeable that some of them provide more
accurate information for the differentiation of the subject
according to the Case. The features extracted in the posture
position were predominant in the models that differentiate
between subjects in Case 1. In Case 2, there is a higher
presence of features extracted in the resting position, which
is consistent with the works of [5], [8].

As it was the intention to develop high-performance clas-
sifiers and avoid classification errors, only patients with a
confirmed diagnosis of PD or ET were used to implement
the ML models. However, this also means that the patients
were already on treatment when they were registered, so
their tremors intensity was remarkably low. For this reason,
we consider that additional records should be performed on
early-stage tremor patients to prevent the effects of medica-
tion [31] or surgical suppression [32], as these are possible
causes of misclassification of patients. Another important
topic regarding the development of high-performance models
is the dataset size. Since the dataset for training and testing
of the models was small, the ML models implemented in this
study are limited in their performance. The dataset needs to
be increased to develop highly accurate models. Therefore,
in the second phase of the project, we aim to introduce a
mobile application linked to a web server that allows adding
new patient records to the already registered data. This phase
will be realized through the collaboration of an international
network of physicians and biomedical engineers using the

application. By enlarging the dataset, we expect to improve
the accuracy of the developed models or to create new models
with even higher performance and lower computational cost.

V. CONCLUSION
The angular velocity signal recorded by the gyroscope and
boosted using ML algorithms has proven to be an effective
method to differentiate between healthy subjects and tremor
patients as well as between Parkinson’s disease patients and
Essential Tremor patients. This differentiation is substan-
tially dependent on the correct selection and evaluation of
classification methods and kinematic features, as well as on
the processing and the size of the training data. The best
model to differentiate HS and TP has an average accuracy
of 97.2±3.7% (98.5% Sensitivity, 93.3% Specificity). The
average accuracy of the best model to differentiate tremor
patients with PD and ET was 77.8±9.9% (75.7% Sensitivity,
80.0% Specificity).

During the training of the models, we were able to identify
outstanding performance for some combinations of kine-
matic features, such as SMP, PBB, and RPCB, for TP and
HS differentiation, as well as HIR and MPFA for PD and ET
differentiation. Regarding the classification methods, for the
differentiation of TP and HS (Case 1), the best performances
were reached with the Linear Support Vector Machine and
Ensemble Subspace KNN methods. For the differentiation of
PD and ET (Case 2), in the frequency analysis from 3 to 10
Hz, the best performance was also obtained with the Linear
Support Vector Machine method. In contrast, in the 1-16 Hz
range, the best performance was obtained with Medium K-
nearest Neighbor method. In both cases, the Linear Support
Vector Machine models present a lower computational cost
compared to the KNN methods.

In future works, we want to combine the recordings of
accelerometer and gyroscope sensor to obtain higher clas-
sification performances and reduce the training times. The
optimized ML models developed in this research will be used
to design a low-cost and non-invasive tool (mobile app) to
support physicians in the differential diagnosis of the two
diseases, particularly in developing countries where sophisti-
cated diagnostic techniques such as 123I-FP-CIT SPECT are
not available. Additionally, we expect that the use of this tool
will help in patients with undecided diagnosis and, conse-
quently, in choosing appropriate and opportune therapeutic
actions.

REFERENCES
[1] K. P. Bhatia et al., “Consensus Statement on the classification of tremors.

from the task force on tremor of the International Parkinson and Movement
Disorder Society,” Mov. Disord., vol. 33, no. 1, pp. 75–87, Jan. 2018, doi:
10.1002/mds.27121.

[2] C. Bhavana, J. Gopal, P. Raghavendra, K. M. Vanitha, and V. Talasila,
“Techniques of measurement for Parkinson’s tremor highlighting advan-
tages of embedded IMU over EMG,” in 2016 International Conference on
Recent Trends in Information Technology (ICRTIT), 2016, pp. 1–5, doi:
10.1109/ICRTIT.2016.7569560.

[3] A. M. Woods, M. Nowostawski, E. A. Franz, and M. Purvis,
“Parkinson’s disease and essential tremor classification on mobile de-

8 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2993647, IEEE Access

Loaiza et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

vice,” Pervasive Mob. Comput., vol. 13, pp. 1–12, Aug. 2014, doi:
10.1016/j.pmcj.2013.10.002.

[4] S. Barrantes et al., “Differential diagnosis between Parkinson’s disease and
essential tremor using the smartphone’s accelerometer,” PLoS One, vol.
12, no. 8, p. e0183843, Aug. 2017, doi: 10.1371/journal.pone.0183843.

[5] P. Locatelli and D. Alimonti, “Differentiating essential tremor and Parkin-
son’s disease using a wearable sensor — A pilot study,” in 2017 7th IEEE
International Workshop on Advances in Sensors and Interfaces (IWASI),
2017, pp. 213–218, doi: 10.1109/IWASI.2017.7974254.

[6] D. B. Miller and J. P. O’Callaghan, “Biomarkers of Parkinson’s disease:
Present and future,” Metabolism., vol. 64, no. 3, pp. S40–S46, 2015, doi:
10.1016/j.metabol.2014.10.030.

[7] S. K. Nanda, W.-Y. Lin, M.-Y. Lee, and R.-S. Chen, “A quantitative
classification of essential and Parkinson’s tremor using wavelet transform
and artificial neural network on sEMG and accelerometer signals,” in 2015
IEEE 12th International Conference on Networking, Sensing and Control,
2015, pp. 399–404, doi: 10.1109/ICNSC.2015.7116070.

[8] D. Surangsrirat, C. Thanawattano, R. Pongthornseri, S. Dumnin, C. Anan,
and R. Bhidayasiri, “Support vector machine classification of Parkinson’s
disease and essential tremor subjects based on temporal fluctuation,” in
2016 38th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (EMBC), 2016, pp. 6389–6392, doi:
10.1109/EMBC.2016.7592190.

[9] F. Papengut, J. Raethjen, A. Binder, and G. Deuschl, “Rest tremor sup-
pression may separate essential from parkinsonian rest tremor,” Parkin-
sonism Relat. Disord., vol. 19, no. 7, pp. 693–697, Jul. 2013, doi:
10.1016/j.parkreldis.2013.03.013.

[10] K. Uchida, M. Hirayama, F. Yamashita, N. Hori, T. Nakamura, and G.
Sobue, “Tremor is attenuated during walking in essential tremor with
resting tremor but not parkinsonian tremor,” J. Clin. Neurosci., vol. 18,
no. 9, pp. 1224–1228, Sep. 2011, doi: 10.1016/j.jocn.2010.12.053.

[11] M. Algarni and A. Fasano, “The overlap between Essential tremor and
Parkinson disease,” Parkinsonism Relat. Disord., vol. 46, pp. S101–S104,
Jan. 2018, doi: 10.1016/j.parkreldis.2017.07.006.

[12] E. Nikfekr, K. Kerr, S. Attfield, and E. D. Playford, “Trunk movement in
Parkinson’s disease during rising from seated position,” Mov. Disord., vol.
17, no. 2, pp. 274–282, Mar. 2002, doi: 10.1002/mds.10073.

[13] G. Serrancolí, J. M. Font-Llagunes, and A. Barjau, “A weighted cost
function to deal with the muscle force sharing problem in injured subjects:
A single case study,” Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn., vol.
228, no. 3, pp. 241–251, Sep. 2014, doi: 10.1177/1464419314530110.

[14] F. P. Bernhard et al., “Wearables for gait and balance assessment in the
neurological ward - study design and first results of a prospective cross-
sectional feasibility study with 384 inpatients,” BMC Neurol., vol. 18, no.
1, p. 114, Dec. 2018, doi: 10.1186/s12883-018-1111-7.

[15] D. J. Wile, R. Ranawaya, and Z. H. T. Kiss, “Smart watch accelerometry
for analysis and diagnosis of tremor,” J. Neurosci. Methods, vol. 230, pp.
1–4, Jun. 2014, doi: 10.1016/j.jneumeth.2014.04.021.

[16] G. Kramer, A. M. M. Van der Stouwe, N. M. Maurits, M. A. J. Tijssen,
and J. W. J. Elting, “Wavelet coherence analysis: A new approach to
distinguish organic and functional tremor types,” Clin. Neurophysiol., vol.
129, no. 1, pp. 13–20, Jan. 2018, doi: 10.1016/j.clinph.2017.10.002.

[17] M. A. Raza, Q. Chaudry, S. M. T. Zaidi, and M. B. Khan, "Clini-
cal decision support system for Parkinson’s disease and related move-
ment disorders,” in 2017 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2017, pp. 1108–1112, doi:
10.1109/ICASSP.2017.7952328.

[18] H. A. González Rojas, P. C. Cuevas, E. E. Zayas Figueras, S. C. Foix,
and A. J. Sánchez Egea, “Time measurement characterization of stand-to-
sit and sit-to-stand transitions by using a smartphone,” Med. Biol. Eng.
Comput., vol. 56, no. 5, pp. 879–888, May 2018, doi: 10.1007/s11517-
017-1728-5.

[19] J. D. Loaiza Duque, A. M. González-Vargas, A. J. Sánchez Egea, and H.
A. González Rojas, “Using Machine Learning and Accelerometry Data
for Differential Diagnosis of Parkinson’s Disease and Essential Tremor,”
in Communications in Computer and Information Science, vol. 1052,
Springer, 2019, pp. 368–378.

[20] Sensorlog (Version 1.9.4) Mobile application software. Available:
http://itunes.apple.com.

[21] G. Srivani Padma, S. Umesh, U. Asokan, and T. Srinivas, “Parkinsonian
hand Tremor Measurement device based on Fiber Bragg Grating sensor,”
2015 Int. Conf. Smart Sensors Syst. IC-SSS 2015, pp. 3–5, 2017, doi:
10.1109/SMARTSENS.2015.7873611.

[22] F. Hopfner and R. C. Helmich, “The etiology of essential tremor: Genes
versus environment,” Park. Relat. Disord., vol. 46, pp. S92–S96, 2018, doi:
10.1016/j.parkreldis.2017.07.014.

[23] T. Novak and K. M. Newell, “Physiological tremor (8–12 Hz component)
in isometric force control,” Neurosci. Lett., vol. 641, pp. 87–93, Feb. 2017,
doi: 0.1016/J.NEULET.2017.01.034.

[24] E. D. Louis, “Essential tremor then and now: How views of the most
common tremor diathesis have changed over time,” Park. Relat. Disord.,
vol. 46, pp. S70–S74, 2018, doi: 10.1016/j.parkreldis.2017.07.010.

[25] O. Martinez Manzanera, J. W. Elting, J. H. van der Hoeven, and N.
M. Maurits, “Tremor Detection Using Parametric and Non-Parametric
Spectral Estimation Methods: A Comparison with Clinical Assessment,”
PLoS One, vol. 11, no. 6, p. e0156822, Jun. 2016, doi: 10.1371/jour-
nal.pone.0156822.

[26] I. Iguyon and A. Elisseeff, “An introduction to variable and feature
selection,” Journal of Machine Learning Research, vol. 3. pp. 1157–1182,
Mar. 2003, doi: 10.1162/153244303322753616.

[27] N. Kostikis, D. Hristu-Varsakelis, M. Arnaoutoglou, and C. Kot-
savasiloglou, “A Smartphone-Based Tool for Assessing Parkinsonian
Hand Tremor,” IEEE J. Biomed. Heal. Informatics, vol. 19, no. 6, pp.
1835–1842, Nov. 2015, doi: 10.1109/JBHI.2015.2471093.

[28] I. Sumaiya Thaseen and C. Aswani Kumar, “Intrusion detection model
using fusion of chi-square feature selection and multi class SVM,” J. King
Saud Univ. - Comput. Inf. Sci., vol. 29, no. 4, pp. 462–472, Oct. 2017, doi:
10.1016/j.jksuci.2015.12.004.

[29] L. M. Gil, T. P. Nunes, F. H. S. Silva, A. C. D. Faria, and P. L. Melo,
“Analysis of human tremor in patients with Parkinson disease using
entropy measures of signal complexity,” in 2010 Annual International
Conference of the IEEE Engineering in Medicine and Biology, Aug. 2010,
pp. 2786–2789, doi: 10.1109/IEMBS.2010.5626365.

[30] B. Zhang, F. Huang, J. Liu, and D. Zhang, “A novel posture for better
differentiation between Parkinson’s tremor and essential tremor,” Front.
Neurosci., vol. 12, no. MAY, 2018, doi: 10.3389/fnins.2018.00317.

[31] J. Marjama-Lyons and W. Koller, “Tremor-Predominant Parkinson’s Dis-
ease,” Drugs Aging, vol. 16, no. 4, pp. 273–278, Apr. 2000, doi:
10.2165/00002512-200016040-00003.

[32] A. P. Duker and A. J. Espay, “Surgical Treatment of Parkinson Dis-
ease,” Neurol. Clin., vol. 31, no. 3, pp. 799–808, Aug. 2013, doi:
10.1016/j.ncl.2013.03.007.

VOLUME 4, 2016 9



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2993647, IEEE Access

Loaiza et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

JULIÁN D. LOAIZA DUQUE is currently
a Ph.D. student of Mechanical, Fluids, and
Aerospace engineering at the Universitat Politèc-
nica de Catalunya. He received the B.Eng. de-
gree in Biomedical Engineering from Universidad
Autónoma de Occidente, Cali, Colombia, in 2017.
From 2018 to 2020, he was a Research Assistant
at the Universidad Autónoma de Occidente. His
research interests include biomedical signals and
image processing, bioinstrumentation, and artifi-

cial intelligence.

ANTONIO J. SÁNCHEZ EGEA is currently
an Assistant Professor at the Universitat Politèc-
nica de Catalunya. He received the M.Sc. de-
gree in Biomedical Engineering from Universi-
tat de Barcelona, Barcelona, Spain, in 2011 and
the Ph.D. degree in Mechanical Engineering from
Universitat Politècnica de Catalunya, Barcelona,
Spain, in 2016. From 2016 to 2019, he did several
postdocs at Aeronautics Advanced Manufacturing
Center in Bilbao (Spain) and Pontificia Univer-

sidad Católica de Chile (Chile). His current research interests include
biomechanical analysis, signal processing, machine learning, and advanced
manufacturing processes and systems.

THERESA REEB received her B.Sc. Degree in
Biomedical Engineering from OTH Regensburg,
Germany in 2018 and is currently finishing her
M.Sc. Degree in Biomedical Engineering at the
OTH Amberg-Weiden. In 2019, she started a re-
search exchange with the Universidad Autónoma
de Occidente and keeps working with them. Her
first-place research interests are biomechanical
analysis and signal processing.

HERNÁN A. GONZÁLEZ ROJAS is an Asso-
ciate Professor in the Universitat Politècnica de
Catalunya and a member of the research group
GAECE. He received his B.A. degree in Mechan-
ical Engineering from Universidad de Santiago
de Chile, Chile, in 1993 and the Ph.D. degree in
Industrial Engineering from Universitat Politèc-
nica de Catalunya, Barcelona, Spain, in 2009. His
research focuses on signal processing applied to
biomedical applications, biomechanical analysis,

biomedical instrumentation, and manufacturing processes.

ANDRES M. GONZÁLEZ-VARGAS received
his B. Eng. degree in Mechatronics Engineering
from the Universidad Autónoma de Occidente in
2004, followed by an M.Sc. in Biomedical Engi-
neering from Universitat de Barcelona, Barcelona,
Spain in 2011. Also, he obtained his Ph.D. degree
in Computer Science, Electronics and Electrical
Engineering in 2015 from Università di Pavia,
Italia.He is currently an Assistant Professor at Uni-
versidad Autónoma de Occidente, Colombia. His

research interests include biomedical engineering, computational biology,
engineering education and biomedical informatics.

10 VOLUME 4, 2016


