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Abstract. A new approach to calculate surface tension in a particle method is proposed. In 
particle methods, one way to calculate surface tension is introducing pairwise potential force, 
which is long-range attractive and short-range repulsive. However, the potential force acts not 
only on the surface but also inside the fluid bulk, which causes unrealistic pressure increase in 
the droplet or shrinkage of the droplet. In this study, a many-body potential is introduced for 
surface tension calculation instead of the pairwise potential. The new approach is tested in the 
droplet oscillation calculation, capillary pressure calculation and capillary rise calculation. 
The surface tension could be estimated consistently in these calculations.   

 
 
1 INTRODUCTION 

One of the advantage of particle methods is to capture the complex motion of the dynamic 
free-surface flows. It is important to take surface tension into consideration to calculate the 
free surface flows, especially in analysing fluid motion in microstructures or droplet break up 
behaviours. There are mainly two ways to calculate surface tensions in particle methods [1,2]. 
One is to introducing surface tension force by discretising the continuum surface force (CSF) 
model [3]. However, the first approach does not conserve linear momentum of the particle 
system, and it might cause strange motion of droplet. Another way is to introduce pairwise 
potential force, which is long-range attractive and short range repulsive [4-6]. This approach 
can conserve linear momentum and the formulation is much simpler than the CSF approach. 
Since the mechanical energy conservation is good with the potential force, its numerical 
stability is also good. However the pairwise potential force acts not only on the surface of the 
fluid but also acts inside the fluid bulk. Because of this force inside, unrealistic pressure 
increase in the droplet or the droplet shrinkage occurred [5]. The pairwise force tends to be 
large, and the time step width has to be small enough, which is not favourable for numerical 
efficiency.  

In this study, a new model for surface tension calculation is developed. A many-body 
potential force is introduced instead of the pairwise potential force in the context of Moving 
Particle Full-implicit (MPF) [7] method, and the new model is tested in the calculations of 
droplet oscillation, capillary pressure and capillary rise, and the surface tensions are estimated 
through these calculations.  
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2 NUMERICAL METHOD 

2.1 Incompressible calculation [7] 
To simulate incompressible free surface flows, Moving Particle Full-implicit method [7] 

was used in this study. In the method, the following governing equation was adopted.  
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Since this equation approaches to the usual incompressible Navie-Stokes (NS) equation when 
we set the parameters λ and κ large enough, it can be used instead of the incompressible NS 
equation. The first term on the right hand side is the viscosity term and the second term is 
equivalent to the pressure term in the general NS equation for incompressible flow. Here, the 
pressure is expressed as 
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In particle methods, the governing equations are replaced by particle interaction forces. 

The interaction is limited in a finite range using an effective radius re and a weight function 
wij as 
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In this study, the particle interaction models for gradient, divergence and Laplacian 
operators are formulated as 
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where wij’ is the differential of the weight function shown in Eq. (3).  The particle interaction 
models are formulated in a similar manner compared to the Smoothed Particle 
Hydrodynamics (SPH) [1] formulation, however, the weight function (Eq. (3)) instead of the 
SPH kernel function is used in this study. The differential of this weight function is non-zero 
at dij=0 so as to keep the particle arrangement uniform.  

When we discretize the governing equation (Eq.(1)) with the particle interaction models, 
the force acting on the particles are formulated as 
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where 
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Since the potential energy and dissipative function for the discretized equation can be 
written, thermodynamic consistency of the particle system after discretization is assured. It 
implies that the mechanical energy of the system monotonically decrease, and this property is 
important for stable calculation.  

The equations (5) and (6) will be a linear matrix equation whose unknowns are the velocity 
u and the pressure P. Since the coefficient matrix is symmetric, it can be solved by conjugated 
residual (CR) method. 

2.2 Surface tension model using many body potential 
The surface tension is calculated in the similar manner to the SPH pressure calculation, 

where another normalized weight function 
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is used. The parameters like density and pressure are calculated as 
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where ρ0 is the bulk density at the initial state, and a is a coefficient to control the magnitude 
of surface tension. The interaction force with respect to surface tension is formulated as 
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Because of the low particle number density close to the surface, the pressure Ps will be 
negative, and it yields the long-range attractive force, which can simulate surface tension.  

Since the force can be derived from the potential formulated as 
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it conserves mechanical energy and also the linear momentum of the system.  
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3 CALCULATIONS 
Using the same set of the parameters shown in Table 1, droplet oscillation, capillary 

pressure and capillary rise will be calculated, and surface tension σ were estimated through 
each calculation. For the uniform arrangement of the particles during the calculation, the 
effective radius for the surface tension term res should be larger than the effective radius for 
the pressure term re. It is because the range of the attractive force due to the surface tension 
term is to be larger than the range of the repulsive force due to the pressure term. 

 
Table 1: Parameters used in the calculations 

Parameters Values 
Time step Δt 0.001 
Particle spacing l0 0.01 
Mass m 0.0001 
Viscosity μ 1.0 x10-10 
Effective radius for pressure and viscosity terms re 0.015 
Bulk viscosity κ 100 
Bulk modulus λ 10000 
Effective radius res 0.032 
Coefficient in the surface tension calculation a 0.01 
 

3.1 Droplet oscillation calculation 
Figure 1 shows the initial state of the droplet oscillation calculation. The radius of the 

droplet is R=0.3 and the shear rate of 1.0 is given at the initial state. The snapshots of the 
calculation is shown in Figure 2, where the oscillating droplet can be seen.  The time history 
of the x radius of the oscillating droplet is shown in Figure 3. Even when the viscosity is set 
very small value, the oscillation decay occurred. It is because the particle method has its 
intrinsic viscosity. The surface tension σ can be estimated using the theoretical period of 
oscillation [4] 
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Since the theory is applicable for the oscillation in a small fluctuation, the oscillation 
period after decay was used to calculate the surface tension coefficient σ. With this calculation, 
it was estimated that σ=0.044.   
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Figure 1: Initial velocity in the droplet oscillation calculation 

 

 
Figure 2: Droplet oscillation calculation 
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Figure 3: History of x radius of the oscillating droplet 

 

3.2 Capillary pressure 
According to the Young-Laplace equation [4], the relation between the radius of the 

equilibrium droplet and the pressure inside the droplet is given as 

R
Pin


          (13) 

To estimate the surface tension from this equation, the equilibrium droplets having various 
radiuses R=0.1, 0.2, 0.3, 0.4, 0.5 are calculated. Since the raw pressure value suffered from 
the numerical fluctuation, the spatial-averaging and time-averaging were conducted to know 
the inner pressure of the droplets. In the spatial-averaging, the pressure calculated by Eq. (6) 
is averaged after extracting the particles near the surface.  In the time-averaging, the spatial-
averaged pressure was averaged in the time range of 1.0 after equilibrium is reached. The 
relation between 1/R and the averaged pressure Pin is shown in Figure 4. From the figure and 
Eq. (13), an approximate surface tension σ=0.037 was obtained.  

Figure 5 shows the potential energy with respect to the surface tension term. The potential 
only located on the surface while almost no potential was observed in the fluid bulk. It 
implies that the force acts only on the surface and does not cause the unrealistic pressure rise 
which was observed in the surface tension calculation using pairwise potential [5].  
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Figure 4: Relation between 1/R and inner pressure Pin 

 

 
Figure 5: Potential energy with respect to the surface tension calculation 

 

3.3 Capillary rise 
The initial state of the capillary rise calculation is shown in Figure 6. The sideward 

boundaries are set as periodic boundaries. The walls are expressed by the red fixed particles, 
at which the calculations are conducted in the same manner as at the blue moving particles 
except for the position update. The gravity g=1.0 is given. The snapshots of the calculation 
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are shown in Figure 7. After the liquid rose in between walls, it reached the equilibrium state 
at around t=3.0. Since the relation among the elevation difference h1-h2, the curvatures of the 
surfaces 1/R1, 1/R2 and surface tension σ are given as 
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in the equilibrium state [4], the surface tension can be estimated as σ=0.041, where h1-h2=0.54, 
R1=0.06 and R2=0.30 (Figure 8) were used. 

 
Figure 6: Initial state of the capillary rise calculation 

 

 
Figure 7: Capillary rise calculation 

 

0.1 0.20.2

Pe
rio

di
c 

bo
un

da
ry

Pe
rio

di
c 

bo
un

da
ry

t=0.0 t=1.0 t=2.0 t=3.0 t=4.0

468



Masahiro Kondo 

 9 

 
Figure 8: Length at the equilibrium state 

 
Though the droplet oscillation calculation, the capillary pressure calculation and the 

capillary rise calculation, the surface tensions σ were estimated. The values obtained were not 
contradictory. It implies the applicability of the new surface tension calculation model using 
many-body potential.  

4 CONCLUSIONS 
A new model for surface tension calculation is developed. A many-body potential force is 

introduced in the context of Moving Particle Full-implicit method [7]. The new surface 
tension model is tested in the calculations of droplet oscillation, capillary pressure and 
capillary rise. Since the surface tensions estimated through each calculation are not 
contradictory, it is confirmed that the new model can well express surface tension in the 
particle method.  
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