
IS - Multiscale Numerical and Experimental Analysis of Particle Systems (T-MAPPP Symposium)Accelerated heat transfer simulations using coupled CFD and DEM

1 
 

Accelerated Heat Transfer Simulations Using Coupled CFD and DEM  

Marina Sousani*, Andrew M. Hobbs1, Adam Anderson2, Richard Wood* 
* DEM Solutions LTD, 49 Queen Street, Edinburgh, EH2 3NH 

e-mail: marina.sousani@edemsimulation.com, web page: http://www.edemsimulation.com/ 
 

1Astec, Inc. 
4101 Jerome Ave. Chattanooga, Tennessee, 37407, USA 

e-mail: ahobbs@astecinc.com, web page: http://www.astecinc.com 
 

2ANSYS UK Ltd. 
Sheffield Business Park, 6 Europa View, Sheffield, S9 1XH, UK 

e-mail: adam.anderson@ansys.com 
 

 
 

Abstract 

This work presents an accelerated simulation of heat and mass transfer by coupling Discrete Element 
Methodologies (DEMs) and Computational Fluid Dynamics (CFD), utilising Graphics Processing Unit 
(GPU) technology. The presented model is a continuation of previous work[1] and focuses on 
demonstrating the capabilities and effectiveness of implementing the GPU combined with the Central 
Processing Unit (CPUs) technologies to run a complex industrial simulation. A model of an aggregate 
drum dryer was used to produce hot mix asphalt and different configurations have been implemented 
to investigate the effect of GPU-CPU technology in such a complex simulation. Commercial codes 
from ANSYS and DEM-Solutions were coupled to simulate heat transfer from the hot gases to the 
aggregate particles. Fluid flow and particle-fluid interactions are solved by the CFD solver which 
exchanges information at regular intervals. The results showed that the coupled model captures 
accurately the convective heat transfer from the fluid to the solid phase and demonstrated significant 
improvement in terms of simulation time. The proposed model will have a significant impact in 
industrial applications as it describes a methodology to simulate large-scale applications rapidly and 
accurately. 
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Introduction 

Particle simulations have been well established as a means to model complex physical systems in a 
number of fields and are becoming increasingly more important in others. Much research has been done 
in a variety of areas such as molecular dynamics, plasma physics, fluid dynamics and rock mechanics 
[2-4], where particle simulations were coupled with Computational Fluid Dynamics (CFD)[5]. The Oil 
and Gas industries have been using CFD software for many years to model fluid behaviour in reservoirs, 
saturation of residual oil, well performance, fluidisation, sedimentation and others [6-11]. Lately the 
ability to simulate larger number of particles, especially for applications where particle-particle 
interaction and particles of different shape must be considered, has given a boost to the demand for 
more coupled DEM-CFD simulations.  

Recently this type of modelling shows an increasing interest in the process manufacturing industry too. 
Hot mix asphalt (HMA) is the most common pavement surface in the U.S., which comprises around 
94% of all roads. It is also increasingly popular in airport runways in the U.S. due to its efficiency on 
takeoffs and landings, its low maintenance and fast construction time. It has been approved by the 
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Environmental Protection Agency (EPA) and is thus considered a practical solution for water storage, 
flood control, erosion and hazardous-waste landfills worldwide [12-14]. HMA is a composite material 
that consists of mineral aggregates (sand and various sizes of crushed rock) mixed together with liquid 
asphalt cement binder (a product of crude oil), laid in layers and compacted. For an efficient mixing 
process, the asphalt binder must be heated at temperatures above 180oC, to decrease its viscosity, and 
the aggregate must be dried prior to mixing [13]. Most aggregate is stored in stockpiles where the 
minimum moisture content will be that of the ambient air. A typical value for aggregate moisture content 
is 5% by mass meaning that for a nominal production rate of 320,000 kg/h of mix, 15,875 kg/h of H2O 
must be removed. Typically, half of the total heat input is required to dry the aggregate making drying 
efficiency of critical importance [1]. 

The aggregate drying process is accomplished in a counter flow drum that is positioned on a 4.7o 
inclination and contains internal metal slats (flights). The drum is heated by a direct fire burner and the 
flights lift and veil the aggregate material through the hot gases to heat and dry the aggregate particles. 
Wet aggregate is fed into the uphill end and is moved along the drum towards the burner (Figure 1). 

 
Figure 1 Schematic of the Counter-flow aggregate dryer drum. Hobbs (2009). 

 

A key challenge associated with this process is the fact that veiling performance is tied to many different 
variables including flight shape, number of flights, drum rotational speed, and fill level. At the same 
time, direct observation of this phenomenon is impossible due to the harsh internal environment of the 
drum. Part of the aim of this work is to propose a methodology that enables not only the monitoring of 
the material’s behaviour but the optimization of the flight design for increased drying efficiency. 
Furthermore, this paper presents an innovative way of accelerating such demanding simulations by 
performing DEM calculations in GPU mode while solving for the fluid in CPU mode. 
 

Numerical methods 
CFD is a very popular method amongst researchers that simulates fluid phenomena and provides 
qualitative prediction of fluid flows. A first appearance of CFD methods dates back to 1947 from the 
work of Kopal (1947) of supersonic flows on sharp cones and the first generation of CFD solutions the 
period between the 1950s and early 1960s [16-19]. Since then, the role of CFD in engineering 
predictions has been so strong that nowadays is considered a standard aspect in fluid dynamics, beyond 
the experimental and theoretical elements. A wide range of industrial applications employ CFD methods 
to study critical fluid phenomena and enhance their operations [1, 20-23]. There are commercial 
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software that have been used for modelling multiphase, combustion and heat transfer for particle flows 
including densely packed systems such as fluidized bed reactors. However, in some applications it is 
critical to account for the shape and the particle-particle interactions of the granular material, to provide 
a meaningful insight. 

DEM is a method that describes the overall (macroscopic) mechanical behaviour of assemblies of 
particle systems as the result of the interaction of their constitutive individual elements. It allows 
displacements, rotations and complete separation of the discrete elements, and recognizes any new 
contacts that are developed during the simulation [24, 25]. Initially models, which were based on the 
particle-scale, were developed in order to simulate the micromechanical behaviour of soils and sands 
(non-cohesive materials) [26], but since then it has been widely utilised in a number of studies. DEM 
has been applied in several engineering fields, such as slope stability and mining to powder technology, 
minerals and process manufacturing [3, 4, 27-32], and is considered a very efficient engineering tool.  

In nature particles rarely operate within systems that are fluid free, hence there is a need for a simulation 
methodology that can capture both the solid and the fluid mechanisms as well as the interaction between 
the two. Researchers have worked towards combining CFD techniques with the Newtonian particle 
methods used in DEM. Approaches that incorporate CFD with the DEM have been presented by Tsuji 
(1993), Tsuji (2008) and Xu and Yu (1997), where the interaction between the solid and gas phases 
have been modelled by solving Newton’s second law of motion, with respect to the motion of the 
particles, and the Navier-Stokes equation with respect to the motion of the gas. However, the majority 
of the CFD-DEM approaches involve in-house codes making them inaccessible and expensive to 
industry. This paper presents an improved version of an existing commercial product that couples the 
CFD solver (ANSYS Fluent) with the DEM solver (EDEM) from DEM Solutions. The EDEM-CFD 
coupling is employed to simulate heat transfer from a reacting natural gas flame to the particle phase in 
an aggregate dryer. 

Moreover, complex industrial applications that involve hundreds of thousands of particles are so 
computationally expensive that not even the most efficient couplings are able to support. This paper 
presents an innovative way of accelerating computationally intensive workloads by performing DEM 
calculations in GPU mode while solving for the fluid in CPU mode. The presented solver provides 
greatly reduced computational times compared to simulations on multi-core CPUs. This process has 
been performed with the use of the EDEM GPU solver engine, which has been created by DEM 
Solutions. 
 

DEM – CFD Coupling Methodology 
CFD  
In previous work [1] particle positions and interactions were solved by the DEM solver, whereas the 
volume fraction, drag, and heat transfer were calculated by the coupling interface between the solvers. 
This required significant computation outside of the solvers making this approach less efficient for 
simulations that required large number of particles. Advantage has now been taken of developments in 
Fluent since the previous coupling and the latest Fluent solver presents a more sophisticated approach. 
Specifically, in the new Dense Discrete Phase Model (DDPM) coupling the EDEM particle data are 
converted into a Discrete Phase Model (DPM) injection and the volume fraction, drag, and heat transfer 
are calculated directly by Fluent, making for a more efficient calculation. 

The volume fraction (the space occupied by each phase), in any given fluid cell, is calculated through 
an algorithm that utilises an octree method and detects those cells containing particles during the 
simulation. The flow of the fluid, around the particles, is then determined by the continuous phase flow 
while taken into account the blockage from the solid phase. Here, the volume fraction represents the 
space occupied by each phase, thus the laws of conservation of mass and momentum are satisfied by 
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each phase individually. The mass and momentum conservation equations for the particle phase 𝑝𝑝 are 
given by: 

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝛼𝛼𝑝𝑝𝜌𝜌𝑝𝑝) + ∇ · (𝛼𝛼𝑝𝑝𝜌𝜌𝑝𝑝𝑉⃗𝑉 𝑝𝑝) = ∑ (𝑚̇𝑚𝑓𝑓𝑓𝑓 − 𝑚̇𝑚𝑝𝑝𝑝𝑝)

𝑛𝑛𝑛𝑛ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑞𝑞=1
 

 
(1) 

where subscripts 𝑝𝑝 and 𝑓𝑓 refer to the solid and fluid phase, respecively  𝛼𝛼𝑝𝑝 is the volume fraction, 𝜌𝜌𝑝𝑝 is 
the density of the individual phase, 𝑉⃗𝑉 𝑝𝑝 is the velocity of the 𝑝𝑝 phase and 𝑚̇𝑚𝑝𝑝𝑝𝑝 is the mass transfer from 
the 𝑝𝑝𝑡𝑡ℎ to 𝑓𝑓𝑡𝑡ℎ phase, respectively. Similarly, the momentum conservation equation for the solid phase 
is given by:  

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝛼𝛼𝑝𝑝𝜌𝜌𝑝𝑝𝑉⃗𝑉 𝑝𝑝) + ∇ · (𝛼𝛼𝑝𝑝𝜌𝜌𝑝𝑝𝑉⃗𝑉 𝑝𝑝𝑉⃗𝑉 𝑝𝑝)

= −𝛼𝛼𝑝𝑝∇𝑝𝑝 + ∇ · [𝛼𝛼𝑝𝑝𝜇𝜇𝑝𝑝 (∇𝑉⃗⃗𝑉 𝑝𝑝 + ∇𝑉⃗⃗𝑉 𝑝𝑝𝑇𝑇)] + 𝛼𝛼𝑝𝑝𝜌𝜌𝑝𝑝𝑔𝑔 + 𝐹𝐹𝑣𝑣𝑣𝑣,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

+ ∑ (𝐾⃗⃗𝐾 𝑝𝑝𝑝𝑝(𝑉⃗𝑉 𝑝𝑝−𝑉⃗𝑉 𝑓𝑓) + 𝑚̇𝑚𝑓𝑓𝑓𝑓 𝑉⃗𝑉 𝑓𝑓𝑓𝑓− 𝑚̇𝑚𝑝𝑝𝑝𝑝 𝑉⃗𝑉 𝑝𝑝𝑝𝑝)
𝑛𝑛𝑛𝑛ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑞𝑞=1
+ 𝐾⃗⃗𝐾 𝐷𝐷𝐷𝐷𝐷𝐷(𝑉⃗𝑉 𝐷𝐷𝐷𝐷𝐷𝐷−𝑉⃗𝑉 𝑝𝑝) + 𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

  
(2) 

 

where 𝜇𝜇𝑝𝑝 is the shear viscosity of the particle phase 𝑝𝑝, 𝐾⃗⃗𝐾 𝑓𝑓𝑓𝑓 is the interphase momentum exchange 
coefficient between the fluid and particle phases, 𝐹𝐹𝑣𝑣𝑣𝑣,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 is a lift force (due to velocity gradients 
in the primary phase flow field), 𝑉⃗𝑉 𝑝𝑝 and 𝑉⃗𝑉 𝑓𝑓 are the particle and fluid velocities, respectively. 𝑉⃗𝑉 𝑓𝑓𝑓𝑓 is the 
interphase velocity and is dependent upon the mass transfer  𝑚̇𝑚𝑓𝑓𝑓𝑓.  𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is the explicit 
component of the particle sink term, and 𝑉⃗𝑉 𝐷𝐷𝐷𝐷𝐷𝐷 and 𝐾⃗⃗𝐾 𝐷𝐷𝐷𝐷𝐷𝐷 are the implicit terms of the particle averaged 
velocity of the considered discrete phase and interphase momentum exchange coefficient, respectively. 
Note that the equivalent mass/momentum conservation equations for the fluid phase follow the same 
logic. 

The fluid-solid drag function follows the Gidaspow model [36]  and  is a combination of the Wen and 
Yu model [37] and the Ergun relation [38]. When the volume fraction, 𝛼𝛼𝑝𝑝 is greater than 0.8 then the 
Wen-Yu equation is used, whereas when the volume fraction is less than 0.8 the Ergun relation is used 
[39]. Relevant modifications have been made by ANSYS for the Ergun relation (Eq.4). The fluid-solid 
exchange coefficient is given by: 

𝛼𝛼𝑝𝑝>0.8 𝐾𝐾𝑠𝑠𝑠𝑠 = 3
4 𝐶𝐶𝐷𝐷

𝛼𝛼𝑆𝑆𝛼𝛼𝑓𝑓𝜌𝜌𝑓𝑓|𝑣𝑣 𝑓𝑓 − 𝑣𝑣 𝑝𝑝|
𝑑𝑑𝑝𝑝

𝛼𝛼𝑙𝑙
−2.65 (3) 

 

𝛼𝛼𝑝𝑝<0.8 𝐾𝐾𝑠𝑠𝑠𝑠 = 150
(1 − 𝛼𝛼𝑓𝑓)2𝜇𝜇𝑓𝑓

𝛼𝛼𝑝𝑝𝑑𝑑𝑝𝑝2
+ 1.75(1 − 𝛼𝛼𝑓𝑓)

𝜌𝜌𝑓𝑓
𝑑𝑑𝑝𝑝

|𝑣𝑣 𝑓𝑓 − 𝑣𝑣 𝑝𝑝| (4) 

 

where 𝐶𝐶𝐷𝐷 is the drag coefficient,  𝑑𝑑𝑝𝑝 is the diameter of the particles in the solid phase, 𝛼𝛼𝑝𝑝 and 𝛼𝛼𝑓𝑓 are 
the volume fractions of the solid and fluid phases, respectively, and 𝑅𝑅𝑅𝑅𝑠𝑠 is the Reynold’s number at the 
terminal settling condition for a single particle and is expressed as: 

𝑅𝑅𝑅𝑅𝑠𝑠 =
𝜌𝜌𝑓𝑓𝑑𝑑𝑝𝑝|𝑣𝑣 𝑝𝑝 − 𝑣𝑣 𝑓𝑓|

𝜇𝜇𝑓𝑓
 (6) 

where 𝜌𝜌𝑓𝑓and 𝜇𝜇𝑓𝑓 are the fluid density and the dynamic viscosity, respectively.  
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The drag coefficient 𝐶𝐶𝐷𝐷 is directly dependent on the Reynolds number and it uses the following criteria: 

𝐶𝐶𝐷𝐷 = {
24/𝑅𝑅𝑅𝑅𝑠𝑠

24(1.0 + 0.15𝑅𝑅𝑅𝑅𝑠𝑠0.687)/𝑅𝑅𝑅𝑅𝑠𝑠
0.44

  
𝑅𝑅𝑒𝑒 < 0.55

0.55 < 𝑅𝑅𝑒𝑒 ≤ 1000
𝑅𝑅𝑒𝑒 > 1000

 
 
(7) 

 

For the transfer of the DEM particle phase into a DPM injection, Fluent first checks the coordinates of 
each DEM particle with the fluid cells positions and applies the effects of the particle to the cell that is 
found to contain it. However, since the particle may overlap more than one fluid cell, a Node Based 
Averaging (NBA) algorithm is used to smooth the loading, distributing the particle’s effects to 
neighbouring mesh nodes. This reduces grid dependency and computational instability by spreading the 
particle’s effects smoother across the neighbouring cells.  

Furthermore, as particles move through the fluid, thermal energy is also exchanged. The temperature 
change of each particle over time is calculated based on Equation (8). The summation of the convective 
and conductive heat fluxes [40] is given by: 

𝑚𝑚𝑃𝑃𝐶𝐶𝑃𝑃
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = ∑𝑄𝑄ℎ𝑒𝑒𝑒𝑒𝑒𝑒 

 
(8) 

 

where 𝑚𝑚𝑃𝑃, 𝐶𝐶𝑃𝑃 , and 𝑇𝑇 are the mass, specific heat and temperature of the particle material, respectively. 

∑𝑄𝑄ℎ𝑒𝑒𝑒𝑒𝑒𝑒 =𝑄𝑄𝑃𝑃𝑃𝑃 + 𝑄𝑄𝑃𝑃1𝑃𝑃2  
(9) 

𝑄𝑄𝑃𝑃𝑃𝑃 = ℎ𝑃𝑃𝑃𝑃𝐴𝐴𝑝𝑝𝛥𝛥𝑇𝑇𝑃𝑃𝑃𝑃  
(10) 

𝑄𝑄𝑃𝑃1𝑃𝑃2 = ℎ𝑐𝑐𝛥𝛥𝑇𝑇𝑃𝑃1𝑃𝑃2 (11) 

ℎ𝑐𝑐 = 4𝑘𝑘𝑃𝑃1𝑘𝑘𝑃𝑃2
𝑘𝑘𝑃𝑃1 + 𝑘𝑘𝑃𝑃2

(3𝐹𝐹𝑁𝑁𝑟𝑟∗
4𝐸𝐸∗ )

1/3
 (12) 

ℎ𝑃𝑃𝑃𝑃 = 𝑘𝑘𝐹𝐹𝑁𝑁𝑢𝑢
𝑑𝑑𝑝𝑝

  
(13) 

where, ℎ𝑃𝑃𝑃𝑃 is the convective fluid-particle heat transfer coefficient, 𝐴𝐴𝑝𝑝 is the particle surface area, 𝛥𝛥𝑇𝑇𝑃𝑃𝑃𝑃 
is the temperature difference between the fluid and the particles and 𝑄𝑄𝑃𝑃1𝑃𝑃2 is the inter-particle heat flux, 
respectively. ℎ𝑐𝑐 is the conductive heat transfer coefficient between two particles and 𝛥𝛥𝑇𝑇𝑃𝑃1𝑃𝑃2 is their 
temperature difference,  𝑘𝑘𝑃𝑃 is the thermal conductivity of the particles, 𝐹𝐹𝑁𝑁 is their normal force, 𝑟𝑟∗ is 
the geometric mean of the particles radii and 𝐸𝐸∗ is the effective Young’s modulus. The bracketed term 
of the equation models the contact area between two particles. Finally, 𝐾𝐾𝐹𝐹 is the gas thermal 
conductivity of the fluid, 𝑁𝑁𝑢𝑢 is the Nusselt number, and 𝑑𝑑𝑝𝑝 is the particle diameter. The presented model 
does not consider conductive heat transfer from the particles to the geometry. 

The Nusselt number has been computed based on the results from Ranz and Marshall (1952) for 
𝑅𝑅𝑒𝑒<200. Detailed information  regarding the process can be found in Hobbs (2009). The Nusselt number 
is given by: 

𝑁𝑁𝑢𝑢 = 2 + 0.6𝑅𝑅𝑒𝑒1/2𝑃𝑃𝑟𝑟1/3 𝑅𝑅𝑒𝑒 < 200 (14) 
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𝑃𝑃𝑃𝑃 = 𝐶𝐶𝐶𝐶
𝑘𝑘   (15) 

where 𝑅𝑅𝑒𝑒 is the Reynold’s number based on the diameter of the individual phase and the relative 
velocity |𝑢⃗𝑢 𝑝𝑝 − 𝑢⃗𝑢 𝑓𝑓| and the  𝑃𝑃𝑃𝑃 is the Prandtl number for the subsequent phase.  

 

DEM 
In DEM simulations, the main computational challenge is the detection of contacts. To address this 
EDEM uses an algorithm that utilises a Cartesian grid to search for particle contacts. In particular, the 
domain is divided into grid cells of specified size, then the algorithm checks every cell but only analyses 
those that contain two or more elements (active cells). The idealized length of a grid cell is 2-6Rmin 
where Rmin is the minimum particle radius in the simulation. This reduces the simulation time 
significantly, while the results remain unaffected by the number of grid cells. Furthermore, the EDEM 
solver utilises the Hertz–Mindlin contact model [42-44] to solve the contact forces (normal and 
tangential) between particles, including damping coefficients.  For each identified contact the resultant 
force is calculated taking into consideration the body forces. Particle velocities and new positions, as a 
result of the forces acting on them, are updated using an explicit time marching scheme. The DEM 
detection algorithm and calculation cycle are shown in Figure 2(a) and (b), respectively.  

  

 

 

Figure 2  Schematic of the detection algorithm steps applied on a representative 2D cell grid and the 
calculation cycle used in the DEM. 

Choosing the right time-step is critical when reducing the simulation time. In EDEM a time-step is 
chosen as a percentage of the Rayleigh time-step value, which refers to the time taken for a shear wave 
to propagate through a solid particle, and it is calculated based on the smallest particle of the simulation. 
The normal range is between 10-40% of the Raleigh time-step and is given by the following equation: 

𝑇𝑇𝑅𝑅 =
𝜋𝜋𝜋𝜋 (𝜌𝜌𝐺𝐺)

1/2

(0.1631𝑣𝑣 + 0.8766) 
 
(16) 

(a) (b) 
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where 𝑅𝑅 is the particle radius, 𝜌𝜌 the particle density, 𝐺𝐺 the shear modulus and 𝑣𝑣 is the Poisson’s ratio.  

Figure 3(a) and (b) describe the full coupling methodology and sequence of actions between the two 
software. EDEM provides a Coupling Interface that includes all the relevant functions that exchange 
information with Fluent, while Fluent EdemUDF is a user defined function that is loaded into Fluent 
and handles all drag and heat transfer calculations. Specifically, after setting up the DEM model, EDEM 
calculates the particles positions and velocities and the DEM-CFD coupling initiates in which the Fluent 
UDF updates the particle properties taken from EDEM and converts them such that they are passed into 
Fluent. The latter calculates the volume fraction, drag forces and heat transfer, which are then passed 
back into EDEM through the UDF and the coupling interface. In general, the DEM time-step tends to 
be smaller than in CFD and can have a difference between 10 to 1000 times. Therefore, EDEM performs 
the necessary iterations in order to catch up with the next Fluent time-step and UDF repeats its 
calculations while passing the data back to Fluent. 

  

 

 

 

 

 

 

 

 

 

Figure 3 Schematic of the EDEM-Fluent coupling logic. 

 

GPU Technology 
This project presents an innovative way of accelerating large scale industrial simulations by performing 
DEM calculations in GPU mode while calculating fluid flow in CPU mode. The EDEM GPU solver 
provides higher clock speeds compared to simulations on multi-core CPUs. 
The presented work has been performed with the use of the EDEM GPU solver engine, created and 
distributed by DEM Solutions LTD. The EDEM GPU simulation engine uses the Open Computing 
Language (OpenCL) [45] in combination with the AMD Radeon R9 Fury X graphics card for increased 
accuracy. OpenCL is an open industry language for general purpose parallel programming across CPUs, 
GPUs and other processors, that gives complete freedom to users. For example, using OpenCL allows 
a programmer to write general purpose programs that execute on GPUs without the need to map their 
algorithms onto a specific vendor’s 3D graphics API. Finally, OpenCL creates an efficient 
programming interface, consisting of an API for coordinating parallel computation across 
heterogeneous processors, and a cross-platform intermediate language with a well specified 
computation environment. 

Different parallel programming tools exist but the major advantage of using OpenCL is the fact that it 
fully supports all graphic cards, without tying the DEM user to a single GPU vendor. For example 
NVIDIA [46] is restricted in using CUDA [47], while OpenCL encapsulates NVIDIA, AMD, Intel 
Xeon Phi as well as CPUs under a common programming environment. The execution speed and 
accuracy of arithmetic operations in a computing unit is directly related to the precisión used. Most 

(a) (b) 
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computers use the floating-point format, which is an internal representation of numeric values stored in 
computer memory. This format can be categorized into the single and double precision, where the 
former requires 4 bytes (32 bits) and the latter 8 bytes (64bits). Even though increasing the number of 
bits results in increased accuracy, double precision models have much higher memory requirements. 
Thus, it is critical to select a fitting precision type for a specific application, so that a practical balance 
between accuracy and simulation time/memory is maintained. The presented results for both graphic 
cards used single precision. 

The presented work uses both the EDEM GPU and CPU solver engines and has been repeated multiple 
times under different configurations but only selected combinations will be presented herein. The set of 
simulations, shown in Table 1, used 4CPU cores for the Fluent and 30, 40 CPU cores for EDEM, 
respectively. Moreover, the same simulation was repeated twice by using the EDEM GPU solver engine 
with single precision and two different graphics cards; the AMD Radeon R9 Fury X and the NVIDIA 
Quadro GP100. 
Table 1 Configuration combinations for the coupled simulation with the use of the AMD Radeon R9 Fury X 

and the NVIDIA Quadro GP100 graphic cards. 

CPU mode 
GPU mode 

AMD Radeon R9 Fury X NVIDIA Quadro GP100 
4 Fluent/30 EDEM 

4 Fluent/4 EDEM 4 Fluent/4 EDEM 
4 Fluent/40 EDEM 

 

Simulation setup  
For this simulation the same geometry and similar setup has been used as presented in Hobbs (2009). 
Figure 4 demonstrates the 3D model of the aggregate dryer with its internal features (conveying screw 
flights, veiling flights, combustion flights). A CFD tetrahedral mesh was created by removing all the 
internal features and preserving mesh density in the burner and combustions zones, whereas a less dense 
mesh was used in the rest of the geometry. 

 

Figure 4 CAD geometry of the aggregate dryer used for the coupled DEM-CFD simulation [1]. 
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The full set of the CFD input simulation parameters are shown in Table 2. 

Table 2 CFD Input parameters 

CFD Input parameters 
Type of fluid Air 
Fluid density (kg/m3) 1.225 
Fluid viscosity (Pa·s) 1.789E-05 
Turbulence model Standard k-ε 
CFD cell type Hybrid tetrahedral hexahedral 
Cell number 7.2E+05 
CFD time-step (sec) 0.02 

 

The complete 3D drum dryer model was also imported into EDEM. A factory was defined that 
generated 539.942 discrete elements, comprised of bi-sphered particles of the same size, with a normal 
distribution and an initial temperature of 300K. The simulated results refer to 1 second of real physical 
time, after it had reached a quasi-static condition (100sec of run time). A number of trials were 
performed to determine the optimum time-step and simulating parameters, such as the cell size of the 
simulator grid. The full set of EDEM inputs are shown in Table 3. 

Table 3 EDEM Input parameters 

EDEM Input parameters 
Physics Hertz-Mindlin contact model 
Particle density (kg/m3) 2900 
Particle diameter (mm) 18 
Particle Shear modulus (Pa) 1.38E+07 
Particle Poisson’s ratio 0.25 
Geometry density (kg/m3) 7800 
Geometry Shear modulus (Pa) 7.50e+07 
Geometry Poisson’s ratio 0.30 
Particle-Particle coefficient of restitution 0.45 
Particle-Particle static friction coefficient 0.55 
Particle-Particle rolling friction coefficient 0.05 
Particle-Geometry coefficient of restitution 0.50 
Particle-Geometry static friction coefficient 0.45 
Particle-Geometry rolling coefficient 0.05 
Particle generation rate (kg/sec) 80.64 
EDEM time-step (sec) 1E-04 
Cell size (mm) 31.49 

 

Results and discussion 
To post-process the CFD-DEM results, Ensight from CEI and EDEM Analyst were used. Figure 5 
shows a side view of the aggregate dryer that demonstrates the swirling flow and the fluid-particle 
temperature distributions ranking 300-3000K and 300-1000K, respectively. The figure also includes 
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cross sections of the drum at specified points (A,B,C) showing the convective heat transfer. It can be 
observed that the neighbouring to the burner particles have higher temperatures and the fluid 
temperature is almost a 3-step decrease of flow. This indicates that as the particles are showered through 
the hot gases, thermal energy is exchanged and the heat is transferred from the fluid to the particles thus 
the fluid temperature drops. This particle-fluid behaviour is in very good agreement with the actual 
observations, validating the model. 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 5 Coupled CFD-DEM simulation of an aggregate dryer demonstrating the fluid - particle temperature 
distribution. 

Figure 6 demonstrates an inside view of the heat transfer from the fluid phase to the particle phase. It 
can be observed that the convective heat flux reaches a max value of around 190W and the simulated 
model accurately captures the dynamic state of the heat transfer along the length of the drum.   
 
The following figures illustrate the net computational time, under different configurations, for both the 
EDEM/Fluent coupling and the EDEM part of the simulation. Some representative configurations have 
been selected for discussion. Figure 7 demonstrates the total computational time of the coupled 
simulation with and without the GPU solver. Specifically, the selected simulation results in CPU mode 
(grey columns) used 8, 12 and 32CPU cores for the Fluent part of the simulation and 30 or 40CPU cores 
for the corresponding EDEM part, respectively.  It can be observed that in the first case the simulation 
took around 1.5 hours, while the simulation times dropped to 1.43 and 1.33 hours, respectively. This 
shows that even though a large number of cores have been selected, the overall simulation time is only 
slightly reduced. In contrast, the same simulation run in GPU mode with the use of the AMD Radeon 
R9 Fury X or the NIVIDIA Quadro GP100 graphic cards leads to reduced simulation times of 1.07 
hours and 57minutes, respectively. This means that the NVIDIA Quadro GP100 simulation was 1.5 
times faster on average, resulting in an average reduction time of 32%. 

 

Fluid temperature distribution 

A 
B

 

C
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Figure 6 Particle temperature distribution. Cross sections at the regions close to the burner (A), in the middle 

of the drum (B), and towards the inlet of the chute (C). 

Figure 8 follows the same logic as Figure 7 demonstrating the net computational time of the 
aforementioned configurations including only the EDEM part of the simulation. The grey columns show 
that it took between 39 and 39.25min to simulate the discrete phase for the 30 CPU (for EDEM) 
configuration and 38.88min for the 40 CPU (for EDEM) configuration. The selected configurations 
show a minor difference in terms of simulation time, whereas the same simulation took just over 6mins 
when run in GPU mode (orange column). This corresponds to an average 6.0 speed up demonstrating 
an average time reduction of 83% for the discrete calculations. 

 

Figure 7 Net computational time of the coupled simulation under different configurations in CPU mode (grey 
columns) using the AMD Radeon R9 Fury X graphic card (green), and using the NVIDIA Quadro GP100 

(orange). 
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Figure 8 EDEM computational time of the coupled simulation under different configurations in CPU mode 

(grey columns) using the AMD Radeon R9 Fury X graphic card (green), and using the NVIDIA Quadro GP100 
(orange). 

 

Conclusions 
Many industrial applications involve discrete particle flows.  Due to their transient nature, they often 
require extensive computational times and recalculation of the relevant particle physics, which makes 
such analyses impractical. Until recently the only option to run such simulations was the use of CPU 
technologies which put a barrier between efficiency and fast results. The current work demonstrates the 
capabilities and effectiveness of implementing an innovative GPU solver combined with multiple CPU 
cores to run a complex industrial simulation that models heat transfer within an aggregate drum dryer. 
The ANSYS Fluent CFD solver has being coupled with EDEM and run with and without the EDEM 
GPU solver engine. 

The results show that the coupled model not only accurately captures the particle-fluid behaviour and 
the convective heat transfer between the two, but also features very fast simulation run times. With the 
use of one of the latest GPU graphic cards (NVIDIA Quadro GP100), the net computational time of the 
coupled DEM-CFD simulation was reduced by 32% corresponding to a 1.5 speed up. Furthermore, the 
DEM part of the simulation experienced the greatest reduction in computational time with a net 
computational time reduction of 83%, making the particle calculations 6.0 times faster. More 
simulations were run with less CPU cores, for both Fluent and EDEM, and the results showed even 
larger speed ups and time reductions. This indicates that the GPU technology could be very beneficial 
in cases where less powerful workstations are used for such simulations.   

This work highlights the significance of using GPU technology for challenging coupled CFD-DEM 
calculations. This kind of analysis was previously difficult or even impossible to perform and thus has 
a major impact in large-scale industrial applications that require simulations of millions of particles. 
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