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Abstract. Detailed particle models by taking into account the material grain structure 
explicitly consider the material randomness, including a size limiter for damage localization. 
A VGMC3D contact model is presented that considers the polyhedral particle shape in an 
approximate way. The VGCM3D flexible contact model is validated against known 
experimental data on a granite rock, namely triaxial tests and Brazilian tests.  

 
1 INTRODUCTION 

Detailed rigid particle models were introduced in the study of fracture of quasi-brittle 
materials such as concrete, rock and asphalt concrete in the 1990s [1, 2, 3, 4]. More recently, 
3D rigid spherical particle models have been proposed both for rock [5, 6, 7, 11] and for 
concrete, [8, 9, 10].  

Particle models are conceptually simpler than a continuum approach, and the development 
of cracks and rupture surfaces appears naturally as part of the simulation process given its 
discrete nature. Assemblies of discrete particles connected through simple interaction laws are 
able to capture the global behaviour of quasi-brittle macro-material, such as concrete or rock. 
In rock fracture studies the bonded particle model, BPM [6], has received considerable 
attention given its known ability to model rock complex behaviour, namely in uniaxial 
compression. The BPM model, as presented in [6], does not match the ratio of the 
compressive strength to tensile strength that occurs in rock. In addition, the macroscopic 
friction angle obtained with this model in triaxial testing is much lower than the known hard 
rock experimental values.  

Wang et Tonon [12] proposed a 3D spherical particle model that gives a good agreement 
with the triaxial failure envelope obtained in Lac du Bonnet granite rock. It is shown that the 
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inclusion of a frictional term for the contact shear strength has a significant effect in the 
increase of the macroscopic friction angle. However, the ratio of compressive to tensile 
strength of Lac du Bonnet granite was not well reproduced.  A 3D particle contact model that 
allows moment transmission at the contact level and adopts a Delaunay 3D edge criteria for 
particle interaction [7] was presented. This model is shown to be able to predict the failure 
envelopes and the compressive to tensile strength ratio of a hard rock such as Lac du Bonnet 
granite. Scholtès and Donzé [11] introduced an interaction range parameter that controls the 
grain interlock. The particle model proposed by the authors is shown to be able to predict high 
ratios of tensile to compression strength. 

Particle models based on polyhedral particles, either rigid or deformable [13, 14] are 
computationally more demanding than those based on rigid spherical particles, limiting the 
number of particles to be modelled or demanding parallelization techniques.  

In this paper a 3D rigid particle model is proposed which takes into account the effect of 
polyhedral shape particles but still keeps the simplicity of spherical particle models and does 
not require a significant increase in the computational effort. With this purpose, a particle 
generation algorithm is adopted that generates polyhedral shape particles based on the 
Laguerre Voronoi diagrams [15]. The Voronoi structure is the dual structure of the weighted 
Delaunay tetrahedralization of the spherical particle gravity centres. A polyghedral particle 
model is then approximated by spherical particles that interact with each other through a 
multiple local contact scheme [7] being the contact area and the contact location given by the 
common inter-particle Laguerre Voronoi facet. A similar model has been recently proposed 
for 2D particle models [16]. The model is validated against known results of triaxial and 
Brazilian tests of a granite rock, showing a good agreement.  

FORMULATION 

2.1 Fundamentals 
In the DEM, the domain is replaced by an assembly of discrete entities that interact with 

each other through contact points or contact interfaces. The set of forces acting on each 
particle are related to the relative displacements of the particle with respect to its neighbours. 
At each step, given the applied forces, Newton's second law of motion is invoked to obtain the 
new position of the particle. The equations of motion, including local non-viscous damping, 
of a particle may be expressed as: 

𝐹𝐹𝑖𝑖(𝑡𝑡) + 𝐹𝐹𝑖𝑖𝑑𝑑(𝑡𝑡) = 𝑚𝑚𝑥̈𝑥𝑖𝑖 
(1) 

𝑀𝑀𝑖𝑖(𝑡𝑡) + 𝑀𝑀𝑖𝑖
𝑑𝑑(𝑡𝑡) = 𝐼𝐼𝜔̇𝜔𝑖𝑖

(2) 

 
where 𝐹𝐹𝑖𝑖(𝑡𝑡) and 𝑀𝑀𝑖𝑖(𝑡𝑡) are, respectively, the total applied force and moment at time 𝑡𝑡 
including the exterior contact contribution, 𝑚𝑚 and 𝐼𝐼 are respectively, the particle mass and 
moment inertia, 𝑥̈𝑥𝑖𝑖 is the particle acceleration. The damping forces using a local damping 
formulation are given by: 

𝐹𝐹𝑖𝑖𝑑𝑑(𝑡𝑡) = −𝛼𝛼|𝐹𝐹𝑖𝑖(𝑡𝑡)|𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥̇𝑥𝑖𝑖)
(3) 

𝑀𝑀𝑖𝑖
𝑑𝑑(𝑡𝑡) = −𝛼𝛼|𝑀𝑀𝑖𝑖(𝑡𝑡)|𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝑖𝑖)

(4) 
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being 𝑥̇𝑥𝑖𝑖 the particle velocity, 𝜔𝜔𝑖𝑖 the angular velocity and 𝛼𝛼 the local non-viscous damping 
parameter and the function 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) given by: 

 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) = {
+1, 𝑥𝑥 > 0
−1, 𝑥𝑥 < 0
0, 𝑥𝑥 = 0

(5) 

2.2 Voronoi-generalized contact model (VGCM-3D) 

The 3D Voronoi-generalized contact model (VGCM-3D) is based on the GCM-3D contact 
model that considers on a given circular surface a discrete number of local contact points that 
are able to transfer normal and shear forces [7]. Figures 1 a) and b) show the GCM-3D local 
contact point position for a 4 local contact point scheme. In the VGCM-3D contact model the 
contact surface and the contact point location are defined by the Voronoi tessellation. The 
common Voronoi facet is considered to be the contact surface and the vertexes of the Voronoi 
facet including the gravity centre of the Voronoi facet are considered to be the local contact 
point location, Figure 1 c) and d). In the GCM-3D contact models, the contact unit normal is 
defined given the particles centre of gravity and the inter-particle distance: 

𝑛𝑛𝑖𝑖 =  𝑥𝑥𝑖𝑖
[𝐵𝐵] − 𝑥𝑥𝑖𝑖

[𝐴𝐴]

𝑑𝑑

(6) 

 
The contact overlap for the reference contact point and its location, are given by: 
 

𝑈𝑈𝑛𝑛 = 𝑅𝑅[𝐴𝐴] + 𝑅𝑅[𝐵𝐵] − 𝑑𝑑 (7) 

 
The VGCM-3D contact model reference contact point, 𝑥𝑥𝑖𝑖

[0], is defined at the associated 
Voronoi cell facet using: 

𝑥𝑥𝑖𝑖
[0] = 𝑥𝑥𝑖𝑖

[𝐴𝐴] + (𝑅𝑅[𝐴𝐴] − 1
2 𝑈𝑈𝑛𝑛 − 𝑑𝑑𝑣𝑣) 𝑛𝑛𝑖𝑖

(8) 

 
where 𝑑𝑑𝑣𝑣 is the distance along the contact normal between the PCM geometric contact plane, 
Figure 1 a), of the two spherical particles in contact and the adopted contact plane as defined 
by the corresponding Voronoi cell facet, Figure 1 c).  

The local contact point position (𝑥𝑥𝑖𝑖
[𝐽𝐽]) in global coordinates is defined relative to the 

reference local contact point. A local (𝑡𝑡, 𝑠𝑠) axis centred at the reference local contact point is 
adopted and the relative position of the local points in the local axes, Figures 1 b) and d), are 
defined at the beginning of the calculation. The contact point position of each local point is 
then defined in global coordinates using: 

 

𝑥𝑥𝑖𝑖
[𝐽𝐽] = 𝑥𝑥𝑖𝑖

[0] + 𝑠𝑠[𝐽𝐽]𝑥𝑥𝑖𝑖
[𝑠𝑠] + 𝑡𝑡[𝐽𝐽]𝑥𝑥𝑖𝑖

[𝑡𝑡] (9) 

  

where: 𝑥𝑥𝑖𝑖
[𝑠𝑠] and 𝑥𝑥𝑖𝑖

[𝑡𝑡] are the local 𝑠𝑠 axes and local 𝑡𝑡 axes, respectively, expressed in global 
coordinates, assuming that 𝑠𝑠 × 𝑡𝑡 = 𝑛⃗⃗𝑛. The contact forces that are acting at each local contact 
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point can be decomposed into its normal and shear component with respect to the contact 
plane: 

 

 

 

a) (t, n) plane b) (t, s) plane 

 

 

c) (t, n) plane d) (t, s) plane 
 
 Figure 1: GCM-3D contact model with 4 local points considering an approximated circular contact surface a) and b) 

and VGCM-3D contact model with variable number of local points given by the Voronoi facet vertexes and gravity centre c) and 
d) 
 

𝐹𝐹𝑖𝑖
[𝐽𝐽] = 𝐹𝐹𝑖𝑖

[𝑛𝑛,𝐽𝐽] + 𝐹𝐹𝑖𝑖
[𝑠𝑠,𝐽𝐽] (10) 

 
The contact velocity of a given local contact point, which is the velocity of particle B 

relative to particle A, at the contact location is given by: 
 

𝑥̇𝑥𝑖𝑖
[𝐽𝐽] = (𝑥̇𝑥𝑖𝑖

[𝐽𝐽])
𝐵𝐵
− (𝑥̇𝑥𝑖𝑖

[𝐽𝐽])
𝐴𝐴

 

= (𝑥̇𝑥𝑖𝑖
[𝐵𝐵] + 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝜔𝜔𝑗𝑗

[𝐵𝐵](𝑥𝑥𝑘𝑘
[𝐽𝐽] − 𝑥𝑥𝑘𝑘

[𝐵𝐵])) − (𝑥̇𝑥𝑖𝑖
[𝐴𝐴] + 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝜔𝜔𝑗𝑗

[𝐴𝐴](𝑥𝑥𝑘𝑘
[𝐽𝐽] − 𝑥𝑥𝑘𝑘

[𝐴𝐴]))

(11) 

 
where, 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 is the permutation tensor. The contact displacement normal increment (∆𝑥𝑥[𝐽𝐽,𝑁𝑁]) 

stored as a scalar and shear increment (∆𝑥𝑥𝑖𝑖
[𝐽𝐽,𝑆𝑆]) stored as a vector, are given by: 
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∆𝑥𝑥[𝐽𝐽,𝑁𝑁] = (𝑥̇𝑥𝑖𝑖
[𝐽𝐽]∆𝑡𝑡)𝑛𝑛𝑖𝑖

(12) 

 

∆𝑥𝑥𝑖𝑖
[𝐽𝐽,𝑆𝑆] = (𝑥̇𝑥𝑖𝑖

[𝐽𝐽]∆𝑡𝑡)−∆𝑥𝑥[𝐽𝐽,𝑁𝑁]𝑛𝑛𝑖𝑖
(13) 

 
The local contact overlap is defined incrementally for the local points based on the current 

contact velocity time step (∆𝑡𝑡): 

𝑈𝑈𝐽𝐽,𝑛𝑛 = 𝑈𝑈𝐽𝐽,𝑛𝑛 𝑜𝑜𝑜𝑜𝑜𝑜 + (𝑥̇𝑥𝑖𝑖
[𝐽𝐽]𝑛𝑛𝑖𝑖)∆𝑡𝑡

(14) 

 
Given the normal and shear stiffness of the local contact point, the normal and shear forces 

increments are obtained following an incremental linear law: 
 

∆𝐹𝐹[𝐽𝐽,𝑁𝑁] = −𝑘𝑘𝑛𝑛
[𝐽𝐽]∆𝑥𝑥[𝐽𝐽,𝑁𝑁] (15) 

 

∆𝐹𝐹𝑖𝑖
[𝐽𝐽,𝑆𝑆] = −𝑘𝑘𝑠𝑠

[𝐽𝐽]∆𝑥𝑥𝑖𝑖
[𝐽𝐽,𝑆𝑆] (16) 

 
The predicted normal and shear contact forces acting at the local contact point are then 

updated by applying the following equations: 
 

𝐹𝐹[𝐽𝐽,𝑁𝑁 𝑛𝑛𝑛𝑛𝑛𝑛] = 𝐹𝐹[𝐽𝐽,𝑁𝑁 𝑜𝑜𝑜𝑜𝑜𝑜] + ∆𝐹𝐹[𝐽𝐽,𝑁𝑁] (17) 

𝐹𝐹𝑖𝑖
[𝐽𝐽,𝑁𝑁 𝑛𝑛𝑛𝑛𝑛𝑛] = 𝐹𝐹𝑖𝑖

[𝐽𝐽,𝑆𝑆 𝑜𝑜𝑜𝑜𝑜𝑜2] + ∆𝐹𝐹𝑖𝑖
[𝐽𝐽,𝑆𝑆] (18) 

 
Given the predicted normal and shear contact forces the adopted constitutive model is 

applied, if the predicted forces do not satisfy the constitutive model it is necessary to carry out 
adjustments. The resultant contact force at the local contact point is then given by: 

 

𝐹𝐹𝑖𝑖
[𝐽𝐽] = 𝐹𝐹[𝐽𝐽,𝑁𝑁]𝑛𝑛𝑖𝑖 + 𝐹𝐹𝑖𝑖

[𝐽𝐽,𝑆𝑆] (19) 

 
At the reference contact point the resultant contact force and contact moment are defined 

given the contribution from all contact points: 

𝐹𝐹𝑖𝑖
[𝐶𝐶] = ∑ 𝐹𝐹𝑖𝑖

[𝐽𝐽]

𝐽𝐽

(20) 

𝑀𝑀𝑖𝑖
[𝐶𝐶] = − ∑ 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥𝑗𝑗

𝐽𝐽 − 𝑥𝑥𝑗𝑗
0)𝐹𝐹𝑘𝑘

𝐽𝐽

𝐽𝐽

(21) 

The contact force and moment are then transferred to the centre of gravity of each particle 
in contact through: 
 

𝐹𝐹𝑖𝑖
[𝐴𝐴] = 𝐹𝐹𝑖𝑖

[𝐴𝐴] − 𝐹𝐹𝑖𝑖
[𝐶𝐶] (22) 

𝐹𝐹𝑖𝑖
[𝐵𝐵] = 𝐹𝐹𝑖𝑖

[𝐵𝐵] + 𝐹𝐹𝑖𝑖
[𝐶𝐶] (23) 
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𝑀𝑀𝑖𝑖
[𝐴𝐴] = 𝑀𝑀𝑖𝑖

[𝐴𝐴] − 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥𝑗𝑗
[0] − 𝑥𝑥𝑗𝑗

[𝐴𝐴])𝐹𝐹𝑘𝑘
[𝐶𝐶] − 𝑀𝑀𝑖𝑖

[𝐶𝐶] (24) 

𝑀𝑀𝑖𝑖
[𝐵𝐵] = 𝑀𝑀𝑖𝑖

[𝐵𝐵] + 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥𝑗𝑗
[0] − 𝑥𝑥𝑗𝑗

[𝐵𝐵])𝐹𝐹𝑘𝑘
[𝐶𝐶] + 𝑀𝑀𝑖𝑖

[𝐶𝐶] (25) 

 

2.3 Numerical stability   

When only a steady state solution is sought, a mass scaling algorithm is adopted in order to 
reduce the number of timesteps necessary to reach the desired solution. The particle mass and 
inertia are scaled so that the adopted centred-difference algorithm has a higher rate of 
convergence for a given loading step. The particle scaled mass and inertia used in the 
calculations are set assuming a unit time increment (𝛥𝛥𝛥𝛥 = 1) given the particle stiffness at a 
given time through: 

𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 0.25𝐾𝐾𝑡𝑡
(26) 

𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 0.25𝐾𝐾𝜃𝜃
(27) 

 
An upper bound expression for the total particle translation stiffness 𝐾𝐾𝑡𝑡 and of the total 
rotational stiffness 𝐾𝐾𝜃𝜃 can be found in [7]. 

2.4 Local contact stiffness and local contact strength  

The VGCM-3D model requires the user definition of the contact deformability parameters, 
namely the Young’s modulus of the equivalent continuum material (𝐸̅𝐸) and the constant that 
relates the normal and the shear stiffness spring value (𝜂𝜂). In this work the local contact 
normal and shear stiffness are given by: 

 

𝑘𝑘𝑛𝑛[𝐽𝐽] =
𝐸̅𝐸
𝑑𝑑 𝐴𝐴𝑐𝑐

[𝐽𝐽]
(28) 

𝑘𝑘𝑠𝑠[𝐽𝐽] = 𝜂𝜂𝑘𝑘𝑛𝑛[𝐽𝐽]
(29) 

 
where, Ac

[J] is the contact area associated with the local point 𝐽𝐽 and 𝑑𝑑 is the distance between 
the particles centre of gravity. In this work the contact geometry is equal to the 3D Voronoi 
facet [15]. In the VGCM-3D contact model the Voronoi facet is triangulated as indicated in 
Figure 1 d) and the contact area associated with the local contact point is defined by the sum 
of one third of the area of the associated triangles.  

For the local inter-particle contacts the VGCM-3D model also requires the definition of the 
contact strength properties, the maximum contact tensile stress (𝜎𝜎𝑛𝑛.𝑡𝑡), the maximum contact 
cohesion stress (𝜏𝜏) and the contact frictional term (𝜇𝜇𝑐𝑐). The maximum contact local tensile 
strength (𝐹𝐹𝑛𝑛.𝑚𝑚𝑚𝑚𝑚𝑚

[𝐽𝐽] ) and the maximum local contact shear strength (𝐹𝐹𝑠𝑠.𝑚𝑚𝑚𝑚𝑚𝑚
[𝐽𝐽] ) are defined given the 

user-specified contact strength properties and the current local contact normal force (𝐹𝐹𝑛𝑛
[𝐽𝐽]) as 

follows: 
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𝐹𝐹𝑛𝑛.𝑚𝑚𝑚𝑚𝑚𝑚
[𝐽𝐽] =  𝜎𝜎𝑛𝑛.𝑡𝑡 𝐴𝐴𝑐𝑐

[𝐽𝐽] (32) 

𝐹𝐹𝑠𝑠.𝑚𝑚𝑚𝑚𝑚𝑚
[𝐽𝐽] =  𝜏𝜏 𝐴𝐴𝑐𝑐

[𝐽𝐽] + 𝐹𝐹𝑛𝑛
[𝐽𝐽] 𝜇𝜇𝑐𝑐 =  𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚

[𝐽𝐽] + 𝐹𝐹𝑛𝑛
[𝐽𝐽] 𝜇𝜇𝑐𝑐 (33) 

where 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚
[𝐽𝐽]  is the adopted maximum local contact cohesion strength. Figure 2 shows the 

adopted bilinear softening contact model under tension and shear, more details can be found 
in [7] regarding the model implementation.  
 

 

 

a) Normal direction 
 

b) Shear direction 
 

 Figure 2: Constitutive model with bilinear softening under tension and shear 

2.5 Particle scheme generation 
A particle generation scheme has been implemented which generates polyhedral shaped 

particles based on the Laguerre-Voronoi diagrams [15] using a weighted Delaunay 
tetrahedralization of the spherical particle gravity centres. A Laguerre tesselation is preferred 
to a traditional tessellation because it generates Voronoi diagrams with facets closer to the 
geometric PCM contact planes when considering two particles in contact. The initial particle 
assembly grain structure is constructed by first introducing spherical particles with half of 
their radius to ensure that the particles do not overlap with each other, Figure 3 a). Then the 
real particle radius is adopted, and a DEM cohesionless type solution is obtained, leading to a 
redistribution of the particle overlap throughout the assembly, Figure 3 b).  

 

  

 

a) Half radius insertion b) Final assembly c) VGCM-3D (Voronoi facet) 
 Figure 3: VGCM-3D particle assembly and VGCM-3D inter-particle contact 
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3 TRIAXIAL AND BRAZILIAN TESTS IN A GRANITE ROCK 

3.1 Numerical setup 
The proposed VGCM-3D model is validated against known uniaxial, triaxial and Brazilian 

tests in a granite rock [17]. The numerical uniaxial tests, without lateral confinement pressure, 
and the triaxial tests with lateral confinement pressure are performed in cylindrical specimens 
with a diameter of 80 mm and a height of 160 mm. The Brazilian tests are performed in 
cylindrical specimens with a diameter of 80 mm and a thickness of 40 mm. For both 
geometries, a uniform diameter distribution ranging from 4 to 6 mm was adopted. The 
uniaxial and triaxial tests assemblies have on average 7988 particles, and the Brazilian tests 
have on average 1997 particles, Figure 4. 

 

  
 

a) Uniaxial test (tensile and 
compression) b) Triaxial test c) Brazilian test 

 Figure 4: Discrete element model GCM-3D boundary conditions  

3.2 Deformability parameters 
The influence of the contact deformability parameters, the Young’s modulus of the 

equivalent continuum material (𝐸̅𝐸) and the constant that relates the shear and normal stiffness 
spring value (𝜂𝜂), on the elastic macroscopic properties, Young’s modulus (E) and Poisson’s 
coefficient (𝜈𝜈), are assessed. Two sets of tests were carried out. In the first set of tests the 
macro-properties were obtained by fixing constant values of 𝐸̅𝐸 (0.5𝐸̅𝐸, 1.0𝐸̅𝐸 and 2.0𝐸̅𝐸) and 
varying the ratio of normal to shear stiffness. In the second set of tests the macro-properties 
were obtained by fixing constant values of 𝜂𝜂 (0.0, 0.25, 0.50, 0.75 and 1.0) and varying the 
elastic contact constant 𝐸̅𝐸. Assuming a 𝐸̅𝐸 value equal to 48.8 GPa. 

Figure 5 a) and c) shows that the material Young’s modulus is related to both elastic 
contact model parameters, being more influenced by the ratio of normal to shear stiffness (𝜂𝜂) 
for higher elastic contact values (E̅). Figure 5 b) and d) shows that the material Poisson’s 
coefficient is mainly influenced by the ratio of normal to shear stiffness. Similar results were 
found in [7, 12]. 
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a) Macroscopic Young’s modulus for varying η b) Macroscopic Poisson’s coefficient for varying 𝜂𝜂 

  
c)  Macroscopic Young’s modulus for varying 𝐸̅𝐸 d) Macroscopic Poisson’s coefficient for varying 𝐸̅𝐸 
 Figure 5: VGCM3D influence of the contact deformability parameters (𝐸̅𝐸 and 𝜂𝜂) on the elastic macroscopic 

properties (𝜈𝜈) 

3.3 Calibrated brittle and bilinear softening models 

The VGCM-3D with a brittle contact force displacement model (VGCM-3D 𝐺𝐺𝑒𝑒𝑒𝑒) and the 
VGCM-3D with a contact force model following a bilinear softening model (VGCM-3D 
9.5𝐺𝐺𝑒𝑒𝑒𝑒) were calibrated in order to achieve the set of deformability and strength parameters 
that predicts numerical results closer to Augig granite experimental data.  For the VGCM-3D 
9.5𝐺𝐺𝑒𝑒𝑒𝑒, a contact fracture energy equal to 9.5 times the energy of the fracture branch was 
adopted in tension and shear. In the VGCM-3D 𝐺𝐺𝑒𝑒𝑒𝑒 brittle model the contact energy adopted 
in tension and shear directions corresponds to the fracture energy associated with the elastic 
branch.  

Table 1 summarizes the micro-properties adopted for each contact model and Table 2 
presents the known macroproperties of the Augig Granite and the macroscopic numeric 
response. Figure 6 shows the strength envelope obtained with the VGCM-3D Gel and with the 
VGCM-3D 9.5Gel contact models. For both models, the vertical maximum stress-strain 
values with 0, 3, 6, 9 and 12 MPa confinement pressures are presented. In the presented 
strength envelope, the plotted tensile strength values correspond to the indirect tensile strength 
values. 

As shown in Table 2 and in Figure 6, the VGCM-3D particle model here proposed is 
capable of representing the failure envelope and the compressive to tensile strength ratio of a 
hard rock such as Augig granite. Further, it is shown that by including a bilinear softening law 
at the contact level (VGCM-3D 9.5Gel), the particle model here presented is capable of 
predicting a direct tensile to indirect tensile ratio closer to that expected in rock (the indirect 
tensile strength is usually higher than the direct tensile strength value).  
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Table 1 – Calibrated Micro-properties adopted in VGCM-3D particle models 

 𝐸̅𝐸  
[𝐺𝐺𝐺𝐺𝐺𝐺] 𝜂𝜂 𝜇𝜇𝑐𝑐 𝜎𝜎𝑛𝑛.𝑡𝑡  

[𝑀𝑀𝑀𝑀𝑀𝑀] 𝜏𝜏 [𝑀𝑀𝑀𝑀𝑀𝑀] 𝐺𝐺𝑓𝑓.𝑛𝑛  
[𝑁𝑁 𝑚𝑚⁄ ] 

𝐺𝐺𝑓𝑓.𝑠𝑠  
[𝑁𝑁 𝑚𝑚⁄ ] 

VGCM-3D 𝐺𝐺𝑒𝑒𝑒𝑒 48.8 0.125 0.05 35.5 106.5 6.8 3275.2 
VGCM-3D 9.5𝐺𝐺𝑒𝑒𝑒𝑒 11.4 88.5 64.6 3114.4 

 
 

Table 2 - Augig granite macro-properties and numerical macro-properties 

 𝐸𝐸  
[𝐺𝐺𝐺𝐺𝐺𝐺] 𝜈𝜈 𝑞𝑞𝑢𝑢  

[𝑀𝑀𝑀𝑀𝑀𝑀] 
𝜎𝜎𝑡𝑡.𝑑𝑑𝑑𝑑𝑑𝑑  
[𝑀𝑀𝑀𝑀𝑀𝑀] 

𝜎𝜎𝑡𝑡.𝑖𝑖𝑖𝑖𝑖𝑖
 

 [𝑀𝑀𝑀𝑀𝑀𝑀] 
𝑐𝑐  

[𝑀𝑀𝑀𝑀𝑀𝑀] 
𝜑𝜑 

 [°] 
Augig granite [17] 25.8 0.23 122.1 - 8.8 21.0 53.0 

VGCM-3D 𝐺𝐺𝑒𝑒𝑒𝑒 
calibrated 25.8 0.23 

125.2 16.4 8.9 27.1 43.2 

VGCM-3D 9.5𝐺𝐺𝑒𝑒𝑒𝑒 
calibrated  124.5 7.4 9.1 24.8 46.6 

 

 

 

 
 Figure 6: Strength Envelope: VGCM-3D Gel and VGCM-3D 9.5Gel contact models  

  
a) VGCM-3D Gel calibrated  b) VGCM-3D 9.5Gel calibrated 
 Figure 7: Vertical stress-strain curves for the different confinement pressures 

 
Figure 7 shows the axial stress–strain response for the uniaxial and the triaxials tests 

obtained with the VGCM-3D calibrated models for a lateral confinement of 3, 6, 9 and 12 
MPa. As shown in Figure 7 the consideration of a bilinear softening law in tension and shear 
does not lead to an unrealistic ductile macroscopic response. It is verified that the GCM-3D 
Gel calibrated has an extremely brittle response, presenting an inflection point in the stress-
strain curves. This inflection point reveals an unexpected loss in the material strength for 
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stress values lower than the ultimate vertical stress values. This behaviour is more pronounced 
for lower lateral confinement pressures (0 and 3 MPa). The increase in the lateral confinement 
pressures increases the ductility of the stress-strain curves. Comparing both models, the 
stress-strain curves obtained with the GCM-3D 9.5Gel calibrated model have a less brittle 
response when compared to the stress-strain curves obtained with the GCM-3D Gel calibrated 
model.  

Figure 8 shows the crack patterns obtained in uniaxial compression, direct tensile, triaxial 
with confinement stress of 9 MPa and in an indirect tensile test (Brazilian) for the VGCM-3D 
9.5Gel calibrated model. As can be seen, the crack patterns obtained for the different tests are 
accordingly to the expected. In the uniaxial compression test without friction between the 
horizontal walls and the particle assembly the development of vertical cracks, Figure 8 a). The 
increase of confinement stress leads to a development of shear surfaces with a given 
inclination, as observed in Figure 8 c). In the direct tensile test the rupture surface is 
perpendicular to the load direction, and in the indirect tensile test the rupture surface is 
parallel to the load direction.  

 

   

 

a) Uniaxial compression 
test 

b) Direct tensile test c) σl = 9 MPa d) Brazilian test 

 Figure 8: VGCM-3D 9.5Gel calibrated final fracture patterns 

4 CONCLUSIONS 
A generalized 3D contact model, VGCM-3D, which enables moment transmission and 

contact discretizations with multiple local contact points is presented. The contact geometry 
and location are given by the Laguerre–Voronoi diagram facets, and the neighbouring 
particles are considered to interact if a common Voronoi facet is shared. By incorporating the 
VGCM-3D as described, the rigid particle model takes into account the polyhedral  shaped 
particles in an approximate way, but still keeps the simplicity of spherical particle models and 
does not require a significant increase in the computational effort. 

The results presented highlight the need to incorporate a bilinear softening constitutive 
model at the contact level to obtain a better agreement between the direct tensile strength and 
the indirect tensile strength. The latter ratio cannot be correctly predicted with a simple brittle 
model. It is also shown that particle assemblies with bilinear softening contact laws still 
predict a brittle macroscopic response under tensile, compression and biaxial state of stress. 
The bilinear contact model, for the level of contact fracture energy adopted, does not change 
significantly the fracture processes, it mainly slows down the rupture evolution and slightly 
induces a higher localization of the final crack patterns. 

Finally the model shows a good agreement with known results of triaxial and Brazilian 
tests of a granite rock.  
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