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Abstract. Air inside the enclosure of a belt elevator may be brought into motion both by 
moving bucket belt and by spillage flows during loading and unloading of buckets. Initial 
findings from studies performed to evaluate air motion in ducts with mobile partitions have 
been published in our earlier monographs [1-3]. Here we’ll consider the process of air ejection 
in bucket elevators from the standpoint of classical laws of change in air mass and 
momentum. Direction of airflow inside enclosures of the carrying and return runs of a bucket 
elevator is determined by the drag of buckets and moving conveyor belt as well as ejection 
head created by a stream of spilled particles when buckets are unloaded. As a result of these 
forces acting together inside an enclosure, differential pressure arises. This differential 
pressure is equal to the sum total of ejection heads created by conveyor belt with buckets kE  
and flow rate of spilled material pE  minus aerodynamic drag of enclosure walls. 
The ejection head kE  created by a bucket-carrying conveyor belt is determined by 
aerodynamic coefficient ekс  (proportional to the number of buckets, their head resistances and 
squared mid-sectional dimensions) together with an absolute value and the direction of bucket 
velocity relative to the velocity of airflow inside the enclosure. Ejection head of spilled 
particles pE  depends on the drag coefficient of particles, their size and flow rate, as well as 
the enclosure length, enclosure cross-section and relative flow velocity of particles. 
When both the carrying and return runs of the conveyor belt are located in a common 
enclosure, the velocity of forward airflow varies over its length as a result of cross-flows of 
air through gaps between the conveyor runs and enclosure walls. Cross-flows are caused by a 
differential pressure between the carrying and return run enclosures and is dependent on the 
drag of the gap. Cross-flow direction depends on the ratio between vp  and up . 
Given identical size of elevator enclosures, change in absolute values of longitudinal 
velocities is identical and depends on absolute values of cross-flow velocities and geometrical 
dimensions of the gap, as well as enclosure cross-section. The momentum of longitudinal 
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airflow in this case is determined by variable magnitudes of aerodynamic forces of buckets 
due to changes in their relative motion velocities. 
The flow rate of air in enclosures may be determined by numerically integrating three 
dimensionless combined differential equations.  

1 INTRODUCTION 
Let’s now consider ejection properties of a bucket-belt elevator. Air inside the enclosure of 

a belt elevator may be brought into motion both by moving bucket belt and by spillage flows 
during loading and unloading of buckets. Initial findings from studies performed to evaluate 
air motion in ducts with mobile partitions have been published in our earlier monographs [1-
3]. Here we’ll consider the process of air ejection in bucket elevators from the standpoint of 
classical laws of change in air mass and momentum. 

2 THE RESULTS OF THE STUDY 

Let’s begin with considering airflow in a duct of elevator return line of length dx  (Fig. 1). 
For this area we can a momentum conservation equation can be written in projections onto 
axis 0x  directed vertically downwards. We’ll formulate a one-dimensional problem 
assuming that the velocity of ejected air is directed downwards and is equal to the cross-
sectional average: 

;Qu
S

  S ab ,                                               (1) 

where Q  is the flow rate of air ejected inside the duct (m3/s); a, b are cross-sectional 
dimensions of the duct (m) 

The tangential frictional stress on the surface of a moving belt is equal to 

 
ρ

2
e e

l l

v u v u
c

 
 ,                                              (2) 

where lc  is a dimensionless resistance coefficient, ev  is the velocity of elevator belt (m/s). 
Similarly, tangential frictional stress on the surface of enclosure walls is 

τ ρ
2w w

u u
c ,                                                (3) 

where wc  is a dimensionless resistance coefficient of enclosure walls.  
It is known that coefficients lc , wc  are related to friction coefficients in the Darcy-

Weisbach equation for determining pressure losses in straight pipe sections 
λ
4

l
lc  ; λ

4
w

wc  , 

where λl  is the hydraulic friction coefficient of the belt; λw  is the hydraulic friction 
coefficient of enclosure walls. 

The aerodynamic force of a bucket, expressed similarly to the aerodynamic force of 
particles, is 
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 
ρ

2
e e

k k k

v u v u
R c F

 
 ,                                         (4) 

where kF  is the mid-section area of a bucket  k k kF A B  (m2), kc  is the drag coefficient of 
an empty bucket. 
 

 
Figure 1: Diagram of forces acting on an element of elevator return run enclosure with a length dx  

 
In this case the equation for change in momentum would appear as: 

     ρ ρuS u u du S u du      

    βτ 2 τw l l k z
k p

dx dxSpS p dp S b a dx B dx R R
l V

        ,         (5) 

where kl  is the spacing of buckets on the belt (m); β  is volumetric concentration of grain 
spillage, equal to 

β
ρ

p

z z

G
Sv

 ;                                                   (6) 

pG  is the mass flow rate of grain spillage during bucket unloading (kg/s) 
ρ z  is grain density (kg/m3) 
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zv  is the fall velocity of grain (m/s) 

pV   is the volume of an individual particle (m3) 

zR  is the aerodynamic force of a single particle of spilled material, 

 
ψ ρ

2
z z

z z z

v u v u
R F

 
 ;                                    (7) 

zF  is the mid-section area of a particle (m2) 
2π

4
e

z
d

F  ;                                                (8) 

ed is equivalent grain diameter (m). 
Considering that, in this case,  

constu  ,                                                        (9) 

after a trivial transformation of equation (5), ignoring infinitesimal second-order terms, we’ll 
obtain the following relation for determining differential pressure inside the enclosure of the 
return run of the elevator: 

(0) ( ) k p wp p l E E p    ,                                              (10) 

where (0), ( )p p l  are static pressures at the inlet/outlet of the enclosure (Pa) 

wp  is aerodynamic drag of enclosure walls (Pa) 
2

0

2λ ρ
4 2

l

w w
a b up dx

S


  ,                                               (11) 

equal at constu   and constS   
2

λ ρ
2w w

w

l up
D

 ,                                                  (12) 

4
2w
SD

b a



,                                                      (13) 

l  is the total length of elevator enclosure (distance between the axes of driving and return 
drums along the belt of the bucket elevator) (m); kE  is ejection head created by a conveyor 
belt with buckets: 

 
0

λ1 ρ
4 2

l
e ek l

k k l
k

v u v uF
E c В dx

S l
  

  
 
 ,                                (14) 

which, at constant relative velocity, is equal to 

 
ρ

2
e e

k ek

v u v u
E c

 
 ;                                          (15) 

ekc  is aerodynamic coefficient of the return run of elevator belt (with account of empty 
buckets and conveyor belt carrying them): 

48



O. A. Averkova, I. N. Logachev,  K. I. Logachev and O.N. Zaytsev 

 5 

λ
4

k l
ek k l

k

Flc c В
S l
 

  
 

,                                            (16) 

pE  is the ejection head created by a flow of spilled grain during unloading of elevator 
buckets: 

 
0

1 ψ ε
2

l
z z

p z m p
z

v u v u dxE K G
S v

 
  ,                              (17) 

which, for a constantly accelerated vertical flow of particles at ψ constz  , equals: 
3 3

ψ ε
2 3

p k nz m
p

G v u v uK
E

Sg
  

                                    (18) 

or, for a uniformly accelerated flow of particles at constz ev v  ; constu  , 

 ψ ε
2

pz m
p e e

e

GK lE v u v u
S v

      ,                                      (19) 

where mK  is the ratio of mid-sectional area of a particle to its volume (1/m); ε  is the ratio of 
air density to particle density. 

Let's now consider a more complex case with carrying and return runs of a bucket elevator 
both located in a common enclosure (Fig. 2). In this case air may flow laterally from one part 
of the enclosure (for example, the one with grain-laden buckets running) to another (with 
empty buckets running). The velocity of air cross-flow in the gap between the belt and 
enclosure walls will be designated as ω . Parameters of airflow in the right-hand side of the 
enclosure (where empty buckets run and spilled particles fall) will be denoted with a subscript 
u  (from the designation of air velocity in the return run) while those in the left-hand side will 
be denoted respectively with v  (from the designation of air velocity in the carrying run of the 
conveyor). 

The cross-flow velocity is determined by differential pressure and aerodynamic drag of 
gaps: 

δ ρ
2v u z

w w
р p p    ,                                       (20) 

where ,v up p  are the respective excess static pressures in the left-hand and right-hand sides of 
the enclosure (Pa); δ z  is the total local resistance coefficient (LRC) for two gaps between 
chute walls and the end sides part of carrying and return runs of the conveyor. 

The sign of the absolute value in the right-hand side was introduced to ensure universality 
of the relation which in this case would be just as good for the case of a reverse flow (with 

u vp p ). The velocity w  in such “vector” case will be negative, that is, velocity vector will 
be directed oppositely (from right to left). This vector is represented with a dotted line on 
Fig.2. 

Due to the presence of lateral cross-flow of air, velocities u  and v  will not be constant but 
rather would change along the height of the elevator enclosure. 
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Now we’ll write an airflow conservation equation while still assuming velocities u  and v  
to be averaged throughout cross-section and the positive direction of these velocities to 
coincide with bucket traveling direction: 

   luab u du ab w b B dx    ,                                  (21) 

   lvab v dv ab w b B dx    .                                  (22) 

 
Figure 2: Longitudinal airflow diagram for return and  

carrying runs both located in a common elevator enclosure 

It can be seen from here that change in the absolute value of dilatational velocities is equal: 
du b Bw
dx ab


 , dv b Bw

dx ab


 .                                         (23) 

And the difference of these velocities does not vary along the enclosure 
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constu v k   .                                            (24) 

Let's now write a motion preservation equation for the chosen element of enclosure of 
length dx . For the right-hand (downward) airflow the momentum conservation equation in 
the projection onto axis 0x  does not differ in any way from equation (5). Trivial 
transformations would yield the following differential equation for the dynamics of the air 
current at hand: 

   2λ
2ρ ρ δ ρ ρ

2 2 2
e e e eu w

u n
w

v u v u v u v udp uduu A
dx dx D v

   
     ,     (25) 

with the following notational simplification: 
λ

δ
4

l l k k
u k

k

B A B
c

ab abl
  ,                                           (26) 

ψ1.5
ρ

p e
n

e z

G
A

d ab
 .                                                  (27) 

For the left-hand (upward) airflow we’ll first write the momentum preservation equation in 
differentials: 

     ρ ρ ( ) τ 2 τv v v w l l k
k

dxvvab v dv ab v dv p ab p dp ab b a dx B dx R
l

            ,   (28) 

where 

λ
τ ρ

4 2
w

w

v v
 ;                                              (29) 

 λ
τ ρ

4 2
e el

l

v v v v 
 ;                                        (30) 

 
ρ

2
e e

k kz k k

v v v v
R c A B

 
 ;                                    (31) 

kzc  is a dimensionless coefficient of aerodynamic drag of a grain-laden bucket. 
After trivial transformations equation (28) would appear as follows: 

 2λ
2ρ ρ δ ρ

2 2
e ev w

v
w

v v v vdp vdvv
dx dx D

 
    ,                      (32) 

λ1δ
4
l l k k

v kz
k

В A B
c

ab l
 

  
 

.                                        (33) 

Thus, longitudinal airflow in case of co-location of the carrying and return runs in the same 
enclosure can be described with combined equations: 

2ρ ,u
u

dpduu f
dx dx

       (34) 
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2ρ ,v
v

dpdvv f
dx dx

        (35) 

lb Bdu w
dx ab


 ;     (36) 

v u k  ;      (37) 

δ ρ; ,
2z v u

w w
p p p p        (38) 

with the following assignments for brevity: 

   λ
ρ δ ρ ρ

2 2 2
e e z zw

u u n
w z

u u v u v u v u v u
f A

D v
   

    ,          (39) 

 λ
ρ δ ρ

2 2
e ew

v v
w

v v v v v v
f

D
 

  .                             (40) 

Newly-introduced functions uf  and vf  can be written in a more convenient (symmetric) 
form. First of all let’s assume that spillage velocity is equal to the velocity of the return run 
(considering that gap between buckets and enclosure walls is rather narrow, particles would 
first impinge on the bottom of a bucket and then accelerate gravitationally and “catch up” 
with uniformly moving buckets): 

z ev v .                                                       (41) 

Then, 

 22 ρρ
ξ γ

2 2
eu

u u u

v uMuf
l l


   ,     (42) 

 22 ρρ
ξ γ

2 2
ev

v v v

v vMvf
l l


  ,                     (43) 

where  , uM  and vM  are dimensionless parameters: 

λw
w

l
D

  ;       (44) 

λ 1.5ψk k
u l k e

l k

A Bl l lM с
D l S d

    ;     (45) 

λ k k
v l kz

l k

A Bl lM с
D l S

  ;      (46) 

4
2w
SD

b a



; 

4
l

l

SD
B

 ;                (47) 
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β
ρ

p
e

z e

G
v S

 ;       (48) 

ξ signum( )u u , ξ signum( ) signum( )v v u k   ;   (49) 

γ signum( )u ev u  ;     γ signum( ) signum( )v e ev v v k u     .   (50) 

Combined equations (34 … 38) can be simplified significantly. Cross-flow velocity of a 
lateral flow can be derived from (38): 

2
δ ,

δ ρ v u
z

p
w p p p


    ,    (51) 

where 
δ signum( )p  .     (52) 

Substitution of (51) into (36) yields  

2
δ

ρ
pdu L

dx l


 ,     (53) 

where 

 
δ z

l b B
L

S


 .      (54) 

By subtracting relation (35) from the equation (34) and considering dv du
dx dx

  in view of 

(37) we’ll get: 

   2 22 2

2ρ ξ ρ γ ρ ξ ρ γ ρ
2 2 2 2

e eu v
u u v v

v u v vM Mu vdu d p T Tk
dx dx l l l l

 
        (55) 

or, in view of (53), 

   2 22 22
2δ ρ ξ γ ρ ξ ρ γ ρ

2 2 2 2
e eu v

x u v v

p v u v vM Mu vd p L T Tk
dx l l l l l

  
      


. (56)                                  

Equation (56) can be supplemented with (34) in view of (42) and (53): 

 222
2ρ δ ξ ρ γ ρ

ρ 2 2
eu u

u u

p v udp MuL Tu
dx l l l

 
    .                 (57) 

This, in view of (53), yields a familiar combined set (considering (37)) of three differential 
equations (57), (56) and (53) describing the process of averaged longitudinal airflows in an 
enclosure with co-location of the carrying and return runs of bucket elevator inside it. 

Changes in the velocity u  can be found from (55) using (53) which can be written as 
follows: 
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2 2ρ
2

du lp A
dx L

        
   

,    (58) 

where 

signum duA
dx

   
 

. 

A substitution of (58) into (55) using the relation (37) results in a 2nd order non-linear 
equation relative to the sought function u : 

 

   

22 22

2

2 2

ρ 2ρ ξ ρ γ ρ
2 2

ξ ρ γ ρ.
2 2

eu
u u

ev
v v

v uMul d u du du TA k
L dx dx l ldx

u k v k uMT
l l

       
 

  
 

           (59) 

We’ll use a dimensionless differential equation formula to facilitate our numerical 
integration of the resulting dimensional equations. It will enable us to reduce the number of 
constants. The following quantities will be considered as basic values: 

– elevator belt velocity ev  
– elevator enclosure length or height l ; 
– dynamic pressure 2ρ 2ev . 
Thus, let 

2 2
* *ρ ρ

; ; ; ;
2 2
e e

u e e
v v

p p p R u u v k m v x zl      ,               (60) 

then, after we substitute accepted conventions into equations (34 (56) (53) and perform 
certain trivial transformations, the following system of dimensionless differential equations 
will result: 

   2 2* * *δ 4 ξ γ 1u u u
dp u L R T u M u
dz

     ;                                (61) 

       2 2 2 2* * * * * *4δ ξ γ 1 ξ γ 1 * ;u u u v v v
dR m L R T u M u T u m M m u
dz

           (62) 

*

δdu L R
dz

 ,                                                  (63) 

where  

δ signum( )R ,  *ξ signum( )u u ,  * *ξ signum( ),v u m                   (64) 
*γ signum(1 )u u  ,  * *γ signum(1 )v m u   .                         (65) 

Similarly, (59) will now appear as: 
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       

2 * *
*

3 2 2

2 2 2 2* * * * * *

2 4

ξ γ 1 ξ γ 1 ,u u u v v v

d u duA m
dzL dz

T u M u T u m M m u

 
   
 

        

   (66) 

where  
*

3 signum duA
dz

 
  

 
.                                (67) 

CONCLUSIONS 
- Direction of airflow inside enclosures of the carrying and return runs of a bucket 

elevator is determined by the drag of buckets and moving conveyor belt as well as 
ejection head created by a stream of spilled particles when buckets are unloaded. As a 
result of these forces acting together inside an enclosure, differential pressure (10) 
arises. This differential pressure is equal to the sum total of ejection heads created by 
conveyor belt with buckets kE  (14) and flow rate of spilled material pE  (17) minus 
aerodynamic drag of enclosure walls (11). 

- The ejection head kE  created by a bucket-carrying conveyor belt is determined by 
aerodynamic coefficient ekс  (16) (proportional to the number of buckets, their head 
resistances and squared mid-sectional dimensions) together with an absolute value 
and the direction of bucket velocity relative to the velocity of airflow inside the 
enclosure. 

- Ejection head of spilled particles pE  (19) depends on the drag coefficient of particles, 
their size and flow rate, as well as the enclosure length, enclosure cross-section and 
relative flow velocity of particles. 

- When both the carrying and return runs of the conveyor belt are located in a common 
enclosure, the velocity of forward airflow varies over its length as a result of cross-
flows of air through gaps between the conveyor runs and enclosure walls. Cross-
flows are caused by a differential pressure between the carrying and return run 
enclosures and is dependent on the drag of the gap (20). Cross-flow direction 
depends on the ratio between vp  and up . 

- Given identical size of elevator enclosures, change in absolute values of longitudinal 
velocities is identical and depends on absolute values of cross-flow velocities and 
geometrical dimensions of the gap, as well as enclosure cross-section (23, 24). The 
momentum of longitudinal airflow in this case is determined by variable magnitudes 
of aerodynamic forces of buckets due to changes in their relative motion velocities. 

- The flow rate of air in enclosures may be determined by numerically integrating three 
dimensionless combined differential equations (61) – (63). 

- The work has been carried out with the financial support of the Grant Council of the 
President of the Russian Federation (project MD-95.2017.8) and RFBR (research 
project No. 16-08-00074а). 
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