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Abstract We present an approximate second-order consistent smoothed particle hydrodynamics
method which uses the 1D solutions to approximate the 2D second order derivatives. The numerical
tests of the analytic functions show that the method is exact for regular arrangements of interpo-
lation points, while in the disordered areas the accuracy is lower than the exact solution of the
second-order consistent modified smoothed particle hydrodynamics, but still better that the stan-
dard version or the so-called decoupled finite particle method. We applied the new model to the
flow of a fluid around a circular solid obstacle and found that the use of a corrected semi-decoupled
second-order consistent SPH gives better accuracy for lower resolutions allowing for a more efficient
numerical model and also easier to extend to 3D.

Keywords MSPH · consistency · driven flow of solid-gas systems

1 Introduction

The modified smoothed particle hydrodynamics (MSPH) [1] and finite particle method (FPM)
[2,3] are meshfree particle methods based on smoothed particle hydrodynamics (SPH) [4,5] with
kernel corrections that improve the accuracy of the derivatives by imposing high order consistency.
An n-order consistency Cn imposes that polynomials and their derivatives up to the nth order
are exactly described for any distribution of the interpolation points. In these methods, the field
variables and their derivatives are simultaneously obtained via inversion of corrective matrices
which are computed at every time step for each SPH point. The FPM imposes C1 and uses third
order matrices in 2D and fourth order matrices in 3D, while the MSPH has C2 with sixth order
matrices in 2D and tenth order in 3D. While the standard SPH has been tuned and calibrated to
work for modeling of incompressible fluids [6], some specific applications, such as driven flows of
gas-solid mixtures, require higher order consistency [7].
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2 Cristian V. Achim et al.

However imposing a higher order consistency is in general accompanied by an increase in the
accuracy [8], matrix inversions can be ill conditioned and the numerical error can be very large.
This can happen in regions of space with extremely disordered configurations or for free-surfaces
when the number of neighbors is too small. In order to avoid the matrix inversion problems Zhang
et al [9] suggested a decoupled FPM which approximated the corrective matrix by neglecting its
off-diagonal elements. This solution worked for the free-surface application, however for the driven
flow of gas around solid obstacles Achim et al [10] showed that it was not enough and they presented
a new way to construct decoupled corrections with C1 using the 1D (FPM) solutions with results
very close to the FPM [10] at a small computational cost. The approximations in our previous work
[10] involves semi-decoupled FPM (SDFPM) and corrected semi-decoupled FPM (CSDFPM).

We expand the work done in Ref. [10] to impose second order consistency. The decoupling of the
derivatives is computed using the normalized version of the kernel and its derivatives in which some
of the non-diagonal elements in the correction matrices are exactly zero, while some non-diagonal
cross terms are neglected. An extra advantage of our method is that in one dimension (1D) it is
exact. Similar to Ref. [9], the effective quasi-diagonal matrices have no condition problems. We
present two versions of SDMSPH and find that the corrected SDMPSH (CSDMSPH) gives very
good results in practical applications and it can successfully replace the lower order methods, such
as standard SPH and FPM for the modeling of pure fluid flows and solid-fluids flows. We present
numerical tests of the second order derivatives for various selected analytic functions and finally,
more important, we solve numerically the flow of a weakly compressible fluid around a solid obstacle
using corrected gradients based on the new semi-decoupled MSPH (SDMSPH). The computational
cost of the SDMSPH is the same as the FPM, but with higher accuracy.

2 Smoothed Particle Hydrodynamics and its Corrected Variants

In the SPH the relevant fields are interpolated from a set of points that move with the fluid [11].
In the continuum limit, for any field f(r) the smoothed value is defined as [12,13]:

f(r) ≈
∫

f(r′)W (|r− r′|, h)dr′, (1)

where W is a kernel, a probability distribution function, and h is the smoothing length. The range
of the kernel function can be infinite as in the case of a Gaussian function or it’s limited to a few
κ multiples of h, i.e. κh. All given values of the fields are approximated by the above formula in
discrete form. The accuracy of the SPH is O(h2) [5,4,8].

2.1 Standard SPH

In the standard SPH [12,13], the integral in Eq. (1) can be expressed in a discrete form as follows

(f)SPH
i ≈

∑

j

fjW (|ri − rj |, h)Vj , (2)

where the index j goes over all particles in the range of the point where the evaluation is taking
place, rj denotes the position of the jth point, Vj is the associated volume, and fj the value of the
field at the respective point. Another advantage of the method is that in Eq. (2) the differential
operators are applied to the kernel function, but not to fj . The first order derivatives at ri are

(∂xf)
SPH
i =

∑

j

fj∂x,iWijVj (3)

(∂yf)
SPH
i =

∑

j

fj∂y,iWijVj ,
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Semi-Decoupled Second-Order Consistency Correction for Smoothed Particle Hydrodynamics 3

where fj = f(rj), Vj = mj/ρj and Wij the kernel function at rij = |ri − rj |.
Because

∑
j ∂αβ,iWijVj (where α and β can be either component x or y) is zero only for the

limit h → 0 (when the kernel function W becomes the Dirac δ-function) [8], we use the following
form for estimating the second order derivatives:

(∂xxf)
SPH
i =

∑

j

(fj − fi)∂xx,iWij (4)

(∂xyf)
SPH
i =

∑

j

(fj − fi)∂xy,iWij

(∂yyf)
SPH
i =

∑

j

(fj − fi)∂yy,iWij ,

2.2 The Corrected Variants, FPM and MSPH

FPM and MSPH are derived similarly, the only difference between them is their order. It is sufficient
to present the derivation of MSPH, because the FPM can be obtained from the same equations
neglecting the higher order terms. The MSPH [1,3,2] is derived from the Taylor expansion of the
field f up to the second order

fj = (f)i + (∂xf)ixji + (∂yf)iyji +
1

2
(∂xxf)ix

2
ji + (∂xyf)ixjiyji +

1

2
(∂yyf)iy

2
ji + . . . (5)

Next a linear system with six unknowns is obtained by multiplying the right and left terms by WijVj ,
∂x,iWijVj ,∂y,iWijVj , , ∂xx,iWijVj ,∂xy,iWijVj , or ∂yy,iWijVjn and performing the summation over
j. Formally, the solution is:




(f)MSPH
i

(∂xf)
MSPH
i

(∂xxf)
MSPH
i

(∂xyf)
MSPH
i

(∂yyf)
MSPH
i



= M−1

∑

j




fjWijVj
fj∂x,iWijVj
fj∂y,iWijVj
fj∂xx,iWijVj
fj∂xy,iWijVj
fj∂yy,iWijVj




(6)

In practice, this is equivalent to replacing the kernel function and its derivatives with the effective
corrected kernel 



(Wij)
MSPH

(∂x,iWij)
MSPH

(∂y,iWij)
MSPH

(∂xx,iWij)
MSPH

(∂xy,iWij)
MSPH

(∂yy,iWij)
MSPH



= M−1




Wij

∂x,iWij

∂y,iWij

∂xx,iWij

∂xy,iWij

∂yy,iWij




(7)

With the correction matrix

M =
∑

j




1 xji yji
1
2x

2
ji xjiyji

1
2y

2
ji

∂x,i xji∂x,i yji∂x,i
1
2x

2
ji∂x,i xjiyji∂x,i

1
2y

2
ji∂x,i

∂y,i xji∂y,i yji∂y,i
1
2x

2
ji∂y,i xjiyji∂y,i

1
2y

2
ji∂y,i

∂xx,i xji∂xx,i yji∂x,i
1
2x

2
ji∂xx,i xjiyji∂xx,i

1
2y

2
ji∂xx,i

∂xy,i xji∂xy,i yji∂xy,i
1
2x

2
ji∂xy,i xjiyji∂xy,i

1
2y

2
ji∂xy,i

∂yy,i xji∂yy,i yji∂yy,i
1
2x

2
ji∂yy,i xjiyji∂yy,i

1
2y

2
ji∂yy,i



WijVj (8)

The FPM is derived in the same way as the MSPH, but the second order terms in the Taylor
expansion (5) and the second order derivatives are not included.
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4 Cristian V. Achim et al.

2.3 Decoupled MSPH

An ill conditioned matrix (which happens when there are not enough neighbors or the configuration
of the interpolation is extremely disordered) can yield very poor results. In addition to this, Zhang
& Liu noted in Ref. [9] that in most cases, the non-diagonal terms of the matrix M are small and
a simplified correction can be used to achieve an accuracy similar to that of the FPM. In the new
correction we make the approximations

Mi,j � 0, i �= j. (9)

The corrected values are

(f)DMSPH
i =

∑
j fjWijVj∑
j WijVj

(10)

(∂xf)
DMSPH
i =

∑
j fj∂x,iWijVj∑
j xji∂x,iWijVj

(∂yf)
DMSPH
i =

∑
j fj∂y,iWijVj∑
j yji∂y,iWijVj

Same in the standard SPH, the following form for estimating the second order derivatives is used

(∂xxf)
DMSPH
i =

∑
j(fj − fi)∂xx,iWijVj
1
2

∑
j x

2
ji∂xx,iWijVj

(11)

(∂xyf)
DMSPH
i =

∑
j(fj − fi)∂xy,iWijVj∑
j xjiyji∂xy,iWijVj

(∂yyf)
DMSPH
i =

∑
j(fj − fi)∂yy,iWijVj
1
2

∑
j y

2
ji∂yy,iWijVj

This method is very easy to implement in both 2D and 3D.

2.4 The Semi-Decoupled MSPH

The formulas presented in the previous section have the advantage of being simple, however the
DFPM does not really have C0, C1 nor C2 and effectively it becomes standard SPH with a normal-
ization. As shown in Ref. [7] more than C0 consistency is needed for the driven solid-gas systems.
We start the derivation from the Taylor expansion (5), but multiplying each equation with one

of the functions W̃ijVj , ∂x,iW̃ijVj , ∂y,iW̃ijVj , ∂x,i

[
∂x,iW̃ij∑

j xji∂x,iW̃ijVj

]
Vj , ∂y,i

[
∂x,iW̃ij∑

j xji∂x,iW̃ijVj

]
Vj +

∂x,i

[
∂y,iW̃ij∑

j yji∂y,iW̃ijVj

]
Vj , or ∂y,i

[
∂y,iW̃ij∑

j yji∂y,iW̃ijVj

]
Vj , with W̃ij = Wij/Si and Si =

∑
j WijVj . In the

semi-decoupled MSPH (SDMSPH) the second order derivatives are

(∂xxf)
SDMSPH
i =

∑

j

fj
˜̃∂xx,iW̃ijVjVj (12)

(∂xyf)
SDMSPH
i =

∑

j

fj
˜̃∂xy,iW̃ijVjVj

(∂yyf)
SDMSPH
i =

∑

j

fj
˜̃∂yy,iW̃ijVjVj .
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Semi-Decoupled Second-Order Consistency Correction for Smoothed Particle Hydrodynamics 5

These are practically the 1D MSPH solutions. The new derivative operators are defined as

˜̃∂xx,i =

∂x,i

[
∂x,i∑

j xji∂x,iW̃ijVj

]

1
2

∑
j x

2
ji∂x,i

[
∂x,iW̃ij∑

j xji∂x,iW̃ijVj

]
Vj

(13)

˜̃∂xy,i =

∂y,i

[
∂x,i∑

j xji∂x,iW̃ijVj

]
+ ∂x,i

[
∂y,i∑

j yji∂y,iW̃ij

]

∑
j xjiyji

{
∂y,i

[
∂x,iW̃ij∑

j xji∂x,iW̃ijVj

]
+ ∂x,i

[
∂y,iW̃ij∑

j yji∂y,iW̃ijVj

]}
Vj

˜̃∂yy,i =

∂y,i

[
∂y,i∑

j yji∂y,iW̃ijVj

]

1
2

∑
j y

2
ji∂y,i

[
∂y,iW̃ij∑

j yji∂y,iW̃ijVj

]
Vj

.

Now the SDMSPH first order derivatives are

(∂xf)
SDMSPH
i =

∑

j

fj ∂̃x,iVj − (∂xxf)
SDMSPH
i

1

2

∑

j

x2ji∂̃x,iVj (14)

(∂yf)
SDMSPH
i =

∑

j

fj ∂̃y,iVj − (∂xxf)
SDMSPH
i

1

2

∑

j

y2ji∂̃y,iVj .

The fist order derivative operators defined as:

∂̃x,i =
∂x,iW̃ij∑

j xji∂x,iW̃ijVj
(15)

∂̃y,i =
∂y,iW̃ij∑

j yji∂y,iW̃ijVj

Finally the corrected values of the field are obtained using

(f)SDMSPH
i =

∑

j

fjW̃ijVj − (∂xf)
SDMSPH
i

∑

j

xjiW̃ijVj − (∂yf)
SDMSPH
i

∑

j

yjiW̃ijVj (16)

− 1

2
(∂xxf)

SDMSPH
i

∑

j

x2jiW̃ijVj − (∂xyf)
SDMSPH
i

∑

j

xjiyjiW̃ijVj

− 1

2
(∂yyf)

SDMSPH
i

∑

j

y2jiW̃ijVj .

One of the advantage of the SDMPSH is that unlike the DFPM and DMSPH, the second derivative
of a constant field is identically zero. In addition the corrected values of a field and its first order
derivatives are coupled to the higher order derivatives. Finally the second order derivatives are
almost exact when the non-diagonal terms, which we ignored in order to obtain Eq. (12), are small
enough.

As shown in Ref. [10] the semi-decoupled forms can be further improved with few additional
operations, but with significant improvement in results, by taking into account the non-diagonal
terms
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6 Cristian V. Achim et al.

(∂xxf)
CSDMSPH
i = (∂xxf)

SDMSPH
i − (∂yf)

SDMSPH
i

∑

j

yji
˜̃∂xx,iW̃ijVj (17)

− (∂xyf)
SDMSPH
i

∑

j

xjiyji
˜̃∂xx,iW̃ijVj

− 1

2
(∂yyf)

SDMSPH
i

∑

j

y2ji
˜̃∂xx,iW̃ijVj

(∂xyf)
CSDMSPH
i = (∂xyf)

SDMSPH
i − (∂xf)

SDMSPH
i

∑

j

xji
˜̃∂xy,iW̃ijVj

− (∂yf)
SDMSPH
i

∑

j

yji
˜̃∂xy,iW̃ijVj −

1

2
(∂xxf)

SDMSPH
i

∑

j

x2ji
˜̃∂xy,iW̃ijVj

− 1

2
(∂yyf)

SDMSPH
i

∑

j

y2ji
˜̃∂xy,iW̃ijVj

(∂yyf)
CSDMSPH
i = (∂yyf)

SDMSPH
i − (∂xf)

SDMSPH
i

∑

j

xji
˜̃∂yy,iW̃ijVj

− 1

2
(∂xxf)

SDMSPH
i

∑

j

x2ji
˜̃∂yy,iW̃ijVj

− (∂xyf)
SDMSPH
i

∑

j

xjiyji
˜̃∂xx,iW̃ijVj .

Similarly, for the first order derivatives we get

(∂xf)
CSDMSPH
i = (∂xf)

SDMSPH
i − (∂yf)

SDMSPH
i

∑

j

yji∂̃x,iW̃ijVj (18)

− (∂xyf)
SDMSPH
i

∑

j

xjiyji∂̃x,iW̃ijVj

− 1

2
(∂yyf)

SDMSPH
i

∑

j

y2ji∂̃x,iW̃ijVj

(∂yf)
CSDMSPH
i = (∂yf)

SDMSPH
i − (∂xf)

SDMSPH
i

∑

j

xji∂̃y,iW̃ijVj

− 1

2
(∂xxf)

SDMSPH
i

∑

j

x2ji∂̃y,iW̃ijVj

− (∂xyf)
SDMSPH
i

∑

j

xjiyji∂̃y,iW̃ijVj .

The corrected values of the field are obtained using Eq. (16), but with the CSDMSPH values for
the first and second-order derivatives.

3 Error estimates for the gradients for the different methods

In general we are interested in a method that allows the accurate estimation of second order
derivatives that appears for example as the temperature laplacian in the heat equation, and in
the divergence of velocity and pressure in the Navier-Stokes equation [12,13]. The accuracy of our
approximations is evaluated by computing the derivatives of several analytic functions. We also
test the performance of the various methods for the flow around a cylinder. [7].
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Semi-Decoupled Second-Order Consistency Correction for Smoothed Particle Hydrodynamics 7

3.1 Errors estimates of analytic functions close to solid boundaries

We are mainly interested in the errors of the methods close to a circular boundary because in a
driven flow the wall particles remain fixed, while the fluid particles move with a average velocity
close to the inlet velocity. This can result in less ordered configurations which require kernel correc-
tion for the calculations of the gradients. For the evaluation of the analytic functions, we arranged
the SPH particles in a triangular lattice (Fig. 1) with distance ∆x = (3/4)h between them. In
this configuration a circular solid obstacle with diameter D = 30h was placed in the middle of the
simulation box, as in the previous work [7]. Inside the solid a layer of virtual particles of thickness
3h was created, which complete the kernel support for the SPH particles close to the boundary.
The volumes are assigned so that a zero gradient condition is imposed normal to the surface and
various degrees of disorder are created near the solid boundary. In Fig. 1 some of the SPH fluid have
less neighbors or more than in the ordered areas. We are particularly interested in what appears in
the early stages of the simulations of a flow around a fixed or moving obstacle. While, in general,
additional reordering techniques can provide a better configuration of the SPH particles, we believe
that testing the various kernel corrections on this configuration is sufficient for our applications.
For the kernel function we use the quintic B-spline function [14]. A detailed analysis of the different
kernels done in Ref. [15] indicated that this kernel has the best accuracy. The kernel W (r;h) is
defined by

W (r, h) = αD





(
3− r

h

)5 − 6
(
2− r

h

)5
+ 15

(
1− r

h

)5
r ≤ h

(
3− r

h

)5 − 6
(
2− r

h

)5
h ≤ r < 2h

(
3− r

h

)5
2h ≤ r < 3h

(19)

with αD a normalization constant.

Fig. 1 The SPH interpolation points used to evaluate the gradients of the different functions. The color indicates
the values of the volumes Vj = mj/ρj . The black line gives the position of the solid boundary.

We analyzed three analytic functions, 1− (x/2−1/4) · (y/2−1/4), 1− (x/2−1/4)2 · (y/2−1/4)2,
and exp[−(x/2− 1/4)2 · (y/2− 1/4)2].

The results are shown in Figures 2-7. Depending on the function, the SDMPSH and CSDMPSH
can give up to one order of magnitude smaller errors. In addition we note that the SPH and
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8 Cristian V. Achim et al.

Fig. 2 Error evaluation when computing the second order x-derivative of the function 1−(x/2−1/4) ·(y/2−1/4)
as given by: a) standard SPH, b) decoupled MSPH, c) semi-decoupled MSPH, and d) corrected semi-decoupled
MSPH.

DMPSH are more sensitive to the particle configurations. The evaluated derivatives begin to present
deviations as soon as the particle is closer than 3h to the solid surface.

3.2 Comparison of different methods for flow around a cylinder

Lastly, we tested the different approximations for a driven flow around a fixed circular obstacle using
the same method as [7]. For each method, everything was kept the same as in FPM except for the
gradients used in the equations of motion. While the SPH model of the Navier-Stokes equations
can be written in a form that contains only first order derivatives, we expect that a higher order
consistency will give a better accuracy to the lower derivatives as well. We present below the drag
coefficients Cd for two regimes, Re = 40 and Re = 100. We present also the results for the FPM
as shown in [7]. These cases are very useful to test the accuracy of computing the gradients. The
results are summarized in Tables 1-4

When comparing the different methods we see that the CSDMSPH achieves convergence faster
than the other methods. Plotting the drag coefficients as a function of the ratio D/∆x with ∆x =
4h/3 (Figures 8 and 9), we note that the CSDMPSH achieves convergence for D/∆x = 25. While
the difference is small, the other methods require D/∆x > 30 to converge, for both the two Re

numbers investigated.
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Semi-Decoupled Second-Order Consistency Correction for Smoothed Particle Hydrodynamics 9

Fig. 3 Error evaluation when computing the second order xy-derivative of the function 1−(x/2−1/4)·(y/2−1/4)
as given by: a) standard SPH, b) decoupled MSPH, c) semi-decoupled MSPH, and d) corrected semi-decoupled
MSPH.

Table 1 The drag coefficients for Re = 40 for the different methods as a function of the resolution keeping
h/∆x = 1.33.

D/∆x SDMSPH CSDMSPH h/∆x = 1 CSDMSPH FPM

10 1.6163± 0.0149 1.6161± 0.0220 1.6400± 0.0095 1.6024± 0.0075
15 1.6572± 0.0058 1.6583± 0.0153 1.6640± 0.0056 1.6440± 0.0054
20 1.6543± 0.0028 1.6638± 0.0114 1.6600± 0.0024 1.6531± 0.0029
25 1.6633± 0.0035 1.6650± 0.0088 1.6643± 0.0031 1.6588± 0.0035
30 1.6632± 0.0030 1.6600± 0.0083 1.6643± 0.0028 1.6584± 0.0031

Table 2 The drag coefficients for Re = 100 for the different methods as a function of the resolution keeping
h/∆x = 1.33.

D/∆x SDMSPH CSDMSPH h/∆x = 1 CSDMSPH FPM

10 1.1586± 0.0540 1.2080± 0.0350 1.1604± 0.0232 1.1151± 0.0160
15 1.3282± 0.0200 1.3685± 0.0210 1.3442± 0.0092 1.3252± 0.0093
20 1.3864± 0.0122 1.4031± 0.0134 1.3960± 0.0075 1.4013± 0.0080
25 1.4104± 0.0091 1.4141± 0.0121 1.4140± 0.0077 1.4158± 0.0076
30 1.4130± 0.0090 1.4166± 0.0115 1.4126± 0.0077 1.4129± 0.0080

4 Conclusions

Here we presented higher order corrections to impose C2. The direct calculations of second order
derivatives by CSDMSPH give smaller errors than other methods in the disordered regions. The
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10 Cristian V. Achim et al.

Fig. 4 Error evaluation when computing the second order x-derivative of the function 1−(x/2−1/4)2 ·(y/2−1/4)2

as given by: a) standard SPH, b) decoupled MSPH, c) semi-decoupled MSPH, and d) corrected semi-decoupled
MSPH.

Table 3 The lift coefficients for Re = 100 for the different methods as a function of the resolution keeping
h/∆x = 1.33.

D/∆x SDMSPH CSDMSPH h/∆x = 1 CSDMSPH FPM

10 ±0.4380 ±0.3547 ±0.2452 ±0.2072
15 ±0.3636 ±0.3877 ±0.3357 ±0.2962
20 ±0.4075 ±0.4219 ±0.3617 ±0.3738
25 ±0.3747 ±0.3830 ±0.3694 ±0.3700
30 ±0.3807 ±0.3982 ±0.3644 ±0.3655

Table 4 The Strouhal number forRe = 100 for the different methods as a function of the resolution keeping
h/∆x = 1.33.

D/∆x SDMSPH CSDMSPH h/∆x = 1 CSDMSPH FPM

10 0.1805 0.1751 0.1770 0.1744
15 0.1742 0.1742 0.1751 0.1758
20 0.1733 0.1751 0.1736 0.1738
25 0.1740 0.1752 0.1736 0.1735
30 0.1731 0.1747 0.1728 0.1736

corrections are useful in applications where the laplacian or bilaplacians are present in coupled
equations. A surprising effect is the higher order accuracy results for the flow around a solid cylinder
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Fig. 5 Error evaluation when computing the second order xy-derivative of the function 1− (x/2− 1/4)2 · (y/2−
1/4)2 as given by: a) standard SPH, b) decoupled MSPH, c) semi-decoupled MSPH, and d) corrected semi-
decoupled MSPH.

where the CSDMSPH proved to give higher accuracy than the FPM and it obtains convergence
of the drag coefficients at lower values of D/∆x for both cases studied, Re = 40 and Re = 100.
In addition we tested the effect of changing the ratio h/∆x while keeping D/∆x. Aside to having
numerical stability, the drag coefficients had fairly good values. This is explain by the fact that the
SPH configurations are fairly regularly due to the particle shifting technique [16,17] which imposes
the fluid particles to maintain distances close to the initial distance ∆x. Unlike the case of standard
δ-SPH [15] changing the ratio h/∆x resulted in stable simulations with results very close to the
FPM, but with higher standard errors in measuring the drag coefficients. This is important because
decreasing the ratio h/∆x results in decreasing the numbers of neighbors which can significantly
accelerate the speed of simulation depending on the computer platform used.
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Fig. 6 Error evaluation when computing the second order x-derivative of the function exp[−(x/2 − 1/4)2 ·
(y/2 − 1/4)2] as given by: a) standard SPH, b) decoupled MSPH, c) semi-decoupled MSPH, and d) corrected
semi-decoupled MSPH.
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Fig. 8 The drag coefficient Cd as a function of the ratio between the particle diameter D and initial particle
distance ∆x for FPM (−◦) and CSDMSPH (−∗), Re = 40. The CSDMSPH reaches the saturated value of 1.6640
for D/∆x = 15. The ratio is significantly lower than in the case of FPM.
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Fig. 9 The drag coefficient Cd as a function of the ratio between the particle diameter D and initial particle
distance ∆x for FPM (−◦) and CSDMSPH (−∗), Re = 100. The CSDMSPH reaches the saturated value of 1.414
for D/∆x = 25, very similar to the FPM, however for the lower resolution the values of the drag coefficient are
closer to the saturated value than values obtained with FPM.

794




