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Abstract. Among the numerous types of meshless particle methods, SPH is successfully 
applied to simulate complex multiphase flows with impact involving fluids with high-density 
ratio as well as non-Newtonian fluids. These problems are concern in the applied engineering 
dealing with water related natural hazards, such as landslide induced tsunami in artificial 
reservoir, intense rainfall induced shallow landslides. This contribution aims at providing an 
overview on the recent applications of the standard weakly compressible WCSPH for 
modelling these kinds of multiphase flows. The relevant aspects related with the interface 
treatment and numerical stability in high density multiphase flow will be discussed. Advanced 
modelling aspects connected with the SPH simulation of non-Newtonian fast dense granular 
flows and the interaction with pore water. The aspect of tuning model parameters is discussed. 
 
1 INTRODUCTION 

Multiphase flows are involved in several problems of practical interests and in many fields 
of the hydraulic engineering (Guandalini et al. 2015, Todeschini et al. 2019). Among these, 
the analysis of natural hazardous events related to water represents an important category 
(Manenti et al. 2018; Manenti et al. subm.). These problems are frequently characterized by 
fast dynamics, large deformation, flow impact and possibly large density ratio. These peculiar 
features of the multiphase flow may be difficult to handle from numerical point of view. This 
is especially the case of multiphase flows where high-density ratio between the phases can 
cause numerical instability (Monaghan & Ashkan 2013; Grenier et al. 2009; Hu & Adams 
2007; Colagrossi & Landrini 2003). Other relevant issues in the numerical modelling of 
complex multiphase problems of practical interests are: (i) stochastic nature of modelling 
parameters influencing the model response (Manenti et al. 2016), and (ii) the large amount of 
computational time and resources required by complex problems and time step limitation 
when considering viscous non-Newtonian fluids (Manenti et al. 2018; Guandalini et al. 2012). 
Therefore fast-running reliable numerical models are strongly desirable, especially for 
application to multi-disciplinary decision support systems for natural hazard risk reduction 
and management where several scenarios should be explored to account for inherent 
uncertainty affecting influential model parameters (Newman et al. 2017). 

In this paper will be discussed some modelling approaches for handling the above-
mentioned issues in the WCSPH simulation of multiphase flows involved in natural hazards. 
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2 MODEL DESCRIPTION 
In this section will be illustrated two different WCSPH models for the analysis of 

multiphase flows.  
In section 2.1 are shown the analytical details of a relatively simple and novel approach 

based on standard weakly compressible SPH for simulating free-surface multiphase flows 
with high-density ratio involving violent impact (Manenti 2018). The proposed approach, 
which is relatively simple to implement, allows keeping sharp interfaces between the two 
phases and permits to overcome instability problems affecting standard SPH formulation in 
these kind of applications. 

In section 2.2 is illustrated the FOSS code SPHERA v.9.0.0 (RSE SpA) (Amicarelli et al. 
subm.) that is based on the standard WCSPH formulation featuring a mixture model for the 
analysis of dense granular flows consistent with the Kinetic Theory of Granular Flow (KTGF) 
(Amicarelli et al. 2017). A numerical parameter, so-called limiting viscosity, has been 
subsequently introduced in the reference model of Amicarelli et al. (2017) as an appropriate 
means to reduce computational time in those kind of multiphase flows involving a viscous 
non-Newtonian fluid, as the case of landslide post-failure dynamics (Manenti et al. 2018). 

2.1 Novel WCSPH for high-density ratio two-phase flow 
In the following are described the governing equations of an alternative SPH model that 

derives from the discretized balance equations of fluid motion described in Monaghan (1994) 
which were defined as "standard" formulation in Colagrossi & Landrini (2003). Even if 
multiphase flows can be simulated following standard SPH (Manenti et al. 2012), serious 
numerical instability at the interface arises when the density ratio between involved phases 
increases at some order of magnitude. The principal causes of this instability was investigated 
in Manenti (2018) and were due mainly to the discontinuity of density across the interface. 
Adopting the formalism introduced in that work, the mass and momentum balance equations 
in the standard SPH formulation can be conveniently formulated, as explained in the 
following, substituting the density i of a given fluid particle at the point xi, which becomes 
discontinuous across the interface, with the inverse of the its particle volume Vi:  
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The symbol i in Eq. (1) is used to denote the inverse of the particle volume (or number 
density) which is referred to as the specific volume, according to the nomenclature adopted in 
Hu and Adams (2007). Note that, as the specific volume is continuous across the interface, the 
particle’s mass is discontinuous. The particle mass mi is assumed as constant. 

Thus the differential balance equations for the mass and momentum (v velocity vector, g 
gravitational acceleration, p pressure) of a slightly compressible inviscid fluid can be written:  
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The discretized form of the mass and momentum balance Eqs. (2) can be obtained by 
applying the standard SPH approximation principles after the following simple mathematical 
manipulations:  
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(4) 

If the support of the kernel is not truncated (as occurs when intersecting the fluid free 
surface), a useful relation can be derived for the derivative of a function f (Liu & Liu, 2003). 
Considers the following integral kernel approximation of the quantity f evaluated at the i-th 
point of the continuum domain : 




 dWff ijjji  
(5) 

In the Eq. (5), the gradient on the left side member is calculated at particle i (subscript i is 
omitted for nabla operator), while it is evaluated at particle j on the right-hand member (i.e. 
j). Taking into account the following identity:  

  ijjjijjjijjj WfWfWf   (6) 

the Eq. (5) can be rewritten in the following manner if the Gauss divergence theorem is 
applied at the first integral on the right side member:  




 dWfdsWff ijjjijji n  
(7) 

Because the kernel Wij is a central function of the relative distance between particles i and 
j, it can be easily demonstrated that the kernel gradient Wij evaluated at particle i has 
opposite sign with respect to the kernel gradient j Wij at particle j.  In addition, if the kernel 
compact support (which is function of the smoothing length h) is entirely contained in the 
domain  then the first integral on the right-hand side of Eq. (7) vanishes since it is evaluated 
on the frontiers ∂ of and the kernel function is zero outside its support by definition. For 
the above-mentioned reasons Eq. (7) becomes:  
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(8) 

As the discrete element volume is j
 -1, the particle approximation of Eq. (8) is given by:  





Ni

j
ijj

j
i Wff

1

1


 
(9) 

Taking into account Eq. (9) with f equal to (i vi) and i respectively, the mass balance in 
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Eq. (3) can be discretized as follows:  
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In a similar fashion, by replacing f into Eq. (9) with i and (pi /i) respectively, from Eq. 
(4) can be obtained the discretized momentum balance equation:  
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In Eq. (11) the artificial viscosity term ij is introduced to assure numerical stability and to 
keep interface sharply defined. This term derives from the artificial viscosity of Monaghan 
(1994) following proper adaptation to be consistent with the model formulation that adopts 
specific volume as independent variable instead of the density (Manenti 2018). 

The discretized governing Eqs. (10) and (11) provide the following advantages when 
dealing with multiphase flows with large density ratio: (i) each phase is not treated as a 
boundary condition for the other and all neighboring particles in the interaction domain of an 
interface particle are included into its neighbor’s list, regardless of the phase they belong to; 
(ii) kernel truncation is avoided, requiring no need for numerical correctives to improve the 
accuracy at the interface; (iii) no kind of cohesion force is required for eliminating particle 
penetration between heterogeneous phases at the interface; (iv) the algorithm is relatively 
simple to implement and reduce computational effort.  

This model has recently been tested on air-water rapidly varied flow with impact showing 
reliable accuracy, especially if compared with its relative simplicity (Manenti 2018). Section 
3.1 shows the results for another application to the rise of an air bubble in still water. 

 

2.2 WCSPH with limiting viscosity 
The numerical investigation of complex 3D problems of practical interest frequently 

requires the discretization of large domains with a high resolution. This lead to an exponential 
growth of required computational time and involved resources, especially in the case of SPH 
method, which could be much more expensive than traditional grid-based methods. A help 
comes from the recent increase of the parallel computational power of the hardware, 
especially in the branch of Graphics Processing Units (GPUs). Anyway, GPUs based 
computations require that the models are implemented using High Performance Computing 
(HPC) techniques to take advantage of the power of current hardware (Domínguez et al. 
2013).  

As explained in the following, a simple strategy may be applied in those cases involving 
viscous non-Newtonian fluid to carry out code optimization for reducing significantly the 
computational time while preserving suitable degree of accuracy. 

The FOSS code SPHERA v.9.0.0 (Amicarelli et al. subm.) implements a WCSPH 
formulation of mixture model for the analysis of dense granular flows consistent with the 
KTGF (Amicarelli et al. 2017).  This model has been successfully applied to the analysis of 
rapid multiphase flow involving the interaction of fast landslide with stored water (Manenti et 
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al. 2018). Post-failure landslide dynamics is simulated by assuming a non-Newtonian 
rheological model for the slide mass that mimics pseudo-plastic behavior. Time step reduction 
occurs when shear rate approaches zero and the apparent viscosity approaches higher values. 
In order to reduce computational time a numerical parameter is introduced which is referred 
to as limiting viscosity 0. Following the experimental behavior exhibited by high polymer 
solutions, the transition from frictional regime (i.e. solid particle in motion) to the elastic-
plastic regime (i.e. solid particle at rest) occurs with an almost constant value of the apparent 
viscosity which is set equal to 0. This allows keep control of the growth of viscosity at very 
low shear rate, thus reducing computational time when the stability condition for the explicit 
integration scheme is dominated by viscous criterion. 

This approach has been successfully tested on a laboratory experiment simulating, along a 
representative transversal section, the 2D run-out of the Vajont landslide and its interaction 
with the water stored in the artificial basin. The results showed that, with proper choice of the 
value assigned to 0, the model allowed obtaining the desired degree of accuracy in predicting 
maximum wave run-up along with a significant reduction of the computational time. 

An ongoing research is devoted to the application of SPHERA v.9.0.0 to the simulation of 
the post-failure dynamics of rainfall-induced shallow landslides that represents one of the 
most common natural hazards in some areas of the world (Bordoni et al. 20015). These kind 
of landslides are triggered by intense rainfall events inducing water infiltration at slopes that 
increases the volumetric water content and pore water pressure that worsen the slope stability. 
Therefore, reliable assessment of landslide susceptibility requires proper definition of the 
rainfall characteristics considering recent climate trends affecting rainfall and intense storm 
events (Barbero et al. 2014). 

SPHERA v.9.0.0 is particularly suitable for the analysis of the above-mentioned kind of 
shallow landslides that are classified as complex landslides because their run-out starts as 
shallow rotational-translational failure then it changes into earth flows owing to the large 
water content and behaves like dense granular flow (Zizioli et al. 2013).  

The early results of these simulation are shown and discussed in section 3.2. 

3 RESULTS ANALYSIS 
This section illustrates some applications of the two WCSPH models described in sections 

2.1 and 2.2. 
Section 3.1 shows the application of the standard SPH model for the analysis of multiphase 

flow involving two fluids with high-density ratio, as the case of a circular bubble rising in 
water at rest. 

Section 3.2 is devoted to the application of the FOSS code SPHERA v.9.0.0 (Amicarelli et 
al. subm.) to the analysis of multiphase flow involving a viscous non-Newtonian fluid, as the 
case of post-failure dynamics of a rainfall induced shallow landslide. 

3.1 Bubble rise in still water 
The WCSPH model described in section 2.1 has been applied to the analysis of the 

problem investigated in Colagrossi & Landrini (2003). The free rise of a circular air bubble 
with radius r inside a still water column with depth H is simulated.  

As said in the section 1, no additional term is included in the momentum balance equations 
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to account for surface tension effects. However, Colagrossi & Landrini (2003) and Hoover 
(1998) noticed that the discretized form of pressure gradient in the standard SPH momentum 
balance equation implies fictitious surface-tension effects. The adopted formulation of the 
momentum balance Eq. (11) maintains the same structure of standard SPH momentum 
balance equation because it is obtained through the same discretization procedure. 

Table 1: model parameters for test case of rising bubble in water at rest. Superscripts refer to w=water a=air. 

parameter value 
 0.025 m 
h 1.3  

water 45,488 part.ls 
air 2,512 part.ls 
H 10 m 
r 1 m 
 w 7.0 
 a 7.0 
 w 1000 kg/m3 
 a 1.2 kg/m3 
c w 50 m/s 
c a 55 m/s 
 0.4 
M 0.075 

 
Table 1 summarizes the model parameters adopted in the computation. After early trial 

simulations, the optimal inter-particle distance  = 0.025 m is adopted, resulting in 48,000 
total particles. This resolution represents a suitable compromise between required 
computational effort and results quality. The air sound speed c a has been properly reduced to 
a value close to the water sound speed c w in order to enhance bubble deformation. In Table 1 
 is the constant for periodic density smoothing, M is the constant of Monaghan artificial 
viscosity. 

Figure 1(a) displays the initial state of the half system that has been simulated to reduce the 
computational effort. The left-hand panel shows the velocity modulus, which is expressed in 
non-dimensional form with respect to the reference velocity (g r) 0.5. The mid panel displays 
the hydrostatic pressure distribution in the water column and the atmospheric (relative) 
pressure inside the bubble, both of which are expressed in non-dimensional form with respect 
to the pressure at the bottom of the tank (w g H). The right panel shows the density field. 
Note that the air particles are surrounded by a black circle in the left-hand and in the middle 
panels in order to distinguish them from the water particles. For this reason, air particles 
appear darker in the plots showing velocity magnitude and pressure distribution.  

As the computation starts, the air bubble is suddenly compressed because of the strong 
pressure difference with respect to the surrounding water.  Figure 1(b) shows the system at the 
instant at t = 0.70 s. The bubble assumes a lenticular shape because it is pushed upward by the 
water jet that rises from the bottom in the direction of the bubble vertical axis because of the 
pressure difference with respect to the air. The left panel shows the above-mentioned water jet 
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with a vertical velocity of about 4 m/s.  

(a) 

(b) 

Figure 1: bubble rise at (a) t = 0.0s and (b) t = 0.70s. From the left-hand side: velocity, pressure and density 
fields. Cartesian axes in meters. 

As seen in the middle panel, the water pressure is higher around the air bubble, causing it 
to become deformed during the upward motion. Both the velocity and pressure fields are quite 
smooth and vary in accordance with physical expectations. 

The right-hand panel shows that the bubble contour remains quite regular, without 
penetration of water particles, thus highlighting fictitious surface tension effects even if the 
momentum balance equations does not include any term simulating physical surface tension. 
Owing to the hydrodynamic thrust of the upward water jet, the bubble vertical position 
increases, the bubble mean thickness decreases while the transversal length grows with 
respect to the early situation in Figure 1(b).  

The bubble contour at time t = 1.40 s is shown in Figure 2 (red dots), and it is compared 
with the numerical result in the paper by Colagrossi & Landrini (2003), denoted by blue 
diamonds. It can be seen that the simulated bubble is characterized by a reduced vertical 
velocity and that its shape is rather different because the lower volute that subsequently 
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detaches from the upper main body does not form.  

 
Figure 2: bubble position at t = 1.40 s. Comparison between present SPH model (red dots) and the model by 

Colagrossi & Landrini (2003). 

Concerning the reduced rising speed of the air bubble, this may be related partly to the 
high dissipation effects induced by the artificial viscosity when both phases are compressed 
one to each other, as discussed in Manenti (2018).  

Regarding the differences of the shape with respect to the reference results in Colagrossi & 
Landrini (2003), may be these are related to the fact that the present model does not 
implement any term for simulating physical surface tension effects in the momentum balance 
equation. Anyway, the adopted discretized form of the pressure gradient term implies 
fictitious surface-tension effects (Hoover, 1998) and this is partly confirmed by the inter-
phase surface sharpness without heterogeneous particles penetration. 

A similar problem was investigated in  Sussman et al. (1994) considering a rising air 
bubble in a liquid with density ratio 1000/1, medium range Reynolds number and non-
negligible surface tension effects (i.e. low Bond number). Qualitative comparison of the 
bubble shape shows that the results obtained with the present model are consistent with those 
of Sussman et al. (1994) showing that no fragmentation of the air bubble occurs even at 
subsequent instants. Anyway, a rigorous comparison is rather difficult owing to the following 
reasons. The governing equations for slightly compressible fluids are assumed in this model, 
while incompressible Navier-Stokes equations have been adopted in Sussman et al. (1994). 
The physical viscosity is neglected in the present model, and therefore it seems difficult to 
evaluate the Reynolds number based on the artificial viscosity contribution. The fictitious 
surface tension can not be easily quantified to estimate an equivalent physical surface tension 
for evaluating Bond number. 

3.2 Rainfall induced shallow landslide 
The FOSS code SPHERA v.9.0.0 (Amicarelli et al. subm.) illustrated in section 2.2 has 
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been tested for the post-failure analysis of a rainfall induced shallow landslide. This landslide 
occurred during an intense rainfall event on April 2009 in a hilly area of the Oltrepò Pavese 
named Recoaro valley ‒ Northern Italy. Even if SPHERA has 3D formulation, a 2D approach 
has been conveniently adopted in this case because of the landslide peculiarity to be relatively 
narrow so as the flow may be assumed two-dimensional.  

 
Figure 3: 2D SPH simulation of a rainfall induced shallow landslide. SPHERA v.9.0.0 (RSE SpA). 

One of the first contribution to SPH modelling for predicting flow-like landslides including 
hydro-mechanical coupling was given by Pastor et al. (2009). They proposed a 2D depth-
integrated, coupled, SPH model by assuming that the vertical flow structure would be the 
same as a uniform steady-state flow according to the so-called model of the infinite landslide 
having constant depth and moving at constant velocity on a constant slope. This assumption is 
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suitable for landslides whose average depths are small in comparison to their length and 
width. 

In the present case, where initial landslide mean depth is of the same order of its length and 
width, significant variations of the vertical thickness and of the vertical velocity profile may 
occur along the landslide body in the flow direction. The proposed modelling approaches 
removes the hypothesis made by Pastor et al. (2009), thus allowing a numerical 
implementation of the problem that is closer to the actual behavior. The simulated falling time 
seems quite reasonable for the considered event. Comparison of the final landslide profile 
with in situ measurements shows suitable accuracy and will be illustrated in a future paper. 

4 CONCLUSIONS 
- A novel WCSPH based on standard formulation has been illustrated for the analysis 

of multiphase flows with large density ratio. By replacing the density (which is 
discontinuous at the interface) with specific volume, the numerical instability at the 
interface is prevented. Furthermore, no fictitious force should be added in the 
pressure gradient term inside the momentum balance equation to prevent interphase 
particle penetration and maintain the interface sharply defined. Kernel truncation is 
avoided at interface, thus reducing deterioration of computational accuracy. 

- The FOSS code SPHERA v.9.0.0 (RSE SpA) was tested on the simulation of a 
rainfall induced shallow landslide occurred in Italy in 2009. The model, having full 
3D formulation, allows removing the need for a depth integrated formulation. Fast 
computation is assured by introducing a numerical parameter, the limiting viscosity, 
for run optimization. 
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