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Abstract. Experimental and field investigations for solution mining processes have im-
proved intensely within the last years. Due to today’s computing capacities, 3D simu-
lations of potential salt solution caverns can further enhance the process understanding.
They serve as a “virtual prototype” of a projected site and support planning in reason-
able time. In this contribution, we present a meshfree generalized finite difference method
based on a cloud of numerical points that is able to simulate solution mining processes
on microscopic as well as macroscopic scales. Focusing on anticipated industrial require-
ments, Lagrangian and Eulerian formulations including an ALE-approach are considered.

1 INTRODUCTION

Classical simulation methods are meshbased. Moving geometry parts, free surfaces,
phase boundaries, or large deformations are difficult to handle or require time-consuming
re-meshing algorithms. This is not the case for meshfree methods. They show their advan-
tages especially for these applications. The meshfree Finite Pointset Method (FPM) uses
a generalized finite difference method (GFDM) on a cloud of numerical points. There are
already successful applications of the method in CFD and continuum mechanics. Exam-
ples include water crossing of cars, water turbines, hydraulic valves, soil mechanics, and
metal cutting [6, 8, 15, 19]. The current development of the simulation software MESH-
FREE has eliminated previous shortcomings concerning robust and scalable solutions of
sparse, linear systems. MESHFREE combines the advantages of FPM and the fast linear
solvers of SAMG [16]. In this contribution, we present its capabilities with respect to the
simulation of solution mining processes on microscopic and macroscopic scales.

Originally, a Lagrangian formulation is used, i.e. the point cloud moves according to
the flow velocity [6, 9]. Thus, there is an accurate and natural transport of physical
information. The basic physical model consists of the conservation equations for mass,
momentum, and energy. For solution mining processes, we extend it by the standard
k-ε turbulence model and equations for the concentration of the occurring species (see
Section 2). The GFDM specific numerics are derived in Section 3 with special focus on
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the Lagrangian and Eulerian formulations. The microscopic simulations in Section 4 illus-
trate a procedure to determine the necessary effective model parameters of a macroscopic
problem. For macroscopic simulations, the Lagrangian formulation leads to a significant
restriction of the time step size due to the explicit movement of the point cloud. To
enable simulations in reasonable time, the Eulerian formulation should be preferred [17].
Thereby, the point cloud is fixed and convective terms represent the transport of physical
information. The necessary movement of the boundary of the salt cavern is implemented
based on the solution rate. Close to the boundary, interior points are subject to an ALE-
approach (Arbitrary Lagrangian-Eulerian) according to [4]. This procedure gives rise to
covering the complete life cycle of a salt cavern by a meshfree simulation. We demon-
strate the advantages of the Eulerian formulation for a simplified macroscopic example in
Section 5, followed by conclusions in Section 6.

2 PHYSICAL MODEL

In this section, we describe the basic physical model and its extensions for solution
mining processes. Furthermore, a specific model for the density of a solution is discussed.

2.1 Basic Equations

The basic physical model is given by the conservation equations of mass, momentum,
and energy in Lagrangian formulation.

dρ

dt
+ ρ · ∇Tv = 0, (1)

d

dt
(ρ · v) + (ρ · v) · ∇Tv = (∇TS)T −∇p+ ρ · g,

d

dt
(ρ · E) + (ρ · E) · ∇Tv = ∇T(S · v)−∇T(p · v) + ρ · gT · v +∇T(λ · ∇T ),

where d
dt

= ∂
∂t

+ vT∇ denotes the material derivative. Furthermore, we have: nabla
operator ∇ = ( ∂

∂x
, ∂
∂y
, ∂
∂z
)T, density ρ, velocity v ∈ R3, stress tensor S ∈ R3×3 (deviatoric

part, i.e. tr(S) = 0), pressure p, body forces g ∈ R3, total energy E = cv · T + 1
2
· (vT · v),

heat capacity cv, temperature T , and heat conductivity λ. As described in [6, 9], the
stress tensor is split into its viscous and solid parts by S = Svisc + Ssolid. For simplicity,
the solid part will be neglected for further analysis. The viscous part is defined by

Svisc = (η + ηturb) ·
(
∇vT + (∇vT)T − 2

3
· (∇Tv) · I

)
, (2)

where I ∈ R3×3 is the identity. To incorporate turbulent effects, the standard k-ε turbu-
lence model is considered omitting fluctuating dilatation and source terms, see [14]:

dk

dt
=

1

ρ
· ∇T

((
η +

ηturb
σk

)
· ∇k

)
− ε+

1

ρ
· (Ppr + Pb), (3)

dε

dt
=

1

ρ
· ∇T

((
η +

ηturb
σε

)
· ∇ε

)
− C2ε ·

ε2

k
+

1

ρ
· C1ε ·

ε

k
· (Ppr + C3ε · Pb),

2
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where η is the laminar and ηturb = ρ · Cη · k2

ε
is the turbulent viscosity. The turbulent

production rate is defined by Ppr = ηturb · �∇vT�2M with von Mises matrix norm � · �M.
The turbulent buoyancy is given by Pb = −1

ρ
· ηturb

Prturb
· ∂ρ

∂T
· (g · ∇T ). For this model,

well-established values for the constants are σk = 1.0, σε = 1.3, C1ε = 1.44, C2ε = 1.92,
C3ε = −0.33, Cη = 0.09, and Prturb = 0.85 (turbulent Prandtl number). In the vicinity of
walls, a logarithmic wall function is used. In order to simulate solution mining processes,
the model above is extended by convection-diffusion-equations for concentration ci of
species i = 1, . . . , N with effective diffusion coefficient Di,eff :

dci
dt

+ ci · ∇Tv = ∇T(Di,eff · ∇ci). (4)

In the Eulerian formulation, the material derivative is replaced by its definition.

2.2 Modeling Density, Viscosity, and Heat Capacity

The general form of the equation of state is given by ρ = ρ(T, c1, . . . , cN), i.e. density
depends on temperature and concentrations. Based on the formulation in [10, 13], the
density of a solution of N species in water is given by

ρsol =

(
wH2O

ρH2O

+
N∑
i=1

wi

ρapparent,i

)−1

, (5)

where wH2O and wi are the mass fraction of water and species i, respectively. Additionally,
wH2O +

∑N
i=1 wi = 1 has to be satisfied. The density of water is determined by

ρH2O =
(((((A1 · T + A2) · T + A3) · T + A4) · T + A5) · T + A6)

1 + A7 · T
, (6)

while the apparent density of species i is given by

ρapparent,i =
(C∗

0 · (1− wH2O) + C∗
1) · exp (0.000001 · (T + C∗

4)
2)

(1− wH2O) + C∗
2 + C∗

3 · T
(7)

with A1, . . . , A7 and C∗
0 , . . . , C

∗
4 according to [13]. The mass fractions wi are defined by

wi =
ci∑N

i=1 ci+ρH2O
. Similarly, ηsol(T, c1, . . . , cN) and cv,sol(T, c1, . . . , cN) are modeled, see

[10, 11, 12].

3 NUMERICS BASED ON GFDM

3.1 Point Cloud Management

The GFDM approach uses a discretization by a cloud of numerical points which com-
pactly covers the computational domain. The density of the point cloud is given by a
sufficiently smooth function h = h(x, t), the so-called interaction radius. There is a direct
correlation between the point cloud resolution and the quality of the simulation results
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(convergence in h of order 2). Details regarding the initial seeding and quality mainte-
nance of the point cloud are found in [8, 9]. The latter is of utmost importance in the
Lagrangian formulation as well as the ALE-approach since the movement of (parts of) the
point cloud leads to accumulation or scattering of points which would reduce the quality
of the numerical results.

3.2 Differential Operators

We use a specialized weighted moving least squares approach to determine numerical
differential operators ∂̃0, ∂̃x, ∂̃y, ∂̃z, Δ̃ for function approximation, x-,y-,z-derivative, and
the Laplacian which are independent of the considered function, see [8]. The interaction
radius defines the general neighbors of each point. During the least squares operator
generation, the ones with the smallest distance to the considered point obtain the highest
weight. Furthermore, the numerical operators are defined such that chosen discrete test
functions and their derivatives are reproduced exactly. A common choice are monomials
up to a certain order and the delta function.

3.3 Time Integration

A strong form discretization of the physical model (Section 2) can be provided based on
the numerical differential operators and a chosen time integration scheme. For simplicity,
the following considerations are based on first order time integration.

Starting with the Lagrangian formulation, equations (1) can be rewritten as

dρ

dt
= −ρ · ∇Tv, (8)

dv

dt
=

1

ρ
· (∇TS)T − 1

ρ
· ∇p+ g,

(ρ · cv) ·
dT

dt
= ∇T(S · v)− (∇TS) · v − p · ∇Tv +∇T(λ · ∇T ).

Note that we use ρ = ρsol and cv = cv,sol to improve readability. Together with equations
(2)–(4), this is the starting point of the numerical discretization. The spatial derivatives
are replaced by their least squares approximated counterparts. Denoting the future time
level by n+1 and the current one by n with time step size Δt = tn+1− tn, the point cloud
is moved according to a second order method by xn+1 = xn + Δt · vn + vn−vn−1

2·Δt0
· (Δt)2

with previous time step size Δt0 wrt. time levels n and n − 1, see [18]. A semi-implicit
time integration for temperature T n+1 reads

(IT +DT ) · T n+1 = (ρn · cnv) · T n + fT , (9)

where IT = ρn · cnv · I, DT = −Δt · ∇̃T(λ · ∇̃), and fT = Δt · (∇̃T(Sn · vn)− (∇̃TSn) · vn −
pn · ∇̃Tvn). Equation (9) forms a sparse linear system with unknowns T n+1 at each point
of the point cloud. For the sake of clarity, the index of the point is omitted. Analogously,
a semi-implicit time integration for concentrations cn+1

i , i = 1, . . . , N , can be formed:

(Ici +Dci) · cn+1
i = cni , (10)

4
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where Ici = (I + Δt · ∇̃Tvn) and Dci = −Δt · ∇̃T(Di,eff · ∇̃). The future density ρn+1,
viscosities ηn+1

sol and η̂n+1 = ηn+1
sol + ηnturb, as well as heat capacity cn+1

v can be determined
according to Section 2.2.

Time integration of the first equation in (8) provides the targeted divergence of velocity
∇̃Tvn+1. To solve for vn+1 and pn+1 in an implicit time integration scheme, we use the
penalty formulation introduced in [6, 9] which is independent of the Reynolds number.
To this end, the pressure is split into its hydrostatic (body forces) and dynamic parts
(movement of the fluid) by p = phyd + pdyn. For the hydrostatic pressure, we have

∇̃T

(
1

ρn+1
· ∇̃pn+1

hyd

)
= ∇̃Tg. (11)

Defining the preliminary pressure by p̂ = pn+1
hyd + pndyn, we obtain the following coupled

velocity-pressure-system for preliminary velocity v̂n+1 and correction pressure pn+1
corr :(

I− Δt

ρn+1
· ψ̃n+1

η̂n+1

)
· v̂n+1 +

Δt

ρn+1
· ∇̃pn+1

corr = vn − Δt

ρn+1
· ∇̃p̂+Δt · g, (12)

∇̃T

(
Δtvirt
ρn+1

· ∇̃pn+1
corr

)
= ∇̃Tv̂n+1 − ∇̃Tvn+1 (13)

with (ψ̃n+1
η̂n+1)

T = ∇̃T(η̂n+1 · ∇̃)(v̂n+1)T + (∇̃η̂n+1)T · (∇̃(v̂n+1)T)T + η̂n+1

3
· (∇̃(∇̃Tv̂n+1))T −

2
3
· (∇̃Tv̂n+1) · (∇̃η̂n+1)T and Δtvirt = Avirt · Δt, 0 ≤ Avirt ≤ 1. If Avirt = 1, the scheme

corresponds to an implicit Chorin projection, see [2]. Theoretically, choosing Avirt = 0
would give the exact solution. However, the linear system is ill-conditioned and can not
be solved in most cases. For 0.001 ≤ Avirt ≤ 0.1, conditioning of the linear system is
sufficiently good. Furthermore, the resulting preliminary velocity features a divergence
which is very close to the targeted one. The update of the velocity and the dynamic
pressure are given by vn+1 = v̂n+1 − Δtvirt

ρn+1 · ∇̃pn+1
corr and pn+1

dyn = pndyn + pn+1
corr . The updated

stress tensor Sn+1 is determined according to (2).
For the k-ε turbulence model, we derive a singularity formulation from (3):

d

dt

(
k

ε

)
=(C2ε − 1) + Cη · (1− C1ε) · �∇̃vT�2M ·

(
k

ε

)2

+
Cη · (C1ε · C3ε − 1)

ρ · Prturb
· ∂ρ
∂T

· (g · ∇̃T ) ·
(
k

ε

)2

+
1

ρ
· Δ̃η∗

(
k

ε

)
, (14)

d

dt

( ε
k

)
=(1− C2ε) ·

( ε
k

)2

+ Cη · (C1ε − 1) · �∇̃vT�2M

+
Cη · (1− C1ε · C3ε)

ρ · Prturb
· ∂ρ
∂T

· (g · ∇̃T ) +
1

ρ
· Δ̃η∗

( ε
k

)
,

where Δ̃η∗
(
k
ε

)
=

ε·Δ̃ηk
k−k·Δ̃ηεε

ε2
and Δ̃η∗

(
ε
k

)
=

k·Δ̃ηεε−ε·Δ̃ηk
k

k2
with Δ̃ηk = ∇̃T

((
η + ηturb

σk

)
· ∇̃

)

and Δ̃ηε = ∇̃T
((

η + ηturb
σε

)
· ∇̃

)
, respectively. If k, ε > 0 for all tn ≤ t ≤ tn+1, nu-

merical mean values can be determined from (14): k
ε

∣∣
m

= 1
Δt

∫ tn+1

tn
d
dt

(
k
ε

)
dt, ε

k

∣∣
m

=

5
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1
Δt

� tn+1

tn
d
dt

�
ε
k

�
dt. We use the mean values to avoid singularities in the discretized k-ε

turbulence model.

dk

dt
=

Δ̃ηkk

ρ
− ε

k

���
m
· k + Cη ·

�
�∇̃vT�2M − 1

ρ · Prturb
· ∂ρ
∂T

· (g · ∇̃T )

�
· k
ε

����
m

· k, (15)

dε

dt
=

Δ̃ηεε

ρ
− C2ε ·

ε

k

���
m
· ε+ C1ε · Cη ·

�
�∇̃vT�2M − C3ε

ρ · Prturb
· ∂ρ
∂T

· (g · ∇̃T )

�
· k
ε

����
m

· ε.

Consequently, a fully implicit time integration scheme for kn+1 reads

kn+1 − Δt · Δ̃ηkk
n+1

ρ
+Δt · ε

k

���
m
· kn+1 (16)

−Δt · Cη ·
�
�(∇̃vn+1)T�2M − 1

ρ · Prturb
· ∂ρ
∂T

· (g · ∇̃T n+1)

�
· k
ε

����
m

· kn+1 = kn.

Analogously, we have

εn+1 − Δt · Δ̃ηεε
n+1

ρ
+Δt · C2ε ·

ε

k

���
m
· εn+1 (17)

−Δt · C1ε · Cη ·
�
�(∇̃vn+1)T�2M − C3ε

ρ · Prturb
· ∂ρ
∂T

· (g · ∇̃T n+1)

�
· k
ε

����
m

· εn+1 = εn.

The mean values are determined analytically. This is illustrated in detail for k
ε

��
m
. Assum-

ing that the diffusion term 1
ρ
· Δ̃η∗

�
k
ε

�
is negligible as well as defining x = k

ε
, a = C2ε − 1,

and b = Cη ·
�
(C1ε − 1) · �∇̃vT�2M + (1−C1ε·C3ε)

ρ·Prturb
· ∂ρ
∂T

· (g · ∇̃T )
�
, we can rewrite equation

(14) as dx
dt

= a− b · x2. Thus, we obtain

xn+1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�
a
b
· tanh

�
Δt ·

√
a · b+ arctanh

��
b
a
· xn

��
, xn <

�
a
b�

a
b
, xn =

�
a
b�

a
b
· coth

�
Δt ·

√
a · b+ arccoth

��
b
a
· xn

��
, xn >

�
a
b

. (18)

The updated turbulent viscosity is determined by ηn+1
turb = ρn+1 · Cη · (kn+1)2

εn+1 .
In case of the Eulerian formulation, [17] shows that a second order time integration

scheme should be applied to numerically solve transport terms of the form vT∇. For this
purpose, the SDIRK2 method is proposed (see [1]). It features the same stability proper-
ties as an implicit Euler time integration scheme. Furthermore, an upwind discretization
by means of a MUSCL reconstruction with a Superbee limiter is used. For example, the
coupled velocity-pressure-system is solved by the following two-step procedure:

�
Iv̂n+α − α ·Δt

ρn+α
ψ̃n+α
η̂n+α

�
· v̂n+α +

α ·Δt

ρn+α
· ∇̃pn+α

corr = vn − α ·Δt

ρn+α
· ∇̃p̂+ α ·Δt · g, (19)

∇̃T

�
Δtvirt
ρn+α

· ∇̃pn+α
corr

�
= ∇̃Tv̂n+α − ∇̃Tvn+α

6
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with Iv̂n+α = (I + (ṽT∇)v̂n+α) and (ψ̃n+α
η̂n+α)T = ∇̃T(η̂n+α · ∇̃)(v̂n+α)T + (∇̃η̂n+α)T ·

(∇̃(v̂n+α)T)T + η̂n+α

3
· (∇̃(∇̃Tv̂n+α))T − 2

3
· (∇̃Tv̂n+α) · (∇̃η̂n+α)T and, subsequently,

v̂n+1 −Δt · α ·V(v̂n+1, pn+1
corr ) = vn +Δt · (1− α) ·V(v̂n+α, pn+α

corr ), (20)

∇̃T

(
Δtvirt
ρn+1

· ∇̃pn+1
corr

)
= ∇̃Tv̂n+1 − ∇̃Tvn+1

withV(v̂n+1, pn+1
corr ) = − 1

ρn+1 ·(ṽT∇)v̂n+1+ 1
ρn+1 ·ψ̃n+1

η̂n+1− 1
ρn+1 ·∇̃p̂n+1+g andV(v̂n+α, pn+α

corr ) =
v̂n+α−vn

α·Δt
are solved for α = 1 −

√
2
2
. Density and viscosity for the intermediate step can

for instance be determined by linear interpolation between time level n and n+ 1.

4 MICROSCOPIC SCALE

In this subsection, we present a general method based on the Lagrangian formulation
to identify the effective parameters that are necessary for macroscopic scale simulations.
These are effective diffusion coefficient and boundary condition between water and sur-
rounding species. For simplicity, we restrict the following illustration to sodium chloride.
Please note that the procedure can directly be transferred to any other species.

4.1 Setup

We consider a cylinder with diameter of 5m and height of 10m which is initially filled
with pure water, i.e. cNaCl(t = 0) = 0. During the simulation, the temperature is fixed
to T0 = 20 ◦C. The roof of the cylinder acts as inexhaustible supply of sodium chloride
which is modeled by applying a Dirichlet condition with saturation concentration csNaCl =
csNaCl(T0) = 357 kg

m3 . For the hull of the cylinder, a homogeneous Neumann condition
is applied. Aiming at a quasi-stationary profile, the bottom of the cylinder models an
outflow boundary. In the interior, we solve ∂cNaCl

∂t
= ∇T(Dmicro · ∇cNaCl), where Dmicro =

Dlaminar+Dturb. The laminar diffusion coefficient for sodium chloride is given byDlaminar =
1.611 · 10−9 m2

s
(see [3]). For the turbulent part, we have Dturb = Cη · k2

ε
. Standard

boundary conditions (Dirichlet and Neumann) are prescribed for velocity, pressure, and
the turbulent quantities. The simulation runs until a quasi-stationary state is reached.

4.2 Evaluation Strategy

In order to determine the effective quantities, the cylinder is split in z-direction into
equal sub-cylinders SCj, j = 1, . . . , J , which are used to estimate the mass flow. The
planes between the sub-cylinders are denoted by HPj, j = 1, . . . , J − 1. Analogously
to the heat flow, the mass flow of sodium chloride is given by dm

dt
= −DNaCl,eff · ∂c̄NaCl

∂n
,

where c̄NaCl is the mean concentration. The mass flow and the mean concentration in
sub-cylinder SCj are determined by

dm

dt
(SCj) =

∫
SCj

cNaCl · v3 dVSCj∫
SCj

1 dVSCj

, c̄NaCl(SCj) =

∫
SCj

cNaCl dVSCj∫
SCj

1 dVSCj

. (21)

7
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Based on the mean concentration in a sub-cylinder SCj, we can approximate its normal
derivative wrt. the help plane HPj. This yields the effective diffusion coefficients

DNaCl,eff(SCj|HPj) = −
dm
dt
(SCj)

∂c̄NaCl

∂n

∣∣
HPj

, j = 1, . . . , J − 1. (22)

As soon as a quasi-stationary state is reached, the values for the different j tend to the
desired effective diffusion coefficient for a macroscopic setup (resolution is of the order of
the height of the sub-cylinders). To accommodate the “quasi-stationary” character of a
simulation, we use a time-averaged effective diffusion coefficient wrt. a small time interval.

In the macroscopic simulation, we use the Robin boundary condition

DNaCl,eff · ∂cNaCl

∂n
= γNaCl,eff · (cNaCl − csNaCl), (23)

where the effective transition coefficient γNaCl,eff can be derived from the microscopic setup
similarly to the effective diffusion coefficient DNaCl,eff :

γNaCl,eff(SCj) =
dm
dt
(SCj)

c̄NaCl(SCj)− csNaCl

, j = 1, . . . , J − 1. (24)

If the quasi-stationary state is reached, the (time-averaged) sub-cylinder specific values
tend to the desired value of the effective transition coefficient. With the help of γNaCl,eff ,
we can define the solution rate of sodium chloride for given temperature T0 by

RNaCl(T0) = γNaCl,eff(cNaCl − csNaCl). (25)

4.3 Numerical Results

The resolution (interaction radius h) in the macroscopic simulation in Section 5 is
of the order of meters. Thus, we choose J = 10 in the microscopic setup which yields
sub-cylinders of height 1m. We consider five levels of resolution with interaction radii
h = 0.30m, 0.25m, 0.20m, 0.19m, 0.18m. The evolution of the concentration for the highest
resolution in the time interval [0s, 100s] is illustrated in Figure 1. As expected, the flow
is characterized by viscous fingering.

Decreasing the interaction radius h, leads to convergence of the estimated effective
diffusion and transition coefficients towards DNaCl,eff = 0.1m2

s
and γNaCl,eff = 0.000042m

s
,

respectively (see Table 1). According to this, we obtain a solution rate of RNaCl(20
◦C) =

−0.0150 kg
m2·s . Compared to the solution rate of −0.0488 kg

m2·s for T0 = 23 ◦C determined in
[7] on crystal level, the estimated solution rate is of the correct order of magnitude.

5 MACROSCOPIC SCALE

The effective parameters determined in Section 4 are used in the macroscopic setup
below which models a simplified solution mining process. Both the Lagrangian as well as
the Eulerian formulation are evaluated, see [17].

8
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(a) t = 10s (b) t = 55s (c) t = 100s

Figure 1: Evolution of the microscopic simulation for h = 0.18m – concentration.

Table 1: Estimated effective diffusion and transition coefficient, as well as solution rate.

interaction radius DNaCl,eff γNaCl,eff RNaCl(20
◦C)

h = 0.30m 0.1515m2

s
0.000184m

s
−0.0657 kg

m2·s
h = 0.25m 0.1558m2

s
0.000141m

s
−0.0504 kg

m2·s
h = 0.20m 0.1096m2

s
0.000074m

s
−0.0264 kg

m2·s
h = 0.19m 0.1028m2

s
0.000050m

s
−0.0179 kg

m2·s
h = 0.18m 0.0999m2

s
0.000042m

s
−0.0150 kg

m2·s

5.1 Setup

We are interested in the geometrical evolution of a salt cavern. The initial geometry is
given by a small cavern filled with pure water which is surrounded by sodium chloride, see
Figure 2. The dimensions of the initial cavern are approximately: width of 90m, height
of 50m, and depth of 26m. The sodium chloride deposit is limited in extension which
corresponds to impermeable surrounding rock. The pipe on the left side acts as an inlet
of fresh water with |vin| = 1m

s
, whereas the pipe on the right side acts as the outlet.

In reality, the maximum diameter of the pipes is of the order of 1m. Hence, the

Figure 2: Macroscopic simulation setup – initial geometry, see [17].
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resolution of the point cloud close to the inlet and the outlet has to be of the order of
0.1m to ensure accurate results. In case of the Lagrangian formulation, this would lead
to an extremely small time step size compared to the desired simulation time of several
years due to the CFL-condition ΔtLag ≤ CFLLag · hmin

|v| . Stable results are achieved for

CFLLag = 0.15. Since |v| ≥ |vin| and hmin = O(0.1m), we obtain ΔtLag = O(0.1s).
In order to allow for a comparison of Lagrangian and Eulerian formulation, we consider
pipes of diameter 12m and constant interaction radius of h = 4m. Furthermore, we fix
the temperature to T0 = 20 ◦C and, subsequently, obtain the corresponding saturation
concentration csNaCl = 357 kg

m3 . For simplicity, the following linear relations for density and

viscosity of the solution are used as described in [17]: ρ(cNaCl) ≈ (0.56 · cNaCl + 1000) kg
m3 ,

η(cNaCl) ≈ (1.96 ·10−6 ·cNaCl+10−3)Pa
s
. We use DNaCl,eff = 0.1m2

s
and γNaCl,eff = 0.00005m

s
.

5.2 Movement of the Boundary

The movement of the boundary of the cavern can be defined by the Stefan condition
ρv� = γNaCl,eff(cNaCl − csNaCl), see [5]. This yields v� =

γNaCl,eff

ρ
· (cNaCl − csNaCl) and,

consequently, a movement of the boundary in normal direction n with velocity vboundary =
v�·n. To speed up computation, a time lapse procedure can be applied which introduces an
additional factor A in the definition of v� which is limited by certain stability conditions.
For details, the reader is referred to [17].

Due to the movement of the boundary, interior points close to this boundary have to
move in the Eulerian formulation also. For this purpose, the ALE-approach presented
in [4] is used. Based on current and future position of an affected interior point, the
translational velocity vtrans = xn+1−xn

Δt
is determined. Due to the explicit movement of

these points, the convection terms in the numerical model in Eulerian form in Section 3.3
must refer to the relative velocity v − vtrans instead of v. Furthermore, this introduces a
CFL-condition of the form ΔtALE ≤ CFLALE · hmin

v�
. It depends on the boundary velocity

v� = O(0.01m
s
) which is considerably smaller than the flow velocity, cf. [17]. Furthermore,

hmin is subject to the desired resolution at the moving boundary. At the inlet and the
outlet, a coarse resolution is sufficient in this case.

5.3 Numerical Results

Figure 3 illustrates the evolution of the salt cavern in the Eulerian formulation ac-
cording to C = cNaCl. The need for an ALE-concept is emphasized by the difference in
time steps to cover a simulation time of 7200s: in the Lagrangian formulation, 22915 time
steps are necessary, whereas only 936 time steps suffice in the Eulerian formulation. This
corresponds to a speed-up of approximately 25 in computation time.

6 CONCLUSIONS

In this contribution, we presented the capabilities of the simulation software MESH-
FREE regarding solution mining processes on different scales. The developed generalized
finite difference approach on a point cloud enables the use of a Lagrangian as well as
an Eulerian formulation. On the microscopic scale, we described a procedure to deter-
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(a) t = 1537s (b) t = 2446s (c) t = 3228s

Figure 3: Evolution of the macroscopic simulation for h = 4m – concentration, see [17].

mine effective diffusion and transition coefficients for an arbitrary species based on the
Lagrangian formulation by considering sodium chloride as numerical example. The re-
sulting effective parameters are then used in macroscopic simulations. A comparison of
the simulation results for the Lagrangian and the Eulerian formulation (extended by an
ALE-approach) illustrate the advantages of the latter one. Aiming at a simulation time
of several years, the forecast computation time for a simulation based on the Lagrangian
formulation would be of the order of years. In contrast to that, the flexibility of the
Eulerian formulation regarding the resolution of the point cloud (local refinement only
at the moving boundary) enables meshfree simulations in reasonable time – especially in
terms of real applications.
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