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Abstract. Fragmenton-based lagrangian vortex methods showed their effectiveness for
inviscid fluid dynamics problems. However the attempts to extend these methods to
viscous flows simulation meet difficulties resulting from nonfulfillment of the Helmholtz
theorems of vorticity motion. Direct implementation of the viscosity models used in
particle-based vortex methods leads to fragmenton ”splitting” problem and accumulation
of numerical errors. In this paper we discuss in details the essence of splitting problem
on the examples of a classical Particle Strength Exchange (PSE) method and a hybrid
DVM-PSE scheme, adapted to a fragmenton-based vortex method.

1 INTRODUCTION

Simulation of viscous fluid with vortex methods has been intensively investigated over
the last 40 years. Wide range of approaches has been created to account for the diffusion
term in the vorticity evolution equation, starting from the stochastic ”random-walk”
model of Chorin, particle strength exchange (PSE) [1], diffusion velocity method (DVM)
[2], hybrid DVM-PSE schemes [3] and ending with hybrid particle-mesh methods, where
the diffusion term is discretized on the mesh [4].

In all mentioned approaches vorticity is discretized over pointwise singular or regular-
ized vortex particles (vortons), somehow distributed in the flow [5]. From the physical
point of view this sight is not ”natural”. Vorticity field is solenoidal and it is best rep-
resented with the notion of vortex tubes, which intensity must be conserved in any flow,
both viscous and inviscid. Vortex particles are mostly mathematical objects than physical
ones and do not constitute a solenoidal field. This may lead to accumulation of approxi-
mation errors during the simulation. Though using hybrid particle-mesh approaches one
can resolve this issue, the method itself stops being pure lagrangian anymore.

Instead of pointwise particles we consider vortex line fragments (fragmentons) [6]. They
can be used either independently or connected into close filaments, making fragmentons
also the basis of vortex filament method [7, 8]. Fragmenton-based vortex methods showed
to be more effective in some specific inviscid cases in terms of the amount of vortex
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elements needed for a stable simulation [9]. Pure lagrangian vortex fragmenton methods
also showed their effectiveness for the inviscid fluid-structure interaction (FSI) problems
[10], where the use of a mesh is undesirable or leads to extensive computational costs.

The good performance of fragmenton-based methods for the simulation of inviscid
flows motivates to expand them also to viscous flows. However the direct application
of the particle-based viscosity approaches (like PSE or DVM-PSE) to the fragmenton-
based methods leads to the problem of ”vorticity splitting”. This problem appears due
to nonfulfilment of the Helmholtz theorems that state that the material lines, initially
chosen as vortex lines, stay vortex lines during their evolution in an inviscid flow, that is
generally not true for the viscous flows.

It the following sections we give a brief review of the fragmenton vortex method and
discuss the implementation of the classical PSE model, DVM and the hybrid DVM-PSE
approach suggested by Mycek et al. [3], for the fragmenton-based vortex methods. We
explain in detail the essence of the splitting problem and show that the both viscosity
concepts lead to excessive splitting in the test problem of vortex oval evolution in viscous
fluid.

2 FRAGMENTON-BASED VORTEX METHODS

Consider vorticity evolution equation for a tree-dimensional incompressible viscous fluid
without bodies and frontiers

∂ω

∂t
+ (V · ∇)ω = (ω · ∇)V + ν∆ω, (1)

where V = V (x, t), ω = ∇× V are velocity and vorticity fields ν – kinematic viscosity.
The classical vortex methods suggest approximate the continuous vorticity field ω with

a set of pointwise vortex particles (vortons):

ω(x, t) ≈
N∑

k=1

αk(t)δ(x− xk),

where δ is the Dirac delta function and αk is the intensity of k-th vorton, which can be
treated as the amount of vorticity concentrated in a point with the position xk.

Fragmenton-based vortex methods approximate the vorticity field with a set of frag-
ments of vortex lines [6]. Each fragment (fragmenton) can be mathematically interpreted
as integrals of delta function over the material vector 2hk (fig. 1):

ω(x, t) ≈
N∑

k=1

γk

∫ 1

−1

δ
(
x− (xk + shk)

)
ds, (2)

where γk = γkhk, γk is the k-th fragmenton scalar intensity, which can be treated as
circulation of a vortex filament; xk is fragmenton’s center position (marker). It should be
emphasized that γk must stay collinear to material vector hk in the simulation. Violating
this requirement may lead to stability problems caused by breakdown of the solenoidity
of the vorticity field and accumulation of numerical errors.
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Figure 1: Fragmenton model

Velocity field, induced with the set of fragmentons (2), can be recovered by integrating
(2) with the Biot-Savart kernel, that gives [6]

V (x, t) ≈
N∑

k=1

γk
4π

hk × s0
|hk × s0|2

[(
s2
|s2|

− s1
|s1|

)
· hk

]
,

which is also only true when γk and hk are collinear. This formula gives singularities
upon reaching the axis of a fragmenton and can be regularized as described in [6].

For the case of inviscid fluid (ν = 0) substitution of (2) into the vorticity evolution
equation (1) gives the system of the ODEs for the fragmenton parameters: xk, hk and
γk: 




dxk

dt
= V (xk),

dhk

dt
= hk · ∇V (xk),

dγk

dt
= γk · ∇V (xk).

(3)

The last equation of (3) has the same form as the equation for hk and therefore can
equivalently be written as dγk

dt
= 0, and γk = γkhk.

Analysis of (3) shows that fragmenton markers xk follow the velocity field V . Material
vector hk and intensity vector γk change their length and direction with the velocity
gradient tensor ∇V , while the fragmenton intensities γk stay constant in time. This
behavior is aligned with the Helmholtz theorems of motion of vortex filaments in inviscid
fluid, that state that

- vortex filaments conserve their strength in time;

- vortex filaments move and deform with the material lines that carry them.

The latter statement in terms of fragmenton method means that γk and hk always stay
collinear in time, which is particularly important to correctly reconstitute velocity field.
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Nonzero viscosity ν results in a nonzero diffusion term in the vorticity evolution equa-
tion (1) and in nonfulfilment of the Helmholtz theorems. Physically it means that vortex
filaments generally do not move and deform as the material lines, that initially carried
them. This fact does not cause any problem for the hybrid particle-mesh methods, where
the velocity field is found as the solution of Poisson equation [4]. However for pure la-
grangian fragmenton-based methods it becomes a challenge in as much as γk, which we
associate with vorticity vector, and hk, which we associate with material vector, should
stay collinear.

In what follows we call splitting the fact of misalignment of the vectors γk and hk that
potentially may occur in the simulations.

3 VISCOSITY MODELS

The variety of viscosity models created for particle-based vortex methods are all re-
ferred to the means to simplify or approximate the diffusion term ν∆ω [5, 3]. Direct
implementation of these approaches to the fragmenton-based methods results in modifi-
cation of the evolution equations for hk and γk of (3) that may cause splitting, as these
equations loose their symmetrical form.

Here we discuss three approaches to account for the diffusion term in particle-based
vortex methods, applying them for fragmenton-based methods: Particle Strength Ex-
change, Diffusion Velocity Method and hybrid DVM-PSE scheme proposed by Mycek et
al. [3].

3.1 Particle strength exchange

The PSE method was suggested by Degond & Mas-Gallic in [1] who gave its profound
analysis in application to numerical solution of advection-diffusion equations with particle
methods. The idea of the PSE method is approximation of the diffusion term ν∆ω with
the integral operator of the form

Qε(ω) =
ν

ε2

∫

R3

ηε(x− y)(ω(y, t)− ω(x, t))dy, (4)

where ηε(x) =
1
ε3
η
(
x
ε

)
; η(x) ∈ L1(R3) is kernel function that must satisfy several moment

conditions in order to make Qε(ω) converge towards ν∆ω in certain norms when ε → 0.
Details on the kernel function choice can be found in [1].

Replacing ν∆ω with the integral operator (4) and applying the fragmenton approxi-
mation (see [11] for details) we get the following set of the ODEs





dxk

dt
= V (xk),

dhk

dt
= hk · ∇V (xk),

dγk

dt
= γk · ∇V (xk) +

ν

ε2

N∑

q=1

Gkq(γqSk − γkSq),

(5)
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where Sk is the cross-section area of the vortex tube, associated to the k-th fragmenton at
initial time; Sk = σk/|2hk|, where σk is fragmenton’s volume that stays constant in time;
Gkq is the exchange coefficient between the k-th and q-th fragmentons, which depends on
their length and mutual orientation:

Gkq =

∫ 1

−1

∫ 1

−1

ηε(xk + τhk − xq − shq)dsdτ.

Comparison of (5) and (3) shows that the equations for xk and hk stay without change
comparing to the equations for xk and hk for ideal fluid. The equation for γk obtained
the additional term, responsible for the exchange of intensities between k-th and q-th
fragmentons. In two-dimensional problems this additional term causes no splitting as hk

and γk have the only nonzero component in the direction normal to the symmetry plane,
thus they always stay collinear. However for an arbitrary three-dimensional flow this is
not true.

3.2 Diffusion velocity method

The general idea of the diffusion velocity method is to find such vector field U that
can be considered as the ”virtual” velocity field that transfers vortex tubes in a viscous
fluid in a way that the Helmholtz theorems are valid. According to the Fridman theorem
[12] such U must satisfy the equation

∂ω

∂t
+ (U · ∇)ω − (ω · ∇)U + ω∇ ·U = 0 (6)

or, which is the same,

∂ω

∂t
+∇× (ω ×U ) = 0.

In this view there arise two principle questions:

1. Does such vector field U exist for an arbitrary three-dimensional viscous flow?

2. If yes, are there any practical ways to find this field? In that case the splitting
problem would be totally fixed.

Markov and Sizykh proved in [13] that for any elementary fragment of a vortex tube
there always exist such field U , called Fridman velocity. Moreover, this field is not unique
and is given by

U = V +
ω × (−ν∇× ω −∇f +∇W )

ω2
+ γω,

where W is arbitrary scalar field, constant along vortex filaments, γ – arbitrary scalar
field, f is any scalar function satisfying the condition

ω · ∇f = −νω · (∇× ω). (7)
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Determination of function f from the condition (7) requires integration along the vortex
filaments, thus making the numerical algorithm of search of U very impractical. Another
contribution in the problem of the practical ways to find Fridman velocity is given in [14].
It is demonstrated on several examples of swirling flows, that there exist such flows for
which there are no local expressions of Fridman velocity U , i.e. at any point U cannot
be expressed through the flow parameters in the infinitesimal neighborhood of this point.
This result, conceivably, concludes the discussions and gives the negative answer on the
second posed question for an arbitrary tree-dimensional viscous flow.

For two-dimensional or axisymmetrical flows without swirling determination of Frid-
man velocity does not require integration along the vortex filaments. For the 2D-flows it
reduces to a simple expression

U = V + Vd,

where

Vd = −ν
∇|ω|
ω2

is traditionally called diffusion velocity.
Therefore for two-dimensional viscous flows, vorticity evolution equation (1) can be

reformulated in terms of diffusion velocity Vd as follows

∂ω

∂t
+ ((V + Vd) · ∇)ω = 0. (8)

The fragmenton approximation of (8) gives the following system of ODEs:




dxk

dt
= (V + Vd)(xk),

dhk

dt
= 0,

dγk

dt
= 0.

Here fragmenton markers xk follow the Fridman velocity field V + Vd, while their
intensities γ stay constant unlike in the PSE approach, where they constantly change.
The DVM became primary viscosity model used in 2D vortex methods like VVD [15, 16]
and 2D-codes based on it [17].

3.3 Hybrid DVM-PSE scheme

Although the idea of diffusion velocity is not directly applicable for an arbitrary 3D-
flow, one can use it in a hybrid approach where in some sense ”dominating” part of the
diffusion term is simulated with the DVM, while the resting part is treated with the PSE
method. This decomposition can be done in different ways.

Mycek et al. [3] suggested decompose the diffusion tensor ν∇ω into convective tensor
−Vd ⊗ ω and residual tensor B̂:

6
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ν∇ω = −Vd ⊗ ω + B̂. (9)

Substitution of (9) into (1) gives

∂ω

∂t
+∇ · ((V + Vd)⊗ ω) = (ω · ∇)V +∇ · B̂

or

∂ω

∂t
+ ((V + Vd) · ∇)ω = (ω · ∇)V − ω (∇ · (V + Vd)) +∇ · B̂. (10)

Vd is chosen in a way to minimize the components of B̂ in a least-squares manner (see
[3] for details) and is found to be

Vd = −ν
∇|ω|
|ω|

,

and the tensor B̂ takes the form convenient to be approximated with the PSE integral
operator:

B̂ = ν|ω|
(
∇ ω

|ω|

)
.

Though the authors of [3] call Vd diffusion velocity, strictly speaking, it is unfortunate
naming, because vorticity deformation term (ω · ∇)V in (10) does not have additional
Vd that is required according to the Fridman’s theorem (6). For the particle-based vortex
methods this is not a principle problem, since the main aim of such decomposition is
transformation of the diffusion term ν∆ω in a convenient way and not the treatment of
the vorticity splitting problem. Applying fragmenton approximation to (10) we get the
following ODE system





dxk

dt
= (V + Vd)(xk),

dhk

dt
= hk · ∇(V + Vd)(xk),

dσk

dt
= σk∇ · (V + Vd)(xk),

dγk

dt
= γk · ∇V (xk) +

ν

ε2

N∑

q=1

Gkq
|γq|Sk + |γk|Sq

2

[
γq

|γq|
− γk

|γk|

]
,

(11)

where σk = |2hk|Sk is the k-th fragmenton’s volume.
As for the PSE scheme, the equations for hk and γk in (11) loose their symmetrical

form and cause splitting. It should be also emphasized that hk and γk have different
deformation tensors: ∇(V + Vd) and ∇V respectively.
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Figure 2: Three fragmenton models and splitting problem

4 ”SPLITTING” PROBLEM AND SIMULATION EXAMPLES

The splitting problem that occurs with the PSE and DVM-PSE viscosity models,
adapted to the fragmenton-based vortex methods, can be exposed on a simple model.
Consider three fragmentons, connected to each other in three different configurations
(fig. 2). Every configuration may come up in a real simulation with the vortex filament
method, where these fragmentons form a part of a filament. The first case on fig. 2 is
associated with the plane-parallel motion (rectilinear vortex tube), the second one — with
the axisymmetrical motion (vortex ring) and the third case can be associated with the
more general case of 3D-motion, where a rectilinear part merges into a curvilinear part
(p.e. a part of a vortex oval).

Let us examine each of suggested configurations in terms of splitting of the vectors hk

and γk in the PSE and DVM-PSE models. For every fragmenton configuration on fig. 2
we consider |hk| = |hq1| = |hq2| = h, |γk| = |γq1| = |γq2| = γ, Sk = Sq1 = Sq2 = S and
Gkq1 = Gkq2 = G1 so that the terms responsible for splitting for k-th fragmenton in the
PSE (5) and DVM-PSE (11) models simplify as follows:

RP =
∑

q={q1,q2}

Gkq(γqSk − γkSq) = GS(γq1 − 2γk + γq2),

RDP =
∑

q={q1,q2}

Gkq
|γq|Sk + |γk|Sq

2

[
γq

|γq|
− γk

|γk|

]
= GS(γq1 − 2γk + γq2).

As we see, for these particular fragmenton configurations both PSE and DVM-PSE
models give the same result for the term R = RP = RDP , responsible for splitting of the
central k-th fragmenton.

Analyzing each case separately we see that for the first configuration splitting does not
occur as long as γq1−2γk+γq2 = 0 for the k-th fragmenton. For the second configuration
on fig. 2 R is nonzero, but it is collinear to γk and causes decrease of |γk| without change
of its direction (i.e. no splitting). For the third case R tends to change not only the length
of γk, but also its orientation, causing splitting.

The first and the second layouts on fig. 2 are the simplified prototypes of plane-parallel
and axisymmetrical motions for which both PSE and DVM-PSE models work well, cause
no splitting and can be used without problems [18]. But for more general 3D-motion the
possible influence of splitting should be analyzed in more proper simulations.

1Strictly speaking, for the third case Gkq1 �= Gkq2, but we can consider here Gkq1 ≈ Gkq2 without loss

of generality
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Figure 3: Vortex oval Figure 4: Splitting with the

PSE model

Figure 5: Splitting with the

DVM-PSE model

Consider vortex oval with length to width ratio L/D = 3 with D = 2 (fig. 3). Oval
consists in 9 filaments, each divided into 100 fragmentons. Filaments form the oval’s
core of radius 0.1 and have same intensity so that the oval’s overall circulation Γ0 = 1.
Viscosity ν = 0.01 and Reynolds number is Re = Γ0/ν = 100, PSE cut-off parameter
ε = 0.1. The problem was simulated with the PSE and DVM-PSE viscosity models,
using explicit first order Euler scheme for integrating ODEs (5) and (11) with time step
∆t = 0.001 up to T = 1.

At the time T the oval is only on its initial development stage where the circular parts
begin rolling over out of the oval’s plane, but the fragmentons’ splitting is already clearly
seen for both models (figures 4 and 5). Fragmentons, that initially formed continuous
filaments are now completely separated, though material vectors hk still form closed
structures. This leads to incorrect velocity reconstitution and to imminent breakdown
during the following simulation of the oval due to accumulated numerical errors.

5 CONCLUSIONS

Fragmenton-based vortex methods showed to be promising in the simulations of inviscid
flows, especially when the use of mesh is inconvenient. Intentions to extend these methods
to viscous fluid simulation encouraged the development and adaptation of viscosity models
from existing particle-based approaches to the fragmenton-based ones.

The main principal difficulty has physical reasoning that consists in nonfulfillment of
the Helmholtz laws for viscous fluid with vorticity, which are crucial for fragmenton-based
methods. Every existing viscosity model aimed onto the approximation and discretization
between the particles of the diffusion term ν∆ω, faces the problem of misalignment of

9
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vorticity vector and material vector that we call ”splitting”.
Numerical analysis and simulation examples of a vortex oval demonstrate the splitting

problem for the classical PSE approach and the DVM-PSE scheme proposed by Mycek et
al. Though 3D diffusion velocity could be a solution for the stated problem, its search is an
ill-posed problem and appears to be very impractical for the fragmenton-based methods.

It should also be mentioned about the problems with the general use of PSE-approximation
with fragmenton-based methods, as PSE technics needs particles (or fragmentons) to be
positioned uniformly, i.e. on the mesh, to maintain approximation accuracy. It is rather
difficult to achieve with fragmentons, as they must always form closed structures in a
flow.

One should admit that accurate simulation of viscous flow without any assumptions
with the fragmenton-based vortex methods seems to be improbable. However, in the
sight of the advantageous use of these methods for complicated inviscid FSI problems [10],
efforts should be made to the search and elaboration of hybrid DVM-PSE viscosity models
that minimize splitting. The second way is to analyze the ”no-splitting” assumption,
where splitting is suppressed. In this case the DVM part would play the dominating role,
and it should be chosen wisely. These problems are the questions of the following authors’
research.

REFERENCES

[1] Degond P., Mas-Gallic S. The weighted particle method for convection-diffusion equa-
tions. Part1 and Part2. Math.Comp., (1989), Vol. 53, No. 188, pp 485-525.

[2] Lacombe G., Mas-Gallic S. Presentation and Analysis of a Diffusion-Velocity Method.
The linear case. ESAIM: Proceedings, (1999), Vol. 7, pp 225-233.

[3] Mycek P., Pinon G., Germain G., Rivoalen E. Formulation and analysis of a diffusion-
velocity particle model for transport-dispersion equations. Computational and Ap-
plied Mathematics, (2016), Vol. 35, No. 2, pp 447-473.

[4] Winckelmans G.S. Chapter Vortex Methods in Encyclopedia of Computational Me-
chanics Second Edition. John Wiley & Sons, (2017).

[5] Cottet G-H., Koumoutsakos P. Vortex Methods. Cambridge: CUP, (2000).

[6] Marchevsky I., Shcheglov G. 3D vortex structures dynamics simulation using vortex
fragmentons. 6th European Congress on Computational Methods in Applied Sciences
and Engineering (ECCOMAS 2012), (2012), pp 5716-5735.

[7] Shcheglov G.A., Dergachev S.A. Hydrodynamic loads simulation for 3D bluff bodies
by using the vortex loops based modification of the vortex particle method. 5th In-
ternational Conference on Particle-Based Methods - Fundamentals and Applications,
PARTICLES 2017, pp. 725-731.

10

588



Oleg S. Kotsur, Georgy A. Shcheglov

[8] Shcheglov G.A., Dergachev S.A. Vortex Loops Based Method for Subsonic Aero-
dynamic Loads Calculation. MATEC Web of Conferences, (2018), Vol. 221, 05004.
DOI: 10.1051/matecconf/201822105004

[9] Bogomolov D.V., Marchevsky I.K., Setukha A.V, Shcheglov, G.A. Numerical sim-
ulation of vortex rings pair motion in inviscid fluid using discreet vortex methods.
Engineering physics, (2008), pp. 8-14. (in Russian)

[10] Korotkiy S.A. Calculation of the design parameters of aerospace system with air
launch with account of intensive vortex shedding. PhD dissertation, Bauman Moscow
State Technical University, Moscow, (2005). (in Russian)

[11] Kotsur O.S., Shcheglov G.A. Implementation of the Particle Strength Exchange
Method for Fragmentons to Account for Viscosity in Vortex Element Method. Her-
ald of the Bauman Moscow State Tech. Univ., Nat. Sci., (2018), No. 3, pp. 48-67 (in
Russian), DOI: 10.18698/1812-3368-2018-3-48-67

[12] Kochin N.E, Kibel I.A., Roze N.V. Theoretical Hydromechanics. John Wiley & Sons,
(1964).

[13] Markov V.V., Sizykh G.B. Vorticity evolution in liquids and gases. Fluid Dynamics,
(2015), Vol. 50, No. 2, pp. 186-192.

[14] Kotsur O.S. On the existence of local formulae of the transfer velocity of vortex
tubes that conserve their strengths. Trudy MFTI, (2019), Vol. 11, No. 1, pp. 76-85.
(in Russian)

[15] Guvernyuk S.V., Dynnikova G.Ya. Modeling the flow past an oscillating airfoil by
the method of viscous vortex domains. Fluid Dynamics, (2007), Vol. 42, No. 1. pp.
111.

[16] Kuzmina K.S., Marchevsky I.K., Moreva V.S. On the high-accuracy approach to
flow simulation aroundthe airfoils by using vortex method. IOP Conference Series:
Materials Science and Engineering, Vol. 468, No. 1, 012009, DOI: 10.1088/1757-
899X/468/1/012009

[17] Kuzmina K.S., Marchevsky I.K., Ryatina E.P. Open Source Code for 2D Incom-
pressible Flow Simulation by Using Meshless Lagrangian Vortex Methods. Pro-
ceedings - 2017 Ivannikov ISPRAS Open Conference, pp. 97-103. DOI: 10.1109/IS-
PRAS.2017.00023

[18] Kotsur O.S., Shcheglov G.A. Viscous fluid simulation with the vortex element
method. 31st Congress of the International Council of the Aeronautical Sciences,
ICAS 2018, ICAS2018 0718.

11

589




