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4 ABSTRACT: The so-called fourth revolution in the water sector will
5 encounter the Big data and Artificial Intelligence (AI) revolution. The
6 current data surplus stemming from all types of devices together with
7 the relentless increase in computer capacity is revolutionizing almost
8 all existing sectors, and the water sector will not be an exception.
9 Combining the power of Big data analytics (including AI) with
10 existing and future urban water infrastructure represents a significant
11 untapped opportunity for the operation, maintenance, and rehabil-
12 itation of urban water infrastructure to achieve economic and
13 environmental sustainability. However, such progress may catalyze
14 socio-economic changes and cross sector boundaries (e.g., water
15 service, health, business) as the appearance of new needs and business
16 models will influence the job market. Such progress will impact the academic sector as new forms of research based on large amounts
17 of data will be possible, and new research needs will be requested by the technology industrial sector. Research and development
18 enabling new technological approaches and more effective management strategies are needed to ensure that the emerging framework
19 for the water sector will meet future societal needs. The feature further elucidates the complexities and possibilities associated with
20 such collaborations.

1. THE FOURTH-REVOLUTION IN THE WATER
21 SECTOR ENCOUNTERING THE AI REVOLUTION

22 The water sector is undergoing the so-called fourth
23 revolution,1 which involves establishing water conservation
24 strategies and transitioning toward closing water loops.
25 Meeting our water requirements should not rely only on
26 imported water, but on our ability to turn our urban
27 wastewater, stormwater, and other potential hydric sources
28 into a reliable and sustainable water supply. An example is the
29 transition of conventional wastewater treatment toward the
30 conception of water resource recovery facilities (WRRFs)
31 where wastewater will not only be considered as a resource for
32 water, energy, heat, and chemicals,2,3 but also a source of data-
33 rich information.
34 While the academic and industrial water sectors are pushing
35 for the consolidation of the fourth revolution, another
36 revolution concerning big data and artificial intelligence (AI)
37 has recently emerged in all societal sectors. There are divergent
38 views about the potential of big data analytics to disrupt the
39 water sector, but there is little doubt it will change
40 progressively, and inevitably, the way we think and provide
41 infrastructure services. An estimate 80% and 50% of the
42 utilities in developed and developing countries, respectively,
43 are expected to undergo a digital transition, to some extent, by
44 2025.4

45Fast advances in affordable sensors, high-resolution remote
46sensing, communication technologies, and social media are
47contributing to the proliferation of big data in the water sector
48and are likely transforming traditional decision-making
49strategies. Big data analytics together with AI (and its
50associated machine learning methodologies) are set to bring
51new opportunities and challenges into the water sector.5 The
52intertwining of AI with big data science, with new ways to
53analyze, organize, and extract information from large volumes
54of varying types of information, is bringing new opportunities
55for data-driven discovery.5,6 Decisions once based on
56experience and intuition could soon be guided by the analysis
57of massive amounts of data. How long this process will take is
58unclear, but critical changes in the water sector are looming.
59Applying Big Data beyond Small Problems in the
60Water (Research) Sector. Recent literature shows examples
61of big data and AI for urban water infrastructure operation and
62asset management (see the following section). Such examples
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63 range from classical theory-based science approaches (e.g.,
64 using mechanistic models or empirical knowledge) to theory-
65 free data-driven models (i.e., “pure” big data). Small problems
66 (i.e., online recommendations) are well-structured cases
67 characterized by repeated evaluation of predictions even if
68 the statistical techniques may be complex and the computa-
69 tional and storage cost may be very large.7 Such small
70 problems can be tackled with “pure” big data. However, the
71 water sector faces complex problems due to its multi-
72 disciplinary nature and needs strategic solutions toward new
73 sustainable water infrastructure.8−10 Hence, water research is
74 finding useful intermediate approaches between the two
75 extreme cases of classical theory-based science and pure big
76 data. The following examples are provided to illustrate the
77 benefits and implications of big data and AI for (1) urban
78 water asset management; (2) enhancing the operation of urban
79 water infrastructure; and (3) recovering crucial information
80 about the health and lifestyle habits of individual citizens and
81 communities from data sources coming from the water sector.
82 Afterward, a discussion is provided concerning the transition
83 toward new workforce that enables the integration of big data
84 and AI with the fourth revolution.
85 1.1. Benefits of Big Data and AI in Urban Water
86 Infrastructure Asset Management. In most western countries,
87 the water infrastructure is clearly aging, and (re)investment is
88 not able to keep up with current needs which will likely worsen
89 the existing stagnation of the sector.10,11 Public utilities have
90 often missed out on charging full-cost tariffs and engaged with
91 highly discounted rates, leaving themselves confronted with a
92 backlog of investments,12 and compromising their current
93 ability to embark on large-scale infrastructural projects or even
94 to meet the required maintenance of the drinking water and
95 wastewater infrastructure. As an example, EPA estimated the
96 cost of the capital investment that is required to maintain and
97 upgrade the water systems across the U.S. in 2010 at $91
98 billion.11

99 Collection systems have a lifespan of approximately 100
100 years or more, while WRRFs are expected to last at least 50
101 years.11,13 AI-powered approaches may provide opportunities
102 to alleviate the (re)investment needs of water utilities by
103 extending the service life of existing long-term water
104 infrastructure assets through a set of strategies to intensify,
105 maintain, rehabilitate, and replace infrastructure. Numerous
106 are the examples of advances on leakage detection which can
107 improve the prediction capabilities in both collection networks
108 and treatment facilities to reduce inefficiencies and breakdowns
109 with their associated costly downtimes and repair.14,15 The
110 case of the White House Utility District that saved more than
111 $20 million by identifying leaks in their infrastructure system
112 with digital technologies illustrates the potential of these
113 strategies.16 In just a few years, unthinkable advances were
114 made in infrastructural supervision with the support of AI
115 capabilities, from cost-effective leak detection powered by
116 satellite imaging17,18 to the use of magnetic sensors to measure
117 pipeline thickening to detect weak walls,19 or even to
118 pinpointing almost undetectable leaks through vibration-
119 based signals.20,21 Similarly, a data driven model developed
120 by Cameron et al. (2017) enabled the prediction of the
121 number, location, and type of chokes in collection system
122 assets.22 Further improvements extending asset life are being
123 obtained from the integration of various types of data (i.e.,
124 structured and unstructured) from sources across utility
125 departments such as the finance department, work order

126systems, GIS system, and supervisory control and data
127acquisition (SCADA) systems.23−25 Available cloud services
128support such approaches, for they not only facilitate the
129integration of numerous signals but also incorporate data
130mining capabilities to unveil hidden pieces of information that
131can improve the anticipation of problems through pattern
132recognition.26,27

133Furthermore, a wide array of applications combining AI
134methodologies with low-cost sensors and affordable commu-
135nication networks will create dynamic, strategic, and financial
136operations for their utilities. Various examples and applications
137of AI-based strategies providing support on early detection and
138prediction are (1) proactive maintenance with real time
139monitoring and event detection;28−30 (2) smart metering;31−34

140or (3) remote sensing products to provide early detection and
141prediction of wastewater conditions.35−39

1421.2. The Role of Big Data and AI Enhancing the
143Operation of Urban Water Infrastructure. Classical theory-
144based science approaches (e.g., mechanistic or empirical
145models) have been extensively (and successfully) applied in
146the water field. The water treatment field has benefited from
147model developers and process engineers who have helped
148produce mechanistic models encapsulating knowledge to
149describe water fluxes and pollutants transformations occurring
150in drinking water plants, water distribution networks,
151collection systems, WRRFs, and rivers. These mechanistic
152models can now fall within the definition of digital twins; the
153term refers to virtual replicas of the infrastructure assets
154allowing the analysis of data and monitoring of systems to
155avoid problems before they even occur, prevent downtime, or
156plan for the future.40−42 Examples of these digital twins are the
157well-known simulation platforms for drinking water distribu-
158tion networks (e.g., EPANET), for collection systems (e.g.,
159SWMM, infoworks), for WRRFs (e.g., Aquasim, Biowin, GPS-
160X, Simba#, Sumo, WEST), and, even for groundwater or other
161water-related domains (e.g., DHI, 2019). Such digital twins
162have been extensively used for process design/upgrade and
163optimization. However, the use of these mechanistic models in
164day-to-day operations is rather limited, especially for the
165infrastructure that relies on biological processes. Furthermore,
166to the best of our knowledge, there are not yet applications of
167mechanistic models operating in automated manner urban
168water infrastructure. The limiting prediction capabilities of
169existing mechanistic models under anomalous conditions is
170probably the limiting factor. An additional evident limiting
171factor is the inability of such digital twin to address processes
172yet to be completely modeled (e.g., greenhouse gas emissions
173from WRRFs).
174Theory-free data-driven models have been applied to the
175enhancement of the operation of WRRFs,14,44−48 and of
176drinking water treatment plants and distribution networks.49,50

177However, the scientific community is reluctant to accept black-
178box models (because they lack mechanistic explanation of the
179underlying processes), even though these models have the
180potential of achieving more accurate performance within a
181broader domain.
182The hybridization of mechanistic and pure big data models
183has the potential to transform how the day-to-day operation of
184urban water infrastructure is traditionally done.6 Whereas AI
185applications to the water sector focus on modeling,
186optimization, or data mining for knowledge generation, their
187encapsulation into functional decision support systems (DSS)
188is not fully explored. Few academic applications have made it
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189 into decision making practice (e.g., Corominas et al., 2018).
190 We believe that the reason behind this missed opportunity is
191 not related to the methods themselves but rather to the
192 historical disconnect between the fields of water and computer
193 engineering, the limited practical experience of academics, and
194 the great complexity inherently associated with these problems.
195 Although pure big data models could enhance traditional
196 control practice in the water infrastructure, a layer of
197 intelligence should be added on top of the traditional control
198 algorithms. Such layer can be based on AI self-learning
199 capabilities using concepts such as supervised or reinforcement
200 learning.51−55 Such an intelligence layer would be able to
201 detect the abnormal behavior of the process or of sensors and
202 trigger fallback strategies that deliver maximum acceptable
203 performance under certain equipment/process constraints
204 (e.g., Schraa et al., 2018).56

205 In order to transform data into actionable insights, or
206 knowledge, for enhancing the operation of urban water
207 infrastructure, it is essential to ensure and verify the quality
208 of signals coming from online sensors, as they can produce
209 signals of questionable quality due to exposure to harsh
210 environments, or due to inadequate or overzealous main-
211 tenance (e.g., Cecconi et al., 2019).57 One essential research
212 task is the development of algorithms for automatic data
213 quality verification (e.g., from sensors used in control loops).
214 In this sense, a plethora of methods have been applied such as
215 artificial neural networks, principal component analysis, fuzzy
216 logic, clustering, independent component analysis, partial least-
217 squares, self-organizing aps, regression, support vector
218 machines, and qualitative features detection (inter alia,
219 Mosetlhe et al., 2018; Corominas et al., 2018).58 However,
220 limited guidance and no standard exist for the selection of
221 methods to tackle a specific sensor failure detection, diagnosis,
222 and isolation.
223 Nowadays, the implementation of AI approaches is hindered
224 by challenges in data processing (turning data into information
225 and into actionable knowledge), data availability (making
226 useful information available to stakeholders), data quality, data
227 costs (achieving low operation and maintenance costs for

228sensors and measurements), and the lack of general standards
229and protocols for data management (Eggimann et al., 2017).
230Therefore, the associated needs for skilled workforce appear
231evident, as discussed in Section 1.4.
2321.3. The Role of Big Data and AI to Recover Information
233about the Lifestyle Habits of Citizens from Data Sources
234Coming from the Water Sector. Will Big Data Make Privacy
235Obsolete? Or it May Transform It into a Business?
236Innovation is quickly and inevitably changing the way we
237think and provide water services. Processes are being
238transformed and boundaries across sectors are shifting.59 In
239many sectors, technology is disrupting processes and market
240structures. Solar-powered self-driving vehicles are blurring the
241boundaries between energy and transport sectors. In the water
242sector, however, there are unavoidable differences, as water has
243the potential to become one of society’s most important
244sources of information. Technology will soon have the capacity
245to extract from water and wastewater-related services (e.g.,
246through smart metering, sewer mining, etc.) the most intimate
247information from both individuals and communities about
248their state of health, genetics, nutrition habits, substance abuse,
249etc., blurring boundaries between water service, health,
250 f1nutrition, and business as never before (Figure 1).
251The information available through smart water metering is
252relevant for industries and complements the valuable
253information about citizens that is already available to
254information technology (IT) companies;60−62 however, waste-
255water presents an untapped source of data-rich content about
256the citizenry. Cities and their communities/neighborhoods can
257make use of their collection system to understand lifestyle
258habits and overall health status through measuring human
259biomarkers, through information mining.63 Human biomarkers
260can be either metabolites of exogenous substances (produced
261through metabolic processes after consumption) or endoge-
262nous compounds (produced naturally in the body), and they
263are continuously flowing through our collection system waiting
264to be harvested and measured. After toilet flushing, biomarkers
265end up in the collection system and, together with many other
266compounds, are diluted with water and transported to WRRFs

Figure 1. Technological advances in sewer mining and data analytics have the potential to open a new source of data-rich information, both at
individual and collective level.

Environmental Science & Technology pubs.acs.org/est Feature

https://dx.doi.org/10.1021/acs.est.9b04251
Environ. Sci. Technol. XXXX, XXX, XXX−XXX

C

https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
pubs.acs.org/est?ref=pdf
https://dx.doi.org/10.1021/acs.est.9b04251?ref=pdf


267 where they are totally or partially removed before being
268 discharged to receiving water bodies. The potential knowledge
269 that could be distilled from analyzing our urban effluents offers
270 a limitless array of possibilities ranging from monitoring
271 population dynamics (i.e., medication usage, disease control,
272 public health issues), elucidating dietary habits of entire
273 societies (e.g., consumption of brand-specific food, drugs and
274 alcohol use, prescription medication, etc.) and even providing
275 advice on individual needs (detection of health risk factors,
276 customized dietary advice, aging prevention counseling). The
277 technology exists, and it is only a question of time before
278 economy of scales and market forces will make reasonably
279 feasible screening and processing data from individuals and
280 communities connected to the collection system, unveiling our
281 predisposition from developing cancer to which sport we
282 should play.
283 Until now, the largest progress on wastewater information
284 mining has been made on the estimation of illicit drug
285 consumption.64−67 Yet, the full potential has not been explored
286 as there are still limitations in the analytical procedures in
287 terms of accuracy and precision related to the development of
288 capabilities to measure the concentration of these biomarkers
289 in real-time.68 The research in this field requires big data
290 analytics, as the processing of information from one sample
291 may need to be analyzed in tandem with other information
292 such as gut microbiome diversity, sales in pharmacies,
293 supermarkets, wastewater characteristics, etc. for reliable
294 outputs. The penetration of the privately owned technology
295 and service companies in the resource recovery sector would
296 give them potential access to our genetic predispositions, diet,
297 daily dynamics, ancestry, metabolism, health monitoring,
298 alcohol, medications, illicit drug use, etc. The knowledge that
299 can be potentially extracted either directly or indirectly (by
300 applying correlations between other easily measured parame-
301 ters) appears limitless and may unlock unforeseen scenarios.
302 Beside the technological potential of maximizing resource
303 recovery, data mining and processing from the water sector has
304 the potential of improving living conditions. Not only could
305 our lives change due to the prospect of having the option to be
306 continuously informed and guided about health (e.g., disease
307 predisposition, recovering follow-ups, tailored health programs,
308 etc.) and lifestyle (e.g., dietary recommendations, personal-
309 suggested activities, sport-recommendation with its corre-
310 sponding associated products, etc.), but also the job market
311 will likely experience further deep transformations.69 However,
312 we should not overlook potential concerns with respect to
313 privacy and ethics, which arise from the continuous extraction
314 of sensitive (and valuable) data flowing from the water system.
315 1.4. The Role of Big Data and AI on Resource Recovery
316 and Source-Separation. Although the prospect of retrieving
317 information from urban wastewater streams is currently
318 attracting the most attention, resource recovery from the
319 water and wastewater cycle should not be overlooked.
320 Developments in AI and new digital platforms could collate
321 not only distributed data on resources (e.g., household-level
322 water and energy data from smart sensors), but also data on
323 produced resources at WRRFs (e.g., phosphate, cellulose
324 fibers, biogas, recycled water, bioplastics, biopolymers, etc.). In
325 a time when the production of these valuable resources is
326 matching current market demand and prices,2 AI-powered
327 strategies could facilitate the market penetration of such
328 products with precise monitoring of the product quality (e.g.,
329 image processing), optimal demand-supply balancing (e.g.,

330dynamic pricing), and likely providing new proxy approaches
331to reduce current technical limitations as real-time analysis.
332Similarly, the consolidation of concepts until now scarcely
333implemented but deemed as potential solutions to some of the
334most pressing challenges in the nearer future, as decentral-
335ization and source separation,2,70,71 could also benefit from
336developments in digitalization and AI. Both the construction of
337smaller and simpler decentralized systems (enabling the
338minimization of costs and fewer imports), or source-separation
339approaches (avoiding energy-demanding, increased recovery
340rates, and reduced transport), should benefit from new digital
341strategies. Extracting increased value from the different streams
342also means increasingly complicated processing. Facilitating
343the interconnectivity and data sharing between different
344processes, technologies and decentralized sites would require
345higher intelligence, monitoring, and autonomous supervision.
346Powerful platforms together with secure data transferring (i.e.,
347blockchain) could further value and improve trading of
348recovered resources, incentivizing individuals, companies and
349governments to unlock the financial value from materials
350traditionally regarded as economically invaluable.72 It must be
351noted that information extraction when using source
352separation schemes would imply differentiated sampling and
353data-retrieving approaches than sewer mining. The different
354variants that may result from a successful source separation
355approach (i.e., urine separation, gray water, black water, etc.)
356will necessarily need tailored solutions to obtain the same data
357or information resolution.”
3581.5. The New Workforce and Water Research. 1.5.1. The
359Automation Paradox. The integration of AI within the fourth
360water revolution also has its counterpart. Consulting
361companies Price Waterhouse Coopers and Deloitte together
362with Oxford University projected that the water and waste
363management sector would suffer the most changes among a list
364of 50 sectors due to automation and AI irruption, predicting
365that close to 60% of the current related jobs are under threat
366within the next 15 years.73,74 The most vulnerable jobs due to
367progressive digitalization are those related to the automation of
368low-level tasks, according to current forecasts. Many simple-
369repetitive tasks needed in the management of the urban water
370cycle elements could be potentially automated at relatively
371low-cost. For example, the implementation of a level meter in
372chemical storage tanks that could automatically trigger the
373purchasing procedure. However, some authors reject similar
374gloomy predictions suggesting that AI will likely not displace
375many of the workers, as automating certain tasks can free
376workers from repetitive tasks enabling them to focus on more
377highly skilled aspects (Abbatiello et al. 2017). Additionally, the
378requirement of licensed operators to take actions in treatment
379facilities will and should not be forfeited for efficiency, due to
380their associated authority and supervisory responsibility.
3811.5.2. Water Workforce. Earlier sections discussed how AI
382has become a dynamic topic with many innovative applications
383promising to disrupt the field; however the full range of its
384impact on the water workforce and researchers remains
385nebulous. A few factors ranging from lack of incentives, risk
386of adoption, and preference for proven technologies could
387contribute to slowing the adoption of AI and big data
388analytics.59 Nonetheless, few strategies could be crucial to
389scaling the adoption of digital technologies. While the creation
390of hubs working closely with utilities have already shown
391promising cases,75−78 perhaps the most important approach to
392a successful digital implementation will require a new water
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393 sector workforce adopting the required skills to keep up with
394 the pace of digital evolution.79 A few reviews offer further
395 insights into the workplace challenges of adopting water data
396 technologies (e.g., Cespedes and Peleg, 2017; Daigger et al.,
397 2019)
398 1.5.3. Role of IT Companies. AI has the potential to create
399 trillions of dollars of value across the economy.81 It is
400 estimated that the potential value unlocked by AI in the water
401 resource recovery sector is up to $22.8B in 2017 and is
402 projected to grow by 7.2% annually from 2017 to 2021.82,83

403 The water sector is slowly becoming attractive for technology
404 giants who are unhurriedly testing the waters of a revenue-
405 promising field by overlaying data management and AI
406 capabilities on existing water and wastewater treatment
407 businesses (e.g., IBM Bluemix, GE Predix, etc.; Krause et al.,
408 2018). These platforms provide capabilities in remote asset
409 monitoring, energy analytics, and water security. The
410 integration of all types of data it is supposed to facilitate
411 critical decision-making relative to assets and optimize security
412 and reliability.
413 Digitalization is sought by multiple segments: from
414 technology giants with rather limited process knowledge to
415 specialized smaller water technology companies with the know-
416 how but rather limited analytical platforms or infrastructure.
417 Large water technology companies (technology developers and
418 technology/service providers) are also investing in digital-
419 ization and are generating the demand for it. In either case, big
420 or small technology companies will have to include water
421 processes knowledge or water academics will have to adapt to
422 this reality by embracing the new tools of big data analytics.
423 The differing interests from the water research community and
424 the technology giants might be a limitation to pursue the
425 effective integration of AI tools in the sector. However, a clear
426 opportunity arises for those utilities, clean-technology
427 companies, academic institutions, or partnerships of them
428 already operating in the water and resource recovery industry.
429 Independent actors or partnership can enter this still untapped

430 f2market and fill an important role in a meaningful way to the
431 f2water industry. Figure 2.
4321.5.4. Water Research Workforce. New skills will not only
433be required in water infrastructure but will also be fundamental
434to prepare the next generation of water researchers to be more
435proficient in data science and to design semantically rich and
436reproducible data products.6 Nevertheless, reality is showing
437that researchers are not fully prepared to make use of the
438technological developments brought by digitalization to the
439fullest extent.84 Debate exists on whether researcher skills for
440using fully the digital potential will be different from the long-
441recognized skills relevant in academia. Big data has the
442potential to change fundamentally the way that water
443researchers are conceiving, conducting, and analyzing experi-
444ments. Already the established rules in the scientific
445community supporting the indexing system, which prioritizes
446results and not data, are being called into question. As data
447continues its trajectory to become the new “currency” of
448research outputs for researchers,84 data sharing in full
449transparency and repeatability become a new norm and
450current attitudes and behavior in the scientific community will
451need to adapt. While critical concerns from the implications of
452real open access, privacy, and legal aspects are arising from this
453trend of data sharing, the current trend is that communication
454through data is already being valued more than actual
455engineering or research skills.85 Consequently, the researchers’
456skillsets will have to adapt toward not only strong data analysis,
457but also in the understanding of a new environmental and legal
458framework enabling the next level data communication.
459To the greatest extent, water researchers today are not
460trained on digital technologies or implementing hybrid
461solutions between old theory-based modeling and the new
462array of emerging big-data elements. A new set of needs are
463necessary to scale the adoption of digital technologies for
464effective big data exploitation: (1) integration of knowledge
465from different types of sources; (2) successful hybridization
466between big data management platforms to address bottle-
467necks on using either pure big data-elements or solely theory-

Figure 2. Conceptual evolution of the water management paradigm over the last decades: from the postindustrial third water revolution to the still
settling fourth revolution, and to the upcoming AI encounter.
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468 based modeling; and (3) ensuring data quality from sensors. A
469 sound transition toward AI-driven urban water systems will
470 indeed require that new generation of researchers/practitioners
471 be trained in engineering, statistics, and computer science
472 through the creation of multidisciplinary training programs.
473 Such integration of knowledge within the water sector is
474 now being promoted by the International Water Association
475 through its Digital Water Programme86 and Water Environ-
476 ment Federation through intelligent water systems,87 by
477 including forums for discussions (e.g., Knowledge Develop-
478 ment Forum, International Society of Automation’s) collecting
479 and exchanging of methodologies, and practical experiences.
480 Specialist groups (e.g., Instrumentation, control and automa-
481 tion -ICA- and Digital Water Programme from IWA) have
482 embraced significant progress in developing low-cost water-
483 related sensors, models, and control algorithms with a very
484 effective combination of process knowledge and ICA tools.
485 Other groups (e.g., the WEFTEC Research and Utility
486 Management Symposia) have focused dedicated tracks to
487 data analysis/management and workforce training.
488 As computer capacity continues escalating and data
489 management techniques (data curation, data mining, etc.)
490 are improving, which in turn enhances knowledge extrac-
491 tion,14,47,88 collaborations between teams of engineers, data
492 and computer scientists, and researchers will be imperative to
493 create the conditions to successfully embrace the digitalization
494 of the water sector and leverage process knowledge, data
495 analytics, and technology to bring out the full potential of data.
496 Refs 43 and 80.
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663Werbeck, N.; Kersting, M.; Schürmann, B.; Dyrbusch, A.; Sanden, J.;
664etal. AKWA Dahler Feld: Contracting Im Bereich Der Wasserwirtschaft;
665Fraunhofer-Verlag, 2010.

(39) 666Kando. Remote sensing - Making the wastewater network
667visible https://www.kando.eco/the-solution (accessed 2019/12/3).

(40) 668Fortune, D. Digital Twins In Water Infrastructure https://
669www.innovyze.com/en-us/about-us/blog/digital-twins-in-water-
670infrastructure (accessed 2019/12/3).
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