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Abstract. We present an algorithm for simulation of the Earth’s crust tectonic move-
ments and formation of the geological faults and near-fault damage zones. The algo-
rithms are based on the Discrete Elements Method, and it is implemented using CUDA
technology. We used to simulate faults formation due to different scenarios of tectonic
movements. We considered the displacements with dipping angles varied from 30 to 90
degrees; i.e., up to vertical throw. For each scenario, we performed simulations for some
statistical realizations. To characterize the simulated faults and damage zones, we con-
sider the strains distribution and apply data clustering and Karhunen-Loeve analysis to
distinguish between different forms of the fault zones. In particular, clustering analysis
shows that displacements with high and low dip angles form completely different geo-
logical structures. Nearly vertical displacements, high dip angles, form wide V-shaped
deformation zones, whereas the at displacements cause narrow fault-cores with rapidly
decreasing strains apart from the fault core. Results of the presented simulations can
be used to estimate mechanical and seismic properties of rocks in the vicinity of the
faults and applied further to construct models for seismic modeling and interpretation,
hydrodynamical simulations, history of matching simulation, etc.

1 INTRODUCTION

A typical interpretation of geological faults from seismic data is a planar surface where
the signal phase is discontinuous. Further on this representation of the faults is used in
geological modeling to construct a model of the Earth’s crust. As the result, faults are
considered as a structural discontinuities in a model, whereas studies of the outcrops show
that the faults and near-fault damage zones have more complex structure [1], [2]. In par-
ticular, damage zone may be highly fractured, thus, permeable especially for carbonates
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[3], or it can be an impermeable due to the presence of deformation bonds which is typical
for the sandstones [4]. Such differences of the local permeability near faults may strongly
affect the reservoir performance. Thus a detailed representation of the fault and damage
zone is required for efficient oil and gas exploration.

To study the fault formation due to tectonic motions, we suggest using numerical sim-
ulation. Simulation of finite deformations in solids and, in particular, in the geomaterials,
geostructures, core samples, and Earth’s crust can be done by either grid-based methods
such as finite differences [5], finite elements [6], boundary elements [7] or by meshless
approaches also known as discrete elements method (DEM) [8], [9]. The letter is pre-
ferred because no predefined crack or fault geometry is needed for simulation. However,
particle-based methods are more computationally intense and require calibration of the
particle properties to match the mechanics of the whole body [9], [10]. Despite this, the
particle-based methods are incredibly flexible and can be used to generate multiple statis-
tical realizations of the fault zones and study statistical features of the strongly deformed
and highly-distorted zones. This opens a possibility to analyze the correlations between
the peculiarities in the fault structure and their responses to the seismic waves. Moreover,
use of the graphical processor units (GPU) significantly reduces the computational time
making the DEM simulations an efficient and flexible tool.

In our opinion, meshless methods of geological faults formation simulations can be used
to generate faults geometries in realistic environments. After that simulated faults can
be introduced in geological models which are used for seismic modeling and imaging [11],
[12], [13], moreover use advanced simulation techniques such as local mesh refinement [14],
[15] allow studying seismic responses of the fine structure of near-fault damage zones.

The paper has the following structure. In the section 2, we describe the discrete
element method, discuss its features, and present the algorithm for fault formation simu-
lation by DEM. Description of the numerical experiments, cluster analysis, and statistical
Karhunen–Loeve analysis is provided in section 3.

2 DISCRETE ELEMENT FORMULATION

To simulate the tectonic movements causing finite deformations and geological fault
formation in the Earth’s crust we use the discrete element method, following [16], [17],
[18]. In this approach, the media is represented as an assembly of individual particles
with a particular geometry and physical properties. Each particle is characterized by the
coordinate of its center �xj, radius Rj, repulsion and attraction bulk moduli K+

r and K−
r

respectively, tangential sliding stiffness Ks, and two friction coefficients µs is the static
one and µd is the dynamic friction coefficient. Having set these parameters, one may
define the interaction forces between two adjoint particles.
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2.1 Computation of forces

Consider two particles with the numbers i and j, with the coordinates �xi and �xj and
radii Ri and Rj respectively. Particle j acts on particle i with the normal elastic forces:

�F ji
n =





K−
r (R

i +Rj − ‖ �Xji‖)�nji, Ri +Rj − ‖ �Xji‖ > 0, repulsion,

K+
r (R

i +Rj − ‖ �Xji‖)�nji, 0 ≤ Ri +Rj − ‖ �Xji‖ ≤ r0, active bond,

0, Ri +Rj − ‖ �Xji‖ > r0, no bond,

(1)

where r0 is the bond length, typically chosen equal to 0.05(Ri+Rj), vector �Xji = �xi− �xj

connects the centers of the particles and directed from particle j to particle i, vector
�nji = �Xji/‖ �Xji‖ is the unit vector directed from the centers of particle j to the center
of particle i or normal vector, because it is normal to the contact plane. Note, that we
use the model of linear elastic particles interaction and assume that the repulsion and
attraction bulk moduli coincide, which is mainly valid for geomaterials across a wide
range of scales.

Additionally frictional forces are taken into account if two particles are in a contact
[18]:

�F ji
t =

{
−Ksδt�t

ji, Ksδt ≤ µs‖�F ji
n ‖, static friction,

−µd‖�F ji
n ‖�tji, Ksδt > µs‖�F ji

n ‖, dynamic friction,
(2)

whereKs is the tangential sliding stiffness, usually considered to be equal to bulk modulus;
i.e., Ks = Kr, vector �t

ji is the unitary tangential vector directed along the projection of
the relative velocity onto the contact plane of two particles; i.e.,

�tji = �vji−(�vji,�nji)�nji

‖�vji−(�vji,�nji)�nji‖ , �vji = �vi − �vj. (3)

In this notations �vji is the relative velocity of the particle i with respect to particle j.
Parameter δji denotes the tangential displacement of the contact point from its initial
position. Tangential forces provided by formula (2) satisfy the Coulombs law; i.e., the
static friction governs the particles interaction if the forces as below a critical value. If
the tangential forces exceed the critical dynamical friction proportional to normal force
is applied. Typically the static friction is much higher than the dynamical one.

Additionally, an artificial dissipation is introduced in the system to prevent elastic
waves from propagating through the model and ensuring the media to remain stable at
infinite instants:

�F i
d = −ν�vi, (4)

where ν is an artificial viscosity.
The Earth’s crust also remains under gravitational forces which are accounted as

�F i
g = Mig�e3, (5)

where g = 9.8 m/s is the gravitational constant, �e3 = (0, 0, 1)T , and Mi is the mass of the
considered particle.
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To compute the total forces acting at a particle one need to account the forces due to
interactions with all the neighbors, plus artificial dissipation, plus gravitational forces, as
a result, one gets:

�F i =
∑

j∈J(i)

[
�F ji
n + �F ji

t

]
+ �F i

d + �F i
g , (6)

where J(i) is the set of indexes of the neighbors of i-th particle.

2.2 Time integration

Having computed all external forces acting at j-th particle one may recompute its
position using classical mechanics principles:

M id
2�xi

dt2
= �F i

(
t, �xi, �xj,

d�xi

dt
,
d�xj

dt

)
, (7)

where dissipative �F i
d and frictional forces �F ji

t explicitly depend on the particles velocities

�vi = d�xi

dt
.

To numerically resolve system of equations (7) we use the Verlet-like scheme with the
velocity half-step [17], [19]. Assume coordinates, velocities, and thus forces of all particles
are known at instant t = tn = τ · n, then they can be updated to the instant tn+1 by the
rule:

(�vi)n+1/2−(�vi)n

τ/2
= 1

M i
�F i (tn, (�xi)n, (�xj)n, (�vi)n, (�vj)n) ,

(�xi)n+1−(�xi)n

τ
= (�vi)n+1/2,

(�vi)n+1−(�vi)n+1/2

τ/2
= 1

M i
�F i

(
tn+1, (�xi)n+1, (�xj)n+1, (�vi)n+1/2, (�vj)n+1/2

)
,

j ∈ J(i).

(8)

In case of no explicit dependence of forces on the velocities the scheme is the second order
accurate, however if applied to the equation of motion for DEM, this scheme possesses
only the first order of approximation.

To ensure the stability of the finite-difference scheme we use the time step as suggested
in [17], [19]

τ ≤ 0.2
Dmin

Vmax

, (9)

where Rmin is the minimum diameter of the particles, and Vmax is the maximal velocity of
perturbation propagation in the system. In the case on no artificial viscosity, the maximal
velocity is the wave-speed of the longitudinal wave in the media, where the normal stresses
and strains are related as σnn = Krεnn, where Kr is exactly the attractions/repulsion bulk
modulus used in the simulation. If there is a nontrivial artificial viscosity, the velocity
will increase, however, this effect is compensated by the constant 0.2. The discussion can
be found in [18].

Note, that the implementation of the algorithm is based on the use of Graphic Proces-
sor Units with the help of domain decomposition to band limit the dependency matrix.
Discussion of the implementation can be found in [20].
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2.3 Boundary conditions

Proper implementation of the boundary conditions is a challenging task for the particles-
based methods. In our research, we deal with two types of boundary conditions. First,
we impose the rigid boundary condition; i.e., the surface Γs is fixed, or its movement
is prescribed. Moreover, it is stiff; thus the particles cannot penetrate through it. For-
mally, this type of boundary condition can be stated as follows. Assume a boundary
Γs = {�x|x2 = xB

2 }. If a particle is close enough to the boundary; i.e., if for the j-th
particle |xj

2 − xb
2| ≤ Rj, then F jB

2 = K−
r (R

j − |xj
2 − xb

2|).
However, numerical implementation of this condition requires extra conditional oper-

ators. Thus it is worth implementing stiff-boundary as a series of particles, to make the
simulation uniform either in the interior of the domain or near the boundary. To do so,
we introduced the ”boundary” particles with the same physical properties as those of
the interior particles. However, we do not compute the forces acting on the ”boundary”
particles but allow the ”boundary” particles to move according to a prescribed law. We
specify the particular movement laws in the section 3.

The second type of the boundary conditions is Pover = const. This condition ensures
the constant overburden pressure. Note that, condition Pover assumes that external forces
act at the upper boundary of the domain Γp(t) along the normal direction to the boundary.
This boundary is flexible, and it evolves in time; thus, to impose the boundary condition
we need to follow the elements which form the upper boundary. This can be done, for
example, by computing Voronoi diagrams for upper elements. However, such procedures
are computationally intense. To overcome this difficulty, we suggest using the flexible
membrane at the upper boundary [21], [22]. The idea of the approach is to introduce a
layer of discrete elements so that the membrane elements are affected only by the normal
forces.

If two adjoint membrane elements are interacting

�Fm,m±1
n = Kr(R

m±1 +Rm − ‖ �Xm,m±1‖)�nm,m±1, (10)

if membrane element interacts with other elements

�Fmi
n = Kr(R

i +Rm − ‖ �Xmi‖)�nmi, Ri +Rm − ‖ �Xmi‖ > 0. (11)

It means that the adjoint membrane elements are bonded, and these bonds never bake,
however no bonds of friction are considered when membrane elements interact with ele-
ments of other types. The membrane elements are ordered; thus it is easy to approximate
constant pressure condition. If a membrane element with number m is considered then
additional force, due to the pressure is

�Fm
p = 2PRm�n, (12)

where �n is the vector normal to the boundary, which can be computed as:

�n = (xm−1
2 − xm+1

2 , xm−1
1 − xm+1

1 )T ,

the direction of the normal vector is defined uniquely due to the ordering of the membrane
elements.
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2.4 Output parameters

Numerous parameters can be obtained as a result of discrete elements simulations.
If rock properties are studied using uniaxial and triaxial stress tests, then the primary
attention is paid to the distribution of the braked bonds [23], [24], stresses, and normal
forces distribution [25] However, at the scale of the geological bodies a reliable param-
eter to determine fault zones is the strains distribution [26], [16], [17], [27], [11]. These
strains can be further translated to the changes of physical parameters of rocks using the
experimental laboratory measurements.

To estimate the strains distribution one may compute the relative displacements element-
wise, after that the strain tensor components can be computed and interpolated to a
regular grid. A detailed discussion of the strains estimation can be found in [26].

3 NUMERICAL EXPERIMENTS

In this paper, we focus our attention on the effect of the direction and amplitude of
tectonic movement on the geometry of the fault and damage zone. DEM-based simulations
include uncertainties due to the particle’s positions and radii distributions. It means that
for each scenario of the tectonic movements we need to perform a series of numerical
simulations for different statistical realizations of the particles geometry distribution.

In all the experiments presented below, we use the following set of parameters. The size
of the computational domain is 4000 m in horizontal and 500 m in the vertical direction.
The repulsion/attraction modulus is 16 GPa, and same value is used for the tangential
sliding stiffness. The coefficient of static friction is 0.8, which is typical for the majority
of geomaterials, whereas the dynamic friction coefficient is 0.3, which is close to that of
sandstone and limestone. We consider the bonds length proportional to the radii of the
adjoint particles; i.e., r0 = 0.05(Rj + Ri). We assume that the formation is buried at
3000 m; thus the overburden pressure of 107 Pa is applied at the top boundary of the
model. The particles radii are homogeneously distributed from 1.25 to 2.5 m. So, the
total number of elements is 390000.

We consider several scenarios of dipping normal tectonic movements with the dip angles
equal to 90◦, 75◦, 60◦, 45◦, 30◦. Maximal vertical displacement is 100 m.

For each tectonic movement we simulate ten statistical realizations of the particles
distributions; thus, 10 simulations are performed for each scenario. Also, we computed
extra 20 realizations for the most common movement scenario with the dip angle equal
to 60◦. Each simulation consists of two stages. First, the elements should be compacted
under the overburden pressure and gravitational forces. This step takes about 60 % of the
computational time. Second, the tectonic movements are applied. The total simulation
time for one experiment (one realization) is about 8.7 hours by a single GPU (NVIDIA
Tesla M 2090).

We provide the strains distribution for displacement with dip angle equal to 30◦, 60◦,
90◦ in figures 1-3. The main trend observed from the presented figures is that for big
dip angles; i.e., for nearly vertical displacements no narrow fault cores are formed. When
the dip angle gets smaller fault cores are formed (figure 1) and they are located within
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Figure 1: A single realizaton of hydrostatic (top) and shear (bottom) strains distribution in the fault

zone for the displacement dip equal to 30◦.

a narrow zone. Moreover, for low dip angles the form of the fault and its inclination is
similar, thus might depend mainly on the medium properties rather than on the direction
of tectonic movements. To verify this assumption, we perform clustering of the results
and their statistical analysis in the following section.

3.1 Clustering of the results

According to the figures 1-3 fault zones formed after tectonic movements with low
dip angles are similar. To quantify this observation, we applied k-means clustering of
the computed strains distribution. Before processing to the formal analysis, we need to
point out, that we performed two additional series of simulations (9 realizations in each
series) corresponding to the tectonic movement dip angle equal to 60◦. In total we have
27 statistical realizations corresponding to this scenario; however, we will still consider
them as three independent series in our statistical analysis.

We start with the determination of the optimal number of clusters in which the data
can be partitioned. To do so, we use the Calinski-Harabasz Index [28] which measures
the ratio of the total inter-clusters variance to total within-cluster variance for all possible
data subdivision. According to this criterion the optimal number of clusters is two. Then
we applied k-means clustering technique to our data. We constructed clusters for each
component of the strain tensor separately, as well as for all of them together. The panels
in figure 4 represents the clustering results in two clusters. In these experiments we
applied clustering to the all components of the strain tensor. One may note that the
displacement scenarios with dip angles equal to 75◦ and 90◦ form one cluster, whereas all
others form the second cluster. We consider the within-cluster sum of squares (WCSS);
i.e., the functional which is minimized by the k-means algorithm:

D =
k∑

i=1

∑

e∈Si

‖e− < e >i ‖,

where k is a number of clusters, Si is the i-th cluster, a subset of the considered dataset,

7

406



Vadim V. Lisitsa, Vladimir A. Tcheverda and Dmitry R. Koluykhin

Hydrostatic strains, dip=60
�

1000 1500 2000 2500
0

200

400

-0.4
-0.2
0
0.2
0.4
0.6
0.8

Shear strains, dip=60
�

1000 1500 2000 2500
0

200

400

-1

-0.5

0

Figure 2: A single realizaton of hydrostatic (top) and shear (bottom) strains distribution in the fault

zone for the displacement dip equal to 60◦.
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Figure 3: A single realizaton of hydrostatic (top) and shear (bottom) strains distribution in the fault

zone for the displacement dip equal to 90◦.
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Figure 4: Panels representing data clustering (two clusters) for all components of strain tensor. Left

panel (A) corresponds to the optimal clustering with minimal distance, right panel (B) represents a case

of local minimum of k-means functional. Different colors correspond to different clusters.

< e >i is the mean value of the elements from i-th set Si. There are different options
to define the norm; however, in this work, we deal with the L2 norm of vectors. So,
the optimal clustering delivers Dall = 3692 respectively. However, there is another local
minimum of the WCSS functional which leads to the clustering where strains for the
tectonic displacements with dip angles equal to 30◦ and 45◦ form one cluster, whereas
solutions corresponding to the subvertical movements go to the other cluster (figure 4 B).
In the second case, the WCSS isDall = 3753. The difference in the within-cluster distances
between the two scenarios is less than 1%, and these two cases are hardly distinguishable.
It means that the displacements with dipping angle equal to 60◦ can either form a wide
deformation zone, same as subvertical displacements, or narrow inclined fault cores, same
as in case of flat tectonic movements.

4 CONCLUSIONS

We presented an algorithm for simulation of the Earth’s crust tectonic movements
and formation of the geological faults and near-fault damage zones. The algorithms are
based on the Discrete Elements Method, and it is implemented using CUDA technology.
We used to simulate faults formation due to different scenarios of tectonic movements.
We considered the displacements with dipping angles varied from 30 to 90 degrees; i.e.,
up to vertical throw. For each scenario, we performed simulations for some statistical
realizations. To characterize the simulated faults and damage zones, we considered the
strains distribution and applied data clustering to distinguish between different forms of
the fault zones. In particular, clustering analysis shows that displacements with high (75◦

and 90◦) and low (30◦ and 45◦) dip angles form completely different geological structures.
Nearly vertical displacements, high dip angles, form wide V-shaped deformation zones,
whereas the flat displacements cause narrow fault-cores with rapidly decreasing strains
apart from the fault core. Results of the presented simulations can be used to estimate
mechanical and seismic properties of rocks in the vicinity of the faults and applied further
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to construct models for seismic modeling and interpretation, hydrodynamical simulations,
history of matching simulation, etc.
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