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Abstract. The Discrete Element Method (DEM) is well-established and widely used in
soil-tool interaction related applications. As for all simulation tools, a proper calibration
of the model parameters is crucial. In this contribution, we present the parametrization
procedure of the DEM software GRAnular Physics Engine (GRAPE), developed and
implemented at Fraunhofer ITWM, and attempt to use two parametrized soil samples
for the simulation of small scale shallow penetration tests. The results are compared to
laboratory measurements.

1 Introduction

In recent years, the Fraunhofer ITWM has developed and implemented a software so-
lution entitled GRAnular Physics Engine (GRAPE) for modeling and simulating soil and
soil-tool interaction based on investigations in [1, 2, 3]. GRAPE is based on the Discrete
Element Method (DEM) with a focus on the accurate prediction of draft forces with heavy
construction equipment. The particles are represented by three-dimensional rigid spheres
with three translational degrees of freedom and scale-invariant linear particle interaction
forces in which the corresponding parametrization is based on a triaxial compression test,
see Section 2 and 3. In particular, GRAPE is validated in real application scenarios
among others in cooperation with Volvo Construction Equipment, cf. [4, 5].
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The parametrization process for soil simulation is a challenging task. Cone penetrom-
eter tests in the context of vehicle engineering have been studied in [6] using Smoothed
Particle Hydrodynamics. Shallow hemiball and toroid penetrometers have been simulated
using a Large Deformation Finite Element Method in [7] to find fitting equations for in
situ evaluation and soil identification. Cone penetrometer tests, together with plate sink-
age and shear tests have been used in an optimization routine to estimate DEM model
parameters [8]. It was found that the combination of several in situ tests is sufficient for
the calibration of their model. Small scale shallow penetration experiments using different
materials have been conducted and evaluated in [9].

In this contribution, we illustrate the parameter identification process for two types
of soil, namely a poorly graded sand (A) and a well graded sand-silt mixture (B) with
mean grain diameter d50(A) = 0.290 mm and d50(B) = 0.036 mm, respectively. In
Section 2 we describe the Discrete Element Method and explicate the specifics of our
model. Thereafter, the experimental procedure on triaxial compression and shallow cone
pentration test is shortly presented in Section 3. We determine the respective soil and
particle interaction parameter sets P(A) and P(B) to match the observed strain-stress
behavior in the corresponding triaxial compression tests, see Section 4. Subsequently,
we discuss the applicability of these identified parameter sets – that reflect the triaxial
test – to reproduce small scale shallow penetration tests performed in the soil mechanics
laboratory, see Section 5. Finally, we summarize our results in Section 6.

2 Fundamentals of the DEM model

In this section, we briefly describe the Discrete Element Method in general and our
efficient and soil-specific model in more detail [1, 10, 4, 11]. The DEM dates back to the
1970s [12] and with the rise of computing power as predicted by Moore’s law, the method
gained practical relevance in the 1990s until today. Zhu et al. [13] present a still ongoing
boom referring to the number of particle simulation related publications. The main idea of
the DEM is to consider soft-sphere particles and their interaction leading to granular bulk
behavior. The decision on the shape of the particles and on how to model the inter particle
contact law has to be taken with care. The physically most accurate contact law seems to
be the Hertzian contact model with additions due to Mindlin and Deresievicz to account
for cohesion [14]. Much more efficient but less physical is a linear-elastic Hookean model.
However, when it comes to soil and granular matter with complex shapes, the error due
to regularized geometries is much more relevant than the error owing to the linear contact
law [15]. Due to the fact, that we are interested in the soil-tool interaction forces and
usually do not focus on the micro-mechanical behavior of particle interaction, we choose
the simplest geometry, namely spheres and a linear contact law. In our model, we neglect
the rotational degrees of freedom, and solely rely upon an accurate parametrization in
order to obtain physical bulk behavior, e.g. a realistic strain stress behaviour and angle
of friction.
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2.1 Normal interaction

The particle dynamics relies upon Newton’s second law

miẍi = fi. (1)

Here mi denotes the mass of the i-th particle, xi its position, ẋi its velocity and ẍi its
acceleration vector. If two particles interact, that is the overlap δij = ri + rj − ‖xi − xj‖
is non-negative, ri denoting the radius of the i-th particle, a linear damped spring

FN
ij = kN

ij δij + dNij δ̇ij and fNij = FN
ij nij, (2)

is activated. Here, the normal unit vector at the contact point is defined by

nij =
xi − xj

‖xi − xj‖
.

The stiffness and damping coefficients kN
ij and dNij depend upon the particle radius.

Scale invariance and normal stiffness The terminology of scale-invariant contact
laws is due to Feng [16]. Let us consider physical grains with radius rP and larger model
particles with radius rM .

Definition 1 We say that a model is scale-invariant, if and only if for radii rP and rM
it holds σP = σM for εP = εM .

Lemma 1 An n-dimensional contact law of the form F = crαδβ is scale-invariant if and
only if α + β = n− 1.

This result is shown in [16]. Considering two particles as a stiff beam, with mean radius
rij = 1

2
(ri + rj) and mean area Aij = πr2ij. The length of the beam corresponds to

Lij = 2rij. Considerung the normal stress σ and strain ε

σ =
Fij

Aij

=
kN
ij δij

πr2ij
and ε =

δij
2rij

, (3)

we obtain for the Young modulus

EN =
σ

ε
=

kN
ij · 2rij
πr2ij

thus kN
ij =

ENπrij
2

(4)

Hence the presented model, neglecting the damping term, describing a 3-dimensional
contact law with n = 3 and α = β = 1, is scale-invariant.

Normal Damping Furthermore, we set the inter-particle damping

dNij = DN · 2 ·
√
kN
ijmij, where mij =

mi ·mj

mi +mj

. (5)

The effective mass mij stems from the consideration of two particles as one damped
oscillator. The parameter DN controls the desired percentage of the critical damping.
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2.2 Tangential interaction

If two particles overlap, the initial contact points ci = cj coincide and are saved in local
coordinates of particle i and j. If the particles translate with respect to each other, the
local contact points differ. We project them into the tangential contact plane and consider
the resulting vector ξij as tangential elongation. The tangential spring then reads

fTij = −kT
ijξij − dTij ξ̇ij and F T

ij = ‖fTij‖. (6)

The parameters kT
ij and dTij are defined similarly to the normal interaction.

2.3 Coulomb friction

If the tangential elongation becomes large, we need to account for friction. We don’t
distinguish sticking and sliding friction and use the Coulomb friction model. We restrict
the absolute value of the tangential force with respect to the normal force introducing the
local stiffness parameter µ, that is F T

ij ≤ µFN
ij . Otherwise slipping friction occurs and we

reset the tangential elongation to

ξ′ij =
µFN

ij

kT
ij‖ξij‖

ξij. (7)

3 Relevant experiments

We shortly describe the experimental setup of the triaxial compression test, needed for
parameter identification. Thereafter, we focus on the small scale shallow penetration test.

3.1 Triaxial compression test

The triaxial compression test is a well-established laboratory test which has been de-
veloped in the first half of the 20th century. It serves as a method to quantify a material’s
strain-stress characteristic. For this study, displacement-controlled triaxial tests are car-
ried out according to the specifications of DIN 18137. Dry samples of 100 mm in diameter
and 120 mm in height are prepared using a standardized procedure. Confining pressure in
the triaxial cell is applied using water in order to allow measurement of specimen volume
change. Axial load is measured outside the cell. Piston friction is assessed by a calibration
procedure. Volumetric strain is determined by measuring the volume change of the water
in the triaxial cell from the differential movement of a piston. Strains are defined positive
in compression. Loading of the sample is applied at a constant displacement rate of 0.1
mm/min. The variation of the axial load and of the volumetric strain are recorded at
gradually increasing axial strain. Assuming a linear Mohr–Coulomb failure criterion, the
shear strength parameters of the soil, i.e. angle of internal friction φ and cohesion c, are
determined from the peak values of the strain-stress curves at three distinct levels of the
cell pressure.

Two materials (A) and (B) are tested. They are classified as sand and sandy-silt,
respectively. The porosity of the samples amounts to nA = 0.34 − 0.48 for (A) and
nB = 0.45 − 0.60 for (B). The shear strength parameters, namely the angle of friction φ
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and the amount of cohesion c for sand (A) and silt (B) as determined from the tests amount
to φA = 39.5◦, cA = 2.1 kPa and φB = 42.5◦, cB = 0.5 kPa. For the parametrization we
use the entire stress vs. strain and volume change vs. strain curves obtained from the
tests as depicted in Figure 4.

σ1

σ2σ2

Figure 1: Visualization of the Triaxial Compression Laboratory Test (left) and the respective simulation

at the beginning (middle) and in the end (right)

3.2 Shallow penetration test

The tests are carried out in a cylindrical container of a diameter of 290 mm and a
height of 200 mm with a steel rod penetrometer of 10 mm diameter with a flat base.
During the test, the penetration force and the corresponding displacement are measured
for a total depth of 30 mm. The shallow penetration test is performed under a constant
displacement rate of 1.2 mm/min. The force needed to penetrate the bar is continuously
recorded by an appropriate load cell.

v1

Figure 2: Visualization of the shallow cone penetration experiment and the respective simulation
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Parameter Symbol Unit sand P(A) silt P(B)

Sample generation

radii ri [mm] 2 0.5-2.5

porosity n [-] 0.34-0.53 0.37-0.54

density ρ [kg/m
3
] 2650 2700

Triaxial compression test

Young modulus EN [N/m
2
] 1.2e8 1.2e7

tangential stiffness parameter ET [N/m
2
] 1e8 1e7

local friction coefficient µ [-] 0.2 0.25

Table 1: Parameters P(A) and P(B) as determined for the two materials

4 Parametrization via triaxial compression test

In this section, we describe the calibration procedure of our DEM model, as developed
in [1, 10]. The parametrization of a GRAPE model is based on a triaxial test, see also Sec-
tion 3, and implies the appropriate choice of the most influencing simulation parameters.
First of all, we decide for the particle size distribution ri that may represent a scaling of
the real grain-size distribution due to the scale-invariant force law, see Section 2.1. The
model parameters are the porosity n, the normal stiffness EN and damping DN , the tan-
gential stiffness ET and damping DT and the local friction coefficient µ. The parameters
of the virtual experiment are determined to reflect the soil’s characteristic strain-stress
behavior in the corresponding real experiment performed in the soil mechanics laboratory.

4.1 Sample generation

In a first step, we study the grain-size distribution and decide for suitable particle
radii. Due to the scale-invariance, it is possible to use larger particles which reduces the
simulation time, but limits the micro-mechanical modeling fidelity. The first choice is
a monodisperse particle sample, which also simplifies the numerical calculation, because
the particle stiffness and damping remain constant for all particles. The porosity of the
material has to be estimated from the experimental minimal and maximal values. The
particle density, corresponding to the mass equals to the density of the soil grain and
can be measured in laboratory experiments. A list of all relevant parameters with the
determined parameters for sand and silt is given in Table 1.

According to the desired grain-size distribution, the particles are loosely assembled on
a regular lattice and slightly disturbed in a random direction. Thereafter, outer sidewalls
compress the particles until the desired porosity is reached. This basic sample can then
be replicated and cut in order to obtain a desired particle pile. For our study, we use
mono-disperse particles of radius 2 mm for the poorly graded material (A). For the sandy-
silt (B), we try to approximate the grain-size distribution using seven different particle
radii between 0.5 and 2.5 mm, see Figure 3. The porosity of the material’s basic sample
corresponds to nA = 0.34 and nB = 0.37 for the triaxial compression test. The porosity for
silt is underestimated with respect to the measurements. We focussed on reproducing the
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Figure 3: (left) Grain size distribution for two different materials: poorly graded sand (black) and

well-graded sand-silt mixture (blue), which we denote by silt; (right) Particle size distribution within the

simulation.

grain size distribution, which leads to a denser particle pile density. But when generating
the cylindrical sample, we replicate the basic sample and consolidate it under the influence
of gravity. The porosity then corresponds to nA = 0.53 for material (A) and nB = 0.54
for material (B).

4.2 Triaxial test simulations

The basic sample obtained in Section 4.1 is loaded in a triaxial test simulation. In-
stead of using a cylinder-shaped geometry, we use a cube, see Figure 1. The side-walls
in horizontal and lateral direction are pressure-controlled. The bottom wall remains con-
stant. The top wall is moved downwards at constant velocity, then the side-walls displace
until an equilibrium between the desired side-wall pressure and the particles pressure is
reached. The axial displacements ε1, in vertical direction and ε2 and ε3 in horizontal and
lateral direction, the volumetric strain εv and the top wall pressure σ1 in vertical direction
are recorded. Graphically, this leads to a strain-stress curve and a volumetric strain, axial
strain curve, see Figure 4 and 5. The axial stress versus strain behavior demonstrates
good accordance. The volumetric strain of silt behaves slightly different with respect to
the simulation. The damping constants DN and DT are chosen as 0.1.

In this step, the stiffness and friction parameters are estimated. A useful concept is the
stiffness number, which gives a rough estimate for the inter-particle stiffness [1]. Different
authors have reported a connection between normal and tangential stiffness [17]. As
discussed by Obermayr [10], we assume the ratio of EN/ET = 1.2. If a reasonable particle-
particle stiffness yields good results within the triaxial compression test simulation, in
terms of fitting the measured strain-stress relation for a specific side-wall pressure, we
fine tune the strain-stress curves with the local stiffness constant µ. The parametrization
may not be unique and is only valid in a certain pressure range.

5 Numerical results of shallow penetration test

First, we summarize the procedure to optimize the total time for the penetration
simulation. The laboratory experiments are performed in a total time frame of about 25
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Figure 4: Simulation results of triaxial compression test and comparison to measurement for sand P(A),
the side-wall pressure corresponds to σ2 = σ3 = 50 kPa.
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Figure 5: Simulation results of triaxial compression test and comparison to measurement for silt P(B),
the side-wall pressure corresponds to σ2 = σ3 = 80 kPa.

minutes. This is not feasible in the simulation. We started with a simulation time of 30
to 60 seconds. As an estimate for the total time, we use the concept of the inertia number
as introduced by [14] and [10]. More specifically, we consider the dimensionless number

I = 2γ̇r

√
ρg
p
, (8)

where γ̇ denotes the shear velocity, in our case we assume it to account for the amount
of penetration distance per time, r the particle radius, ρg the density of the granular
material and p the typical pressure. Da Cruz et al. [10, 18] report that the inertia number
should not exceed 10−2 in order to remain in the quasi-static regime. The inertia number
for our shallow penetration simulations suggest, that also smaller total time intervals lead
to quasi-static simulations. The experimental time is in the range of 25 minutes, whereas
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for the total simulation time we chose t = 1 s. Internal studies have shown that the
simulation time does not seem to have a big influence on the total force output in vertical
z-direction, working with quasi-static loads. Here, we simulate soil sample geometries of
the same size as in the experiment, that is of height 200 mm and diameter of 290 mm.
To save computation time it might be sufficient to have at least ten particles in each
direction in order to obtain a good approximation of the bulk behavior. It should thus
suffice to shrink the container, depending on the particle radius. We consider virtual
soil samples for (A) and (B) with interaction parameters P(A) and P(B), simulate the
corresponding penetration tests and compare the resulting particle reaction forces on the
penetrator with the measured reaction forces in the experiment. The results show that
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Figure 6: Force results with respect to the penetratration depth s of the shallow small scale penetration

test; we obtain the penetration depth of 30 mm in a total simulation time of 1 second.

the reproduction of the observed behavior for the penetration in sand is satisfactory, see
Figure 6 (left). In contrast, the simulated values for the indentation resistance in the
silt-sand mixture are considerably lower than those observed in the tests. The latter show
a sudden increase immediately after the start of the test, followed by a plateau and a
monotonic increase in resistance. It seems that for this type of fine-grained material the
DEM modeling is not capable in accurately reproducing both the triaxial compression
test and the penetration test. Bear in mind that the shallow penetration of the flat-ended
rod induces stress-singularity along the edge of the base contact area that considerably
complicates matters. The unsteady nature of the simulated force reaction curve may arise
because of the enlarged particle radii. The flat surface of the rod tip gives room for a
limited number of particles. Each particle-tool interaction leads to a force jump. For large
tool geometries such as plates and excavation tools, we expect some averaging effect, but
for the small area of the rod, these impacts clearly influence the force output.

6 Discussion and conclusion

The procedure outlined in this presentation delivers a calibrated set of parameters
that is validated on a boundary value problem. The force amplitude matches the result
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obtained from the measurement on sand. The oscillations in the simulation results as
shown in Figure 6, may be due to the larger particle radii. Thus only few particles collide
with the tool which leads to unsteady force output.

The simulation underestimates the force response of the finer material. Here, our DEM
model seems to have reached its limitations. Mainly three difficulties come into play. First,
the fine-grained nature of silt is difficult to reproduce with the DEM. Scaling the grain-
size distribution is challenging. Second, although the measured cohesion of cB = 0.5 kPa
is relatively low, it still maybe inaccurate to ignore it. And third, the surface effects of
the shallow cone penetration test seem very difficult to model and the Discrete Element
Method may not be able to capture this behavior.

The parametrization procedure relies upon simulation and careful selection of the in-
teraction parameters. An automated procedure would be favorable. The collected data,
generated during the simulation process may be used to find a good initial guess regarding
future soil parametrizations.
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