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Abstract. In this publication a sensitivity analysis for DEM modelparameters with respect to
the pile- and the oedometer experiment is described. The analysis is performed with Sobol’
indices. Since the huge computational effort of the corresponding DEM models different
metamodels are used to determine these indices. The (RSM) metamodels are established by
using Latin Hypercube sampling points.
A three-dimensional ansatz for the determination of the angle of repose as well as the algorithm
of a force-controlled plate is described in order to get results for the pile- and the oedometer
experiment.

1 INTRODUCTION

The Discrete-Element-Method (DEM) is a capable method to investigate huge deformations
in granular media [23]. These could occur e.g. in tire-soil-interactions [7, 9], the flow of
particles through hoppers [5].
A very important and challenging point is the identification of DEM-parameters. A common
way for the parameter identification is the calibration of experiments. An often used experiment
is the calibration of granular piles [2]. The angle of repose could be used to determine the
accordance between the numerical pile and the experimental one. Another experiment is the
oedometer test, which is a one-dimensional compression test where the horizontal displacement
of the soil is prevented [16, 10]. This test is used to investigate the stress-displacement behavior
[13, p. 252]. Often the calibration process is done with a trial-and-error procedure despite its
disadvantages with the high number of parameters [11, p. 73]. A more appropriate calibration
process could be performed if the influence of parameters and their interactions are known
[2, p. 333] e.g. if some parameters have a negligible influence, they could be neglected in
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the parameter calibration process. In order to determine the influence of parameters and their
interactions a sensitivity analysis is performed with Sobol’ indices [3, p. 1]. Sobol’s indices are
a common used for sensitivity measurements[17, p. 964].
The determination of the angle of repose is performed in [11, p. 74] with an image processing
algorithm. In [6, p. 375] a two dimensional approach is used. In this work a three dimensional
ansatz is used. The first step is the searching of boundary particles of the pile. Then straight
lines are positioned with the minimization of the distance of the line to the boundary particles.
The angle of repose is achieved with the average of all the angles corresponding to these lines.
In [16, 13] the oedometer experiment is performed with non-spherical particles. The influence
of the particle size for spherical particles is investigated in [10]. One result of the latter work is
that particle assemblies with a good graduation have a denser packing density and are less
compressible [10, p. 52]. A common way for the oedometer-test is that the plate for the
compression is velocity-driven. In [16, p. 422] the velocity is controlled to reduce the difference
between the measured and the simulated forces.
In this work a force-driven plate was implemented. With this plate a static case is simulated for
four load-steps. The implemented force-plate prevents incorrect simulation conditions where
the resultant force of the particles is huger than the actual load-step.

2 DEM

Each particle is identified by the index I ∈MP where MP is the set of all particle-identifiers.
Each particle has a mass m

I
and a radius R

I
. The location of the center of mass is denoted by SSS

I
(t)

and the rotational velocity by θ̇θθ
I
(t). The units which are used in this work are listed in table 1.

Quantity Used units SI-units

Mass mg 10−6kg
Length mm 10−3m
Time ms 10−3s

Table 1: Summary of the used units

In the following paragraphs the contact-displacement law is shown. Let TC = [ts, te] be a
time interval in which the two particles are in contact. Shortly before ts and after te the two
particles are not in contact.
The material parameters for all particle are identical. Hence a tupel

P = (E,ν,µPP,µPW,er,µR,PP,µR,PW) (1)

is introduced, where the components are the Young’s modulus E, Poisson ratio ν, the coefficient
of friction between two particles µPP, the coefficient of friction between a particle and a wall
µPW, the coefficient of restitution er, the coefficient of rolling resistance between two particles
µR,PP and between a particle and a wall µR,PW, respectively. In order to determine the force-
displacment law for contact between particle I and J the equivalent radii, mass and Young’s-

2

219



M. Jahn and M. Meywerk

and shear modulus (cf. [9, p. 233-235]) must be determined with1

R
IJ

:=
R
I

R
J

R
I
+R

J

, m
IJ

:=
m
I

m
J

m
I
+m

J

,
∗
E(P) :=

E
2 (1−ν2)

and
∗
G(P) :=

G
2 (2−ν)

, (2)

respectively [18, p. 242]. A nonlinear spring-dashpot model is used for the contact-displacement
law [4, p. 985]. The stiffness and the viscous-damping in the normal direction is determined
(cf. [9, p. 234]) with

K
IJN

(P) :=
4
3

∗
E(P)

√
R
IJ

and γ
IJN

(t, δ
IJN

,P) := β(P)
√

m
IJ

K
IJN

(P) 4

√
δ

IJN
(t) , (3)

with β(P) := ln(er)

√
5

ln2
(er)+π2

, (4)

where er is the coefficient of restitution and δ
IJN

(t) the overlap of the particles in the normal

direction. The contact-force in the normal direction equals (cf. [18, p. 242])

F
IJN

(t, δ
IJN

, δ̇
IJN

,P) :=−K
IJN

(P) δ
IJN

(t)
3
2 − γ

IJN

(t, δ
IJN

,P) δ̇
IJN

(t) . (5)

The stiffness and the viscous-damping in the tangential direction (cf. [9, p. 234]) equals

K
IJT

(P) := 8
∗
G
√

R
IJ

and γ
IJT

(t, δ
IJT

,P) := 2β(P)

√
1
6

K
IJT

(P) 4

√
δ

IJT
(t) , (6)

respectively and the corresponding force could be determined with

F
IJT

(t, δ
IJT

, δ̇
IJT

, F
IJN

,P) := min

((∣∣∣ K
IJT

(P) δ
IJT

(t)+ γ
IJT

(t, δ
IJT

,P) δ̇
IJT

(t)
∣∣∣
)
,
∣∣∣ µPP F

IJN
(t, δ

IJN
, δ̇

IJN
,P)

∣∣∣
)

,

(7)

where µPP is the coefficient of the Coloumb friction and δ
IJT

(t) is the tangential overlap (see [22,

p. 155]).

2.1 Rolling friction

Rolling friction is introduced to decrease the translational and rotational velocity of a particle.
In reality the particle velocity decreases during the movement. In order to achieve this behavior
in the simulation rolling resistance is introduced (cf. [21, p. 540]). The used rolling friction
model is Method-B from [21, p. 539]

MMM
IR
(t,P, F

IJN
) :=−µR,PP

∥∥∥θ̇θθ
IJ
(t)

∥∥∥ F
IJN

(t, δ
IJN

, δ̇
IJN

,P)
θ̇θθ
I
(t)

∥∥θ̇θθ
I
(t)

∥∥ , (8)

where θ̇θθ
IJ
(t) is the relative angular velocity at the contact point.

1Usually the equivalent Young’s modulus and the shear modulus are determined with specific values of Poisson
Ratio and Young modulus.
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3 COMPUTATIONAL MODEL FOR THE PILE

In this section the computational model of the dynamic simulation of the pile is described.
Different ways for generating piles can be found in [2]. The simulation in this work is treated
similar to the dynamic investigation of a hopper. In order to investigate only the influence of
the material parameters with regard to the angle of repose the model must only depends on
the material parameters. Hence the initial position of each particle must be identical for each
simulation.
The sensitivity analysis is performed for two different particle sets in order to compare the
sensitivity of two different particle size distributions. The particle radii for both assemblies
are created by means of a normal distribution. In table 2 the interval for the restriction of the
particle radii R

I
∈ [rL;rU], the mean values, the standard deviation and the number of particles

of the two assemblies are shown.

Particle-set Interval for radii Mean value Standard deviation Number of particles

1 [1;3.5]mm 2mm 0.5mm 6000
2 [0.8;2.5]mm 1.5mm 0.35mm 8000

Table 2: Summary of parameters for the particle generation

3.1 Particle positioning

The particle assembly consists of discs with a radius of rfu = 20mm in which particles are
positioned like it is depicted in Fig. 2a. One of such discs is depicted in Fig. 1a.
The generation of these disc is performed with an algorithm which fills sequential annuli (see. Fig. 1a).
The vertical position of the discs starts with h = rU. For the following discs the vertical position
is increased by 2rU until the maximal height of hfu is reached (see Fig. 2a). Then all following
in sequence generated discs get the height hfu.

(a) Illustration of a disk of spheres for the pile
investigation

(b) Measurement of the angle of repose

Figure 1: Particle-positioning for the pile assemblies
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(a) Initial stage of the simulation (b) Simulation of the pile

Figure 2: Simulation of the pile

(a) Simulated pile after the ralaxation (b) Heap after the filter process

Figure 3: Finished simulation of the pile

3.2 Simulation

In order to lower the influence of the interaction between the particles and the plane a cylinder
is introduced (cf. [2, p. 318]). It has a radius of rcy = 50mm and height of hcy = 5mm. In
the initial stage of the simulation all particles of the discs with a height below hfu = 100mm
are treated, like it is depicted in Fig. 2a. In the following steps the simulation is performed

for t =
√

4rU∥∥ggg
∥∥ , thus the upper discs covers a distance of 2rU. Then the treated particles are

appended by the next disk with a height of hfu (see Fig. 2b). These steps are repeated until all
particles are treated.
In order that the last inserted particles find a stable position at the end a simulation is carried
out for t = 600ms. The state after this integration is shown in Fig. 3a. Then a filter process is
performed. All particles in the box or below the upper edge of the cylinder are removed, like it
is depicted in Fig. 3b. During the filter-process the height of the pile hP is determined.

3.3 Determination of the steepest angle of repose

A picture, in which the the steepest angle of repose of a real sandpile is measured, is shown in
Fig. 1b. It can be seen that the top of the pile is rounded while the boundary of the remaining part
is formed like a truncated cone. In order to determine the steepest angle of repose a cylindrical
coordinate system is introduced. The origin of the coordinate system is placed at the bottom
in the middle of the rounded base area of the pile. The angle of the polar axis is divided into
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(a) Boundary particles (b) Visualization of the truncated cone

Figure 4: Approximation of the angle of repose

φN = 180 parts. These direction vectors are given with

eeeiφ :=
(

cos(φiφ)

−sin(φiφ)

)
with φiφ :=

360
φN

iφ , (9)

where iφ = 0, . . . , iφN − 1 holds. In each direction several equidistant level of heights between
0.2hP and 0.75hP are defined in which the particle with the largest radial distance is searched.
In Fig. 4a the particles which lie on the boundary are marked with the color which changes
from red to blue with increasing iφ. The dark blue particles are particles which doesn’t lie on
the boundary.
A line for each eeeiφ is fitted with the minimization of the orthogonal distance between the
particles and the line. The average angle φ of all these lines is the approximated angle of
repose2. In Fig. 4b the line elements on the marked particles are shown.
The values of the measured angle of repose (see Fig. 1b) are 32◦ and 35◦. The goodness of the
fit Eφ(P) = (φ̂−φ(P))2 is determined with the average φ̂ = 33.5◦.

4 OEDOMETER

The oedometer test is a one-dimensional compression test [19, p. 115 ff.]. A soil sample is
put inside a box. On top of the soil sample a load-plate is installed on which different loads
are applied. The used box has a base area of 10cm× 10cm and a height of 10cm. This box
prevents horizontal deformation of the soil sample. The average of six oedometer experiments
is shown in Fig. 5. The settlement s is determined with h0 − h where h is the actual height of
the plate and h0 the height of the plate at the initial load step of 100N.
The computational model consists of a rigid box which is filled with particles. In Fig. 6a the
particle assembly in the box is shown after a compression with 100N. Two assemblies are
investigated. Assembly one consists of 4642 particles and has a void ratio of e1 =

VS
VP

= 0.66,
while assembly two consists of 3361 particles and has a void ratio of e2 = 0.67. The quantity VS
is the solid volume taken by the particles and VP = 10 ·10 ·5cm3 −VS the volume of the voids.

2The implementation was performed in the bachelor thesis ”Entwicklung eines Algorithmus zur Approximation
des Schüttwinkels und Sensitivitätsanalyse” of Mr. B.Sc. Fabian Pfaff.
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Figure 5: Stress-displacement curve for P120

The force driven plate is applied for four loads Ln with n ∈ {0,1,2,3}. The plate iteration
starts with the following three steps: The generation of a backup of the particle positions and
velocities, the movement of the load-plate downwards by a trial step δTa and an integration of
ns = 15000 integration-steps.

This procedure is repeated until the resulting particle force of the force plate FR satisfies the
condition FR > Ln. If this condition is fulfilled an integration of nL = 80000 integration-steps
is performed in order to relieve the particle force. If the resulting force FR falls below Ln, the
procedure with the short integrations and the backups is performed again. If the resulting force
FR after a long integration of nL integration steps exceeds Ln, the backup of the last valid trial-
step is loaded and the corresponding height of the force plate is applied. If this case occurs
the trial step δTa is reduced in each following trial-step with δTa ← δTa mT, where mT = 0.95
is a reduction factor. The reduction of the trial step considers the amount of the residuum
R = |FR−Ln|, so that mT is adjusted to the residuum. It is also considered that the trial step does
not fall below a critical value of 0.05δT0. The trial step is initialized with δTa ← δT0 = 0.0075.
If the absolute value of the residuum is lower than the precision Rpr = 30 which equals 0.03N
the iteration is finished.
With this procedure static states for the loading steps are simulated. Incorrect simulation
conditions where the resulting force exceeds the plate force do not occur, since in such situations
the backup of the last valid simulation state is loaded.
The simulation is performed with four loading steps L0 = 100N, L1 = 400N, L2 = 1100N and
L3 = 2700N. In Fig. 6b the iteration for the load-step L0 is shown. The achieved precision
for this load step is (100000− 100017.59)10−3N ≈ 0.017N. The corresponding settlement
s0 = 2.4337952mm is used as a reference value for settlements of the following load-steps (see
Fig. 5). The experimental settlement for the initial load-step was much smaller. The reason for
this could be that the packing density must be much higher. This could be achieved with lower
particle radii or/and a good graduation [10, p. 52]. In Fig. 5 the displacement-stress curve of the
load-steps L1 = 400N, L2 = 1100N and L3 = 2700N is shown. In Fig. 5 and 6b the purple dashed
lines marks the simulated load-steps Li, the blue curve is the average of the measurements while
the red one is the simulated curve. The error-bar in Fig. 5 represents the lowest and the highest
measured values of the settlement. The quality of the simulation is quantified with the error
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(a) Particle assembly after a compression with
100N
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(b) Iteration of the load-plate with 100N for P120

Figure 6: Oedometer test sample 120

measure E0 :=
√

∑3
i=1(s̃i − si)2. which treats only the deviation of the settlements, since the

deviation of the forces are negligible small due to the precision Rpr = 0.03N.

5 DESIGN OF EXPERIMENTS AND METAMODELS

Since the numerical models for the investigation of the pile and the oedometer test are
time expensive the sensitivity analysis should be performed using metamodels. The numerical
model of the pile described in section 3 assigns each DEM-input parameters P (see (1)) a
corresponding approximation of the angle of repose φ(P). The numerical model for the oedometer-
test described in section 4 is investigated with respect to the failure measure E0. Hence both
models assign each parameter tuple with a scalar for the quality of the fit with the experimental
measurement.
The DOE is performed with the Latin-Hypercube-sampling (LHS) (cf. [8, p. 240]) with 160
points for the pile and 200 for the oedometer test. In Tab. 3 the investigated interval3 for each
element of P (see (1)) is shown.
On this basis four different meta-models are generated. A quadratic and a cubic polynomial
response surface method (cf. [1, p. 2123]) is used. The quality of the metamodel could be

determined with the regression coefficient R2 =
SSE
SST

where SSE is the sum of square error
and SST the total square error [1, p. 2123]. In [1, p. 2123] it is mentioned that generally with
increasing R2 the quality of the fit is rising. The quadratic polynomials have a poor quality of
fit for the pile- and the oedometer model in comparison to the cubic ones. An interpolating
metamodel is generated as well with radial basis functions (RBF). A cubic (triharmonic) ansatz
function4 ψT(r) = r3 [20, p. 55] and the thin-plate ansatz ψP(r) = r2 log(r2) is used [1, p. 2124].

3The inverval for µR,PP and µR,PW for the oedometer experiment is [5 ·10−5,0.01].
4The parameter c which is used in [1, p. 2124] is equal to one in this work.
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Quantity Interval

Young’s modulus E E ∈ [105,106]

Poisson’s ratio ν ν ∈ [0.2,0.4]
Coefficient of friction between particles µPP µPP ∈ [0.7,1.9]
Coefficient of friction between particles and the wall µPW µPW ∈ [0.4,1.9]
Coefficient of restitution eR eR ∈ [0.2,0.6]
Coefficient of rolling resistance between particles µRPP µRPP ∈ [0.45,4.5]
Coefficient of rolling resistance between particles and the wall µRPW µRPP ∈ [0.8,5]

Table 3: The DOE interval for the sensitivity analysis

6 Sobol’ indices for the angle of repose

The global sensitivity-analysis is used to determine the influence of input variables or their
combinations on the output of a system [14, p. 271]. Sobol’ indices are often used since they are
appropriate for the most models [17, p. 964]. A disadvantage is, that 2n = 128 terms [12, p. 259]
must be determined for n = 7 input parameters. In this work the first and second order Sobol’
indices are calculated for the pile and the oedometer experiments. Since the high computational
effort of the numerical models the Sobol’ indices are determined with the metamodels. In order
to determine the Sobol’ indices the input space must be defined in a n-dimensional unit cube
[3, p. 3]. Hence the 7-dimensional input space (see tab. 3) for the parameter-tuple P must be
transformed in a 7-dimensional unit cube P̂ = [0,1]7. The investigated models are the quadratic
and the cubic polynomial RSM, the thin-plate - and the cubic RBF of the pile experiment as well
as the oedometer experiment. Each investigated model f (P̂) with P̂ ∈ [0,1]7 is decomposed in
2n summands of different dimensions based on the Fourier-Haar series [15, p. 408] hence

f (P̂1, · · · , P̂n) = f0 +
n

∑
i=1

fi(P̂i)+
n−1

∑
i=1

n

∑
j=i+1

fi j(P̂i, P̂j)+ · · ·+ f1,...,n(P̂1, · · · , P̂n) (10)

holds with P̂ = (P̂1, · · · , P̂n). If P̂ is a uniform distributed random variable in [0,1]n, then f (P̂)
and the summands fi1,...,is(P̂i1 , · · · , P̂is) are random variables, too. The corresponding variances

are D and Di1···is =
∫

(P̂i1 ,··· ,P̂is)∈[0,1]s

fi1,...,is(P̂i1 , · · · , P̂is)
2d

(
P̂i1 , · · · , P̂is

)
, respectively [14, p. 272].

In order to determine the variance eq. (10) could be rewritten with

D =

∫

P̂S∈[0,1]n

f (P̂S)
2dP̂S − f0

2
=

n

∑
i=1

∫

P̂i∈[0,1]

fi(P̂i)
2dP̂i +

n

∑
i=1

n

∑
j=1

∫

(P̂i,P̂j)∈[0,1]2

fi j(P̂i, P̂j)
2d

(
P̂i, P̂j

)
+ · · ·

(11)

The Sobol’ indices are determined [14, p. 272] with Si1,...,is :=
Di1,...,is

D
. The second order Sobol’

indices are lower than 0.05. Hence, they are negligible small. In Tab. 4 and 5 the first order
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metamodel E ν µPP µPW er µR,PP µR,PW Res

RSM quad. 0.0166 0.0087 0.0370 0.0102 3.7E−5 0.8961 0.0040 0.035
RSM cub. 0.030 9.4E−4 0.0165 0.0132 7.8E−6 0.5302 0.0066 0.4483
RBF th. pl. 0.0419 0.0260 0.0091 0.0160 0.008 0.701 0.0215 0.1938
RBF cub. 0.0429 0.0275 0.0163 0.0185 0.019 0.547 0.0299 0.3302

Table 4: First order Sobol’indices for the pile experiment with assembly one

metamodel E ν µPP µPW er µR,PP µR,PW Res

RSM quad. 0.0072 0.022 0.003 0.0297 2.3E−5 0.9118 7.5E−4 0.0405
RSM cub. 0.014 0.054 0.0241 5.5E−4 1.3E−6 0.5065 0.0208 0.4096
RBF th. pl. 0.013 0.0218 0.0048 0.0015 0.020 0.759 0.010 0.2463
RBF cub. 0.016 0.019 0.0069 0.010 0.0194 0.6642 0.0207 0.3489

Table 5: First order Sobol’indices for the pile experiment with assembly two

Sobol’ indices for the pile experiment are shown. The Sobol’ indice for the parameter µR,PP
has by far the biggest influence for all metamodels and both particle assemblies. In Tab. 6 and
7 the first order Sobol’ indices for the oedometer experiment are shown. The most significant
parameter of the oedometer model is by far the Young’s modulus E. The sum of all indices
should not exceed one. This isn’t achieved in Tab. 7 for the quadratic polynomial RSM and the
cubic RBF due to numerical errors.

7 CONCLUSION

In this work a sensitivity analysis with Sobol’ indices is performed for the pile- and the
oedometer experiment. Since the computational models of the two treated experiments are
very time consuming sampling-points are generated with the Latin Hypercube sampling. On
this basis four different metamodels are used to determine the first- and second order Sobol’
indices. The second order Sobol’ indices are negligible. The influence of the rolling friction
parameter between particles is by far the most significant parameter in the pile experiment. For
the oedometer experiment the Young’s Modulus is by far the most significant parameter. With
this information a more appropriate parameter fitting could be performed with an optimization
of these parameters. A three dimensional ansatz was described to determine the angle of

metamodel E ν µPP µPW er µR,PP µR,PW Res

RSM quad. 0.9877 0.0058 0.0060 0.0018 7.1E −6 0.0011 0.0077 0.0103
RSM cub. 0.981 0.0017 0.0050 0.0057 1.6E −5 0.0059 0.0085 0.0416
RBF th. pl. 0.892 0.0011 0.0042 0.0029 0.0214 0.0026 0.0031 0.0885
RBF cub. 0.879 0.0029 0.0040 0.0049 0.0193 0.0012 0.0019 0.1066

Table 6: First order Sobol’indices for the oedometer experiment with assembly one
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metamodel E ν µPP µPW er µR,PP µR,PW Res

RSM quad. 1.00 0.0094 0.0070 0.0017 1.2E −5 1.8E −4 0.0038 0.0250
RSM cub. 0.9314 0.0018 0.0067 0.0048 2.4E −6 0.0029 0.0069 0.0587
RBF th. pl. 0.9373 3.4E −4 0.0036 0.0084 0.0082 0.0021 4.0E −4 0.0444
RBF cub. 1.00 0.0093 0.0070 0.0017 1.2E −5 1.894 0.0038 0.025

Table 7: First order Sobol’indices for the pile experiment with assembly two

repose as well as a force-driven plate, which prevents incorrect simulation conditions where
the resulting particle force exceeds the load-step.
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