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Abstract—In this paper we propose a set of optimizations for
the BLAS-3 routines of LASs library (Linear Algebra routines
on OmpSs) and perform a detailed analysis of the impact of the
proposed changes in terms of performance and execution time.
OmpSs allows to use regions in the dependences of the tasks. This
helps not only in the programming of the algorithmic optimiza-
tions, but also in the reduction of the execution time achieved by
such optimizations. Different strategies are implemented in order
to reduce the amount of tasks created (when there is enough
parallelism) during the execution of BLLAS-3 operations in the
original LASs. Also a better IPC is obtained thanks to a better
memory hierarchy exploitation. More specifically, we increase
the performance, in particular on big matrices, about 12% for
TRSM, and 17% for GEMM with respect to the original version of
LASs, even using less cores in the case of GEMM/SYMM. Moreover,
when LASs is compared to the OpenMP reference dense linear
algebra library PLASMA, performance is increased up to 12.5%
for GEMM/SYMM, while for TRSM/TRMM this value raises to 15%.

Index Terms—BLAS-3, tasking, OmpSs, regions

I. INTRODUCTION

Numerous scientific and engineering applications rely on
linear algebra (LA) operations. The relevance of LA opera-
tions can be appreciated in a wide range of fields, such as
determining the radar signature of a plane (e.g., Epsilon [1]),
hyperspectral image processing (e.g., Opticks [2]), macro-
molecular simulations (e.g., GROMOS [3]), Computational
Fluid Dynamics [4], [5], Image Processing [6], [7], just to
mention a few. For this reason, the scientific community is
constantly improving the performance of these LA operations.
A proof of that is the existence of several (vendor and open-
source) LA libraries and the constant development to improve
performance [8]-[13], e.g. Intel MKL [14], IBM ESSL [15],
PLASMA [16], libFLAME [17], Chameleon [18], ScalA-
PACK [19], DPLASMA [20], NVIDIA Libraries (cuSparse,
cuBLAS and cuSolver), among others.

All these libraries provide either BLAS [21] or LA-
PACK [22] functionality (or both) via different programming
models that allow the parallelization of the code following
different approaches. Depending on the programming model,
the underlying strategy in order to exploit the hardware re-
sources varies; some of them aim to make a better use of the
memory hierarchy and, some others, focus on maximizing the
use of all the available resources. Given that LAPACK routines
often make use of BLAS level routines, a common target
when trying to increase the performance of those libraries is
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to optimize BLAS level routines. In this vein, we present a
set of optimizations on the BLAS-3 routines included in the
novel open-source library for linear algebra operations called
LASs (Linear Algebra routines on OmpSs) ! and evaluate their
potential benefits. In order to implement these optimizations
we use regions [23], an advanced feature of OmpSs that
allows to specify depencendes over a set of data without
significant changes in the code. It is important to note that this
feature is not part of the current OpenMP specification, so the
optimizations and studies presented in this paper cannot be
replicated using OpenMP. Other important point to highlight
is that the porting of the implementations are not in need of
any change to be used on other architectures.

The paper is structured as follows. Section II presents some
related work, including several LA libraries that are based
on different task-based programming models. Section III de-
scribes and evaluates the optimizations performed on BLAS-3
on the LASs library. Sections IV shows the conclusions and
future work lines

II. STATE OF THE ART

Today, we can find several examples of LA libraries im-
plemented using task-based programming models. PLASMA
provides parallel implementations of BLAS-3 and LAPACK
level operations using OpenMP [24]. However, the initial
parallelization was made using Quark [25]. Chameleon makes
use of StarPU [26] runtime in order to implement dense linear
algebra operations that can be run on shared and distributed
memory scenarios.

In this paper we tackle the optimization of LASs, a LA
library based on OmpSs [27]. OmpSs is a task-based pro-
gramming model that extends OpenMP directives to give
support to asynchronous parallelism and heterogeneity. We
make use of the OmpSs programming model instead of others
for the following reasons: i) This model presents an efficient
management of the threads based on the use of queues, without
the need of dealing with the overhead found in other models,
such as the fork-join model used in OpenMP (see Figure 1).
OmpSs also allows us to have a deeper control and analysis to
evaluate the threads scheduling and the potential benefits of the
optimizations proposed. ii) Unlike other programming models,

Uhttps://pm.bsc.es/mathlibs/lass
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OmpSs is able to deal with regions in the dependences of
the tasks efficiently. In fact, the effectiveness of the proposed
optimizations present in this paper relies on this feature. iii)
OmpSs is specially well integrated with the tools used for the
performance evaluation Extrae and Paraver [28]. Extrae is a
dynamic instrumentation package to trace programs compiled
and run using OmpSs, OpenMP, pthreads, the message passing
(MPI) programming model or a combination of these. Extrae
generates trace files that can be later visualized with Paraver.

The rising in the amount of programming models based on
task parallelism has been significant during the last decade,
even making the OpenMP standard (initially designed for
parallel regions) integrates this approach from version 3.0.
Task-parallelism (see Figure 1) is an alternative paradigm that
provides more flexibility, allowing the developer to deal with
certain problems such as loops with an unknown length at run
time.
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Fig. 1. OpenMP programming model vs. OmpSs.

III. BLAS-3 OPTIMIZATION

In this section, we explore a set of algorithmic op-
timizations on BLAS-3 level routines based on tasking
and OmpSs region. We have divided the set of routines
into three different subgroups according to their charac-
teristics (scheduling, input/output parameters, parallelism):
TRSM/TRMM, GEMM/SYMM, and SYRK/SYR2K.

The optimizations presented in this paper target the reduc-
tion of task instantiation time, the amount of tasks in the
DAG generated by OmpSs and the exploitation of data locality,
increasing the IPC, to achieve a reduction in the total execution
time. A critical point regarding performance is the overhead
introduced by the use of a runtime. For this reason, one of
the objectives behind the presented optimizations implies the
reduction of the amount of created tasks by joining small tasks
into bigger ones when possible.

Additionally, when the number of tasks that need to be
managed is reduced, data locality is better exploited. By
creating bigger tasks a greater amount of data may be reused
(if accessed properly) through the memory hierarchy, reducing
execution time and thus increasing performance. This is done
thanks to the OmpSs regions.

Load balancing is also considered when implementing our
optimizations. OmpSs balances the workload automatically,
however, the granularity of these tasks needs to be carefully
determined in order to avoid relevant unbalance. For those
operations where a critical unbalance has been detected, the

solution lies on evenly distributing the workload among the
available cores in the platform.

A. TRSM and TRMM routines

Both routines (TRSM and TRMM) have as input a triangular
matrix and as output a regular dense matrix. The dependences
between the different tiles are similar, so the same optimization
can be applied to both routines.
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Fig. 2. TRSM implementation in LASs (left) and LASs-opt (right), respec-
tively.

Figure 2 shows the tiled algorithm for TRSM (left) when
using one task per tile and the optimization implemented in
LASs-opt (right). The optimization consists of joining the set
of GEMM, which compute the tiles of one tiled-column, instead
of using one task per tile. In this case, we can reduce the
number of tasks to be computed, as shown in Figure 3 and,
consequently, reduce the overhead of task management.

Fig. 3. TRSM DAG in LASs using one task-dgemm per tile (top) and LASs-opt
using one task computing many dgemm per tiled-column (bottom), respec-
tively. The dark-blue and violet nodes correspond to the tasks which compute
the data-layout transformations, the light-blue and blue nodes correspond to
the TRSM and GEMM tasks respectively.
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Listing 1. Code for TRSM in I.ASs

for (d = 0; d< dt; d++) {
for (¢ = 0; ¢ < ct; c++) {
#pragma oss task in(TILE_A[d][d])
inout (TILE_B[d][c])
shared (TILE_A, TILE_B)
firstprivate (d, c¢)
dtrsm ( )
}
for ((r =0; r<rt; r++) {
for (¢ = 0; ¢ < ct; c+4) {

#pragma oss task in(TILE_A[d][r])
in(TILE_B[d][c])
inout (TILE_B[r][c])
shared (TILE_A, TILE_B)
firstprivate(d, r, c)

dgemm ( )i

}

This optimization is not in need of big modifications in the
code thanks to OmpSs region mecanism. Basically, it requires
to move the task instantiation and the modification of the data-
dependence clauses, as can be seen in Listing 1 and Listing 2.
After evaluating different approaches and task granularity, the
best configuration consists of using two tasks per tiled-column
in the computation of the set of GEMM. As shown, to perform
this optimization we make use of regions in the instantiation
of GEMM tasks.

To carry out this optimization efficiently, it is also necessary
to have as many tiled-columns (ct in Listing 2) as number of
cores. Due to this, we need to change the tile size according
to the next equation:

tile_size = N/#cores available

Being N the number of columns of matrix B. For example,
for a given problem of N (number of columns of matrix B)
and M (number of rows of matrix B ) = 24,576, on a platform
where #cores = 48, the tile size must be equal to 5122, 512 =
24,576/48 2.

All the tests in this section (and in the rest of this paper)
have been performed on one node of the Mare Nostrum 4 su-
percomputer, featuring two sockets Intel Xeon Platinum 8160
with 24 cores each at 2.10GHz with a total amount of 48 cores.
The maximum performance per node is 2,300 GFLOPS [29].
Moreover, each core has 32KB of L1 data cache, 32KB of
L1 instructions cache 32K, and 1MB of L2 cache. All the
cores in the same socket share an L3 cache of 33MB and
the main memory is 96GB. In addition, in all executions
we make use of numactl —--interleave=all to equally
distribute the data used between the sockets memory. All the
computations are performed in double precision. Moreover,
performance results for PLASMA, as a reference dense linear
algebra library implemented in OpenMP, are presented in all
cases. Both libraries, LASs and PLASMA, make use of the
Intel MKL library to compute the single threaded BLAS-3
routines (see Listing 1 and Listing 2).

2Note that the default tile size of LASs and PLASMA is 5122 and 2562
respectively

Listing 2. Code for TRSM in I.ASs-opt

1 |for (d=0; d< dt; d++) {

2 for (¢ = 0; ¢ < ct; c+4) {

3 #pragma oss task in(TILE_A[d][d])

4 inout (TILE_B[d][c])
5 shared (TILE_A , TILE_B)
6 firstprivate (d, c)

7 dtrsm( ... );

8 }

9 for (r = 0; r < rt; r+=2)

10 #pragma oss task in(TILE_A[d][r])

11 in (TILE_B[d][0:ct-1])
12 inout (TILE_B[r ][0:ct-1])
13 shared (TILE_A , TILE_B)
14 firstprivate (d, r, c)
15 for (¢ =0; ¢c < ct; c++) {

16 dgemm ( )

17

18 }

19

20 for ((r = 1; r < rt; r+=2)

21 #pragma oss task in(TILE_A[d][r])

22 in (TILE_B[d][1:ct-1])
23 inout (TILE_B[r][1:ct-1])
24 shared (TILE_A , TILE_B)
25 firstprivate(d, r, c¢)
26 for (¢ = 0; ¢c < ct; c++) {

27 dgemm ( )

28

29 }

30 |}

As we see in the results (Figures 4 and 5), this has
important consequences on performance. In both cases, it is
shown that the optimized implementation of LASs attains
higher performance for big matrices (above 24,5762 elements
for TRSM and 18,4322 elements for TRMM). However, this
optimization turns out to be inefficient when dealing with
medium or relative small matrices, since small matrices imply
a small tile size, and so a low IPC on GEMM computation,
being, in these cases, the original LASs and PLASMA faster.
On the contrary, for the biggest analyzed matrix, the IPC goes
from 1.67 (average), 1.70 (maximum), and 1.60 (minimum) for
the original LASs to 2.02 (average), 2.15 (maximum), and 1.84
(minimum) for the optimized implementation of LASs. The
IPC achieved by PLASMA, LASs and LASs-opt are reported
in Table III.
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Fig. 4. Performance of trsm.

This increase in performance, up to 12% and 15% for TRSM
with respect to PLASMA and LASs, respectively, and up to
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Fig. 5. Performance of trmm.
TABLE I
EXECUTION TIME FOR TRSM.

Lib. / size | 6144 | 12288 | 18432 | 24576 | 30720 | 36864

|
PLASMA | 0.16 | 1.12 3.96 9.20 19.89 | 38.29
LASs 0.20 1.45 4.28 9.83 19.83 | 36.61
LASs-opt | 0.29 1.50 4.06 9.44 1745 | 32.29

7% and 15% for TRMM for the same scenarios, is due to the
fact that several GEMM are now joined in the same task in order
to compute a column instead of a tile. Using this approach, the
runtime overhead is reduced, since less tasks are created and
so, a smaller DAG is created. Moreover, a better exploitation
of the memory hierarchy is made thanks to the increase in
data locality.

The impact of this optimization for TRSM is shown in
Figure 6, where a substantial reduction in execution time is
observed when applying this change to the biggest matrix used
(up to 6 seconds w.r.t. PLASMA for TRSM on big matrices). It
is remarkable the reduction of the creation time of the tasks,
which changes from 11.11 seconds to 3.9 seconds. This is
clearly seen in the traces, where the creation tasks (in red for
LASs and dark-green for LASs-opt at the beginning of the
execution of the first core) take much longer in the case of
the original LASs implementation.

The execution time, percentage of execution time, number
of tasks, and IPC for each type of task for the presented traces
is summarized in Table III. These results show that the most
computationally expensive part of the operation are GEMM
tasks; in fact, this is the part where the optimizations of LASs-
opt provide the higher reduction in execution time as well,
compensating the increase in execution time that is observed
in data-layout transformation (dlt) and TRSM tasks compared
to original LASs. PLASMA presents the biggest time for dlt
and GEMM, but the shortest time for TRSM.

In terms of number of TRSM and GEMM tasks (see Table III)

TABLE I
EXECUTION TIME FOR TRMM.

Lib. / size | 6144 | 12288 | 18432 | 24576 | 30720 | 36864

PLASMA | 030 | 1.22 391 9.51 18.60 | 33.33
LASs 0.19 1.44 4.01 9.84 20.50 | 33.29
LASs-opt | 0.33 1.64 4.13 9.43 17.67 | 30.98
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Fig. 6. Trace of TRSM (n = 36864, b = 512) with the initial implementation
of LASs (top) and the optimized version of the operation (bottom).

TABLE III
%, TIME, IPC AND #TASKS CONSUMED PER TASK IN TRSM

PLASMA dlt trsm gemm

% 4.03 0.83 95.14
Time (ns) | 6.8 x 1010 1.3 x 1010 1.6 x 1012
IPC 0.01 1.40 2.24
#Tasks 61,090 20,736 1,482,624
LASs dlt trsm gemm

% 2.12 1.44 95.78
Time (ns) | 3.3 x 1010 | 2.35 x 1010 | 1.56 x 1012
IPC 1.10 1.68 1.70
#Tasks 12,996 5,184 184,032
LASs-opt dlt trsm gemm

% 223 2.18 95.34
Time (ns) | 3.16 x 1010 | 3.15 x 1019 | 1.37 x 1012
IPC 1.10 1.97 2.05
#Tasks 5,184 2,307 4,615

the number of tasks needed in LASs-opt is considerably lower
than in the case of LASs and much lower if compared to
PLASMA. With respect to LASs around 50% less tasks are
created for data-layout transformations and TRSM, using only
about 2% of GEMM tasks computed by LASs. Regarding
PLASMA, the number of tasks when using LASs-opt is about
92% less for data-layout transformations, 89% for TRSM and
99.5% for GEMM.

Regarding IPC, the optimizations implemented on LASs
suppose an important increment w.r.t. original LASs in all the
tasks except for the dlt tasks. In PLASMA, the IPC achieved
by dlt is very low. The TRSM tasks, although much better than
dlt, are still lower than original LASs and LASs-opt. However,
the IPC obtained by GEMM tasks is slightly bigger than in
LASs-opt. Despite this better IPC on GEMM tasks, LASs-opt
is able to reduce the time consumed by these tasks about 15%,
because of a much lower number of tasks and a better memory
exploitation in general.
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Fig. 7. GEMM implementation in LASs (left), GEMM implementation in LASs-
opt-appl (top right), and GEMM implementation in LASs-opt-app2 (bottom
right).

B. GEMM and SYMM routines

In this section we explore some optimizations on GEMM
and SYMM. Both routines make use of three dense matrices
as parameters, two inputs and one output. The memory access
pattern and dependences, although not so similar as in the
previous case between TRSM and TRMM, are still similar in
GEMM and SYMM. The major difference is that in SYMM a
triangular matrix A is used.

In these routines, we have explored three different variants
as presented in Figure 7: one task per GEMM (left), one task
per tile of C' (top right) and one task per row of C (bottom
right). The corresponding codes that implement these three
variants are listed in Listings 3 to 5.

Listing 3. Code for GEMM in I.ASs

1 [for (m= 0; m< mt; m++){

2 for ((n = 0; n< nt; n++) {

3 for ( k = 0; k < kt; k++) {

4 #pragma oss task

5 in(TILE_A[m][k])

6 in (TILE_B[k][n])

7 inout (TILE_C[m][n])

8 shared (TILE_A,TILE_B,
TILE_C)

9 firstprivate (m, n, k)

10 dgemm( ... );

11

12 1

13 |}

Listing 4. Code for GEMM in LLASs-opt (one task per tile of C)

I |for (m= 0; m< mt; m++){

2 for ( n = 0; n< nt; n++) {

3 #pragma oss task

4 in (TILE_A[m][0:kt-1])

5 in (TILE_B[O0:kt-1][n])

6 inout (TILE_C[m][n])

7 shared (TILE_A , TILE_B, TILE_C)

8 firstprivate (m, n)

9 for ( k = 0; k < kt; k++) {

10 dgemm( ... );

11

12 }

13 |}

Listing 5. Code for GEMM in LASs-opt (one task per row)

1 |[for (m= 0; m< mt; m++){

2 #pragma oss task

3 in (TILE_A[m][0: kt —1])

4 in (TILE_B[O: kt —1][0:nt-17)
5 inout (TILE_C[m][0:nt-1])
6 shared (TILE_A , TILE_B , TILE_C)
7 firstprivate (m)

8 for ((n = 0; n< nt; n++) {

9 for ( k = 0; k < kt; k++) {
10 dgemm( ... );

11 }

12 }

13 |}

Depending on the approach, a different tile size is used.
For the first approach (one task per GEMM), we use a tile
size equal to 5122 (default tile size in LASs). The tile size
in the second (LASs-opt-appl) and third (LASs-opt-app2)
approaches depends on the problem size. For an efficient
execution of the second approach (one task per tile of matrix
C), we must have as many tasks as number of cores. This
forces to use a big tile size. In the third approach, we use
the same strategy used in TRSM, that is, the size of the tile
must be equal to M/#cores, being M the number of rows
of matrix C, so for a problem size equal to 36, 8642, we need
a tile size equal to 7682

To evaluate each of the approaches, we first analyze the
traces of each implementation on the biggest matrix used
(30,7202 eclements). Figure 8 presents the execution trace
when using one task per GEMM (top), one task per tile of
C (middle) and one task per row of C' (bottom).

In the first approach (one task per GEMM), the time (in
green) consumed by the instantiation of the tasks is the largest.
This is an expected behavior, as this approach makes use of the
largest number of tasks with respect to the other approaches. In
the second approach (one task per tile of matrix C'), although
a lower instantiation time is required, it is not possible to
homogeneously distribute the tiles among the cores given that
our test platform has 48 cores. In this scenario sqrt(48) =
6.92, being not a natural number, and this causes an important
unbalance. Finally, the third approach (one task per row of C')
reduces considerably the time consumed by the instantiation
of the tasks, however, it is not able to overlap execution with
data-layout transformation, since until the whole row of C' is
computed the transformation cannot be done. This causes also
a non-negligible unbalance.

As an overview, we show the performance in GFLOPS
(Figures 9 and 10) and execution time in seconds (Tables IV
and V) for GEMM and SYMM. In each case we analyze the
behavior for LASs (one task per operation), LASs-opt-app2
(one task per row of matrix C) and PLASMA.

As shown in the execution time results, LASs-opt-app2
approach is only faster than the original LASs and PLASMA
when using the biggest matrix size, reducing the execution
time 5% for GEMM and 7% for SYMM.

Analysis of the “one task per tile of C” approach: Finally,
and in order to evaluate the efficiency of the second approach
(one task per tile of matrix C') more deeply, we include one
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Fig. 9. Performance of gemm.

additional analysis using only 36 cores of the 48 available in
our test platform, against the original LASs using 48 cores. To
this end, we distribute the computation using the first 18 cores
of each socket. In Figure 11, we show the traces of original
LASs on 48 cores (top) and the second approach (LASs-opt-
app2) on a matrix size equal to 30, 720%. In the original LASs

TABLE IV
EXECUTION TIME FOR GEMM IN LASS AND LASS-OPT
IMPLEMENTATIONS.
Time(s) \ 6144 \ 12288 \ 18432 \ 24576 \ 30720
PLASMA 040 | 2.39 7.92 18.62 37.54
LASs 0.35 2.61 8.46 19.50 37.54
LASs-opt-app2 | 0.58 3.47 8.39 23.68 35.81
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Fig. 10. Performance of symm.

TABLE V
EXECUTION TIME FOR SYMM IN LASS AND LASS-OPT
IMPLEMENTATIONS.

Time(s) | 6144 | 12288 | 18432 | 24576 | 30720
PLASMA 038 | 234 | 7.65 | 18.06 | 36.97
LASs 034 | 264 | 794 | 1955 | 37.94
LASs-opt-app2 | 0.59 | 422 | 833 | 2073 | 35.27

the tile size is equal to 5122 (default tile size in LASs) and
in the second approach (using 36 cores), taking into account
that the same number of tasks and cores is required, the tile
size is equal to 5, 1202.

Fig. 11. Traces of GEMM for LASs implementation with 48 cores (top) and
LASs-opt with 36 cores (bottom).

As shown in the traces, we see an important reduction of the
execution time, even using a lower number of cores. To con-
tinue analyzing this approach, we extend the analysis showing
the GFLOPS (Figure 12) and execution time (Table VI) of
this approach (using 36 cores) against the original LASs and
PLASMA using 48 cores.

Results presented for performance and time execution show
that the LASs-opt-app2 approach is able to outperform original
LASs and PLASMA with a peak reduction time of 17% and
12.5%, respectively, using less cores.
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Fig. 12. Performance of GEMM for LASs implementation with 48 cores and
LASs-opt with 36 cores.

TABLE VI
EXECUTION TIME FOR LASS AND LAS-OPT (ONE TASK PER TILE OF
MATRIX C') WITH 48 AND 36 CORES RESPECTIVELY.

Time(s) | 6144 | 12288 | 18432 | 24576 | 30720
PLASMA | 040 | 2.39 | 792 | 1862 | 37.36
LASs 035 | 251 | 846 | 1950 | 37.54
LASs-opt | 035 | 236 | 7.03 | 1674 | 33.22

C. SYRK and SYR2K routines

Following the same idea as for the case of TRSM and TRMM,
SYRK and SYR2K have been optimized applying the same
approach, joining several GEMM tasks into a bigger one and
using the appropriate tile size depending on the number of
cores in the platform. We consider the same optimizations for
SYRK and SYR2K because they present important similarities
in terms of input/output parameters as well as in terms of data
dependences and task scheduling. The major difference found
is that in SYR2K, one more dense matrix B is involved in the
execution.

In both routines we can find the same scenario graphically
illustrated in Figure 13. This figure shows that the GEMM com-
puted in these routines follows the same pattern; GEMM whose
inputs come from different columns store the result in the same
output tile. This makes difficult to follow the strategy used
in the previous routines, which provokes blocking between
different tasks (columns) when joining GEMM tasks of the
same column into a bigger task sequentializing the execution.

The described behavior is clearly shown in the traces of
Figure 14. When comparing the original LASs (top) with
the optimization (bottom), we can observe how the blocking
among the tasks (gaps in the trace) increases the execution

Fig. 13. SYRK task scheduling.

time. In this scenario, joining several GEMM tasks into a bigger
one reduces performance drastically.

Fig. 14. Trace of SYRK execution using LASs (top) and LASs-opt (bottom)
implementations.

As in the previous cases, we also include performance
results in terms of GLFOPS for SYRK and SYR2K. Figures 15
and 16 report the results obtained for original LASs, LASs-opt
and PLASMA for SYRK and SYR2K, respectively. In the light
of these results, unlike the other routines, the optimization
based on joining several GEMM tasks into one bigger task
is not effective on SYRK and SYR2K. However, the original
LASs matches the performance attained by PLASMA, even
improving it for small matrices.
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Fig. 15. Performance of syrk.

IV. CONCLUSIONS AND FUTURE WORK

The proposed optimizations based on the use of OmpSs
regions are able to improve the performance of most of the
considered BLAS-3 operations for big matrices (except for
SYRK and SYR2K). The reason behind this behavior is the fact
that the time needed to create the tasks is now shorter thanks
to the reduction in the amount of tasks created; moreover, and
more important, the IPC is increased due to a better memory
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management when several GEMM tasks are joined into a bigger
GEMM.
We conclude that it is important to be able to to decide

the

best strategy depending on the input matrix size not

only to improve BLAS level routines performance, but also
LAPACK operations. For this reason, As future work we plan
to implement LAPACK representative operations relying on
the optimized version of LASs.

ACKNOWLEDGMENT

This project has received funding from the Spanish Min-
istry of Economy and Competitiveness under the project
Computacién de Altas Prestaciones VII (TIN2015-65316-P),

the

Departament d’Innovacid, Universitats i Empresa de la

Generalitat de Catalunya, under project MPEXPAR: Models
de Programacié i Entorns d’Execucié Parallels (2014-SGR-
1051), and the Juan de la Cierva Grant Agreement No 1JCI-
2017-33511. We also acknowledge the funding provided by
Fujitsu under the BSC-Fujitsu joint project: Math Libraries
Migration and Optimization.

[1]

[2]

[3]

[4

=

[6

=

[7]

REFERENCES

[Online]. Available:

/media/Files/C/Chemring-

“Epsilon.”
https://www.roke.co.uk/
Roke/documents/01331-Epsilon.pdf

N. Jennings, “Opticks open source remote sensing and image processing
software, a community college gis program, and collaboration,” OSGeo
Journal, vol. 10, no. 1, p. 5, 2012.

M. Christen, P. H. Hiinenberger, D. Bakowies, R. Baron, R. Biirgi, D. P.
Geerke, T. N. Heinz, M. A. Kastenholz, V. Kriutler, C. Oostenbrink
et al., “The gromos software for biomolecular simulation: Gromos05,”
Journal of computational chemistry, vol. 26, no. 16, pp. 1719-1751,
2005.

P. Valero-Lara, A. Pinelli, J. Favier, and M. Prieto-Matias, “Block
tridiagonal solvers on heterogeneous architectures,” in /0th IEEE In-
ternational Symposium on Parallel and Distributed Processing with
Applications, ISPA 2012, Leganes, Madrid, Spain, July 10-13, 2012,
2012, pp. 609-616.

P. Valero-Lara, A. Pinelli, and M. Prieto-Matias, “Fast finite difference
poisson solvers on heterogeneous architectures,” Computer Physics
Communications, vol. 185, no. 4, pp. 1265-1272, 2014.

P. Valero-Lara, “A GPU approach for accelerating 3d deformable regis-
tration (DARTEL) on brain biomedical images,” in 20th European MPI
Users’s Group Meeting, EuroMPI ’13, Madrid, Spain - September 15 -
18, 2013, 2013, pp. 187-192.

“Multi-gpu acceleration of DARTEL (early detection of
alzheimer),” in 2014 IEEE International Conference on Cluster Com-
puting, CLUSTER 2014, Madrid, Spain, September 22-26, 2014, 2014,
pp. 346-354.

[8]

[9]

[10]

(11]

[12]

[13]

[14]
[15]

[16]
[17]

[18]

[19]

[20]

(21]
[22]
[23]

[24]

[25]

[26]

[27]
(28]

[29]

J. J. Dongarra, S. Hammarling, N. J. Higham, S. D. Relton, P. Valero-
Lara, and M. Zounon, “The design and performance of batched BLAS
on modern high-performance computing systems,” in International Con-
ference on Computational Science, ICCS 2017, 12-14 June 2017, Zurich,
Switzerland, 2017, pp. 495-504.

P. Valero-Lara, I. Martinez-Peréz, A. J. Pefia, X. Martorell, R. Sirvent,
and J. Labarta, “cuhinesbatch: Solving multiple hines systems on gpus
human brain project%,” in International Conference on Computational
Science, ICCS 2017, 12-14 June 2017, Zurich, Switzerland, 2017, pp.
566-575.

P. Valero-Lara, I. Martinez-Peréz, S. Mateo, R. Sirvent, V. Beltran,
X. Martorell, and J. Labarta, “Variable batched DGEMM,” in 26th Eu-
romicro International Conference on Parallel, Distributed and Network-
based Processing, PDP 2018, Cambridge, United Kingdom, March 21-
23, 2018, 2018, pp. 363-367.

P. Valero-Lara, 1. Martinez-Pérez, R. Sirvent, X. Martorell, and A. J.
Pefia, “cuthomasbatch and cuthomasvbatch, CUDA routines to compute
batch of tridiagonal systems on NVIDIA gpus,” Concurrency and
Computation: Practice and Experience, vol. 30, no. 24, 2018.

P. Valero-Lara, R. Sirvent, A. J. Pefla, X. Martorell, and J. Labarta,
“Mpi+openmp tasking scalability for the simulation of the human brain:
Human brain project,” in Proceedings of the 25th European MPI Users’
Group Meeting, Barcelona, Spain, September 23-26, 2018, 2018, pp.
5:1-5:8.

Valero-Lara, Pedro, Martinez-Pérez, Ivan, Sirvent, Raiil, Pefia, Antonio
J., Martorell, Xavier, and Labarta, Jests, “Simulating the behavior
of the human brain on gpus,” Oil Gas Sci. Technol. - Rev.
IFP Energies nouvelles, vol. 73, p. 63, 2018. [Online]. Available:
https://doi.org/10.2516/0gst/2018061

Intel Corp., “Intel math kernel library (MKL) 11.0,”
http://software.intel.com/en-us/intel-mkl.

IBM,  “Engineering and  Scientific ~ Subroutine  Library,”
http://www.ibm.com/systems/software/essl/, 2012.

“PLASMA project home page,” http://icl.cs.utk.edu/plasma.

F. G. Van Zee, 1libflame: The Complete Reference.

www.lulu.com, 2009.

E. Agullo, O. Aumage, M. Faverge, N. Furmento, F. Pruvost, M. Sergent,
and S. P. Thibault, “Achieving high performance on supercomputers
with a sequential task-based programming model,” IEEE Transactions
on Parallel and Distributed Systems, pp. 1-1, 2017.

L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel,
I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley,
D. Walker, and R. C. Whaley, ScaLAPACK Users’ Guide. Philadelphia,
PA: Society for Industrial and Applied Mathematics, 1997.

G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, A. Haidar, T. Herault,
J. Kurzak, J. Langou, P. Lemariner, H. Ltaeif, P. Luszczek, A. YarKhan,
and J. Dongarra, “Flexible development of dense linear algebra algo-
rithms on massively parallel architectures with dplasma.” Anchorage,
Alaska, USA: IEEE, 05-2011 2011, pp. 1432-1441.

Netlib.org, “Blas,” http://www.netlib.org/blas.

——, “Lapack,” http://www.netlib.org/lapack.

J. M. Pérez, R. M. Badia, and J. Labarta, “Handling task dependencies
under strided and aliased references,” in Proceedings of the 24th
International Conference on Supercomputing, 2010, Tsukuba, Ibaraki,
Japan, June 2-4, 2010, 2010, pp. 263-274.

“OpenMP APl  for parallel programming, version
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf.
A. YarKhan, J. Kurzak, and J. Dongarra, “Quark users’ guide: Queueing
and runtime for kernels,” Tech. Rep. ICL-UT-11-02, 00-2011 2011.

C. Augonnet, S. Thibault, R. Namyst, and P-A. Wacrenier,
“StarPU: A Unified Platform for Task Scheduling on Heterogeneous
Multicore Architectures,” Concurrency and Computation: Practice and
Experience, Special Issue: Euro-Par 2009, vol. 23, pp. 187-198, Feb.
2011. [Online]. Available: http://hal.inria.fr/inria-00550877

“OmpSs project home page,” http://pm.bsc.es/ompss.

G. Llort, H. Servat, J. Gonzlez, J. Gimnez, and J. Labarta, “On the
usefulness of object tracking techniques in performance analysis,” in
2013 SC - International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), Nov 2013, pp. 1-11.

“RES - Red Espaola de Supercomputacin,” https://www.res.es/en/res-
sites/marenostrum-minotauro.

457



