
Future Generation Computer Systems 104 (2020) 201–211

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

A highly parameterizable framework for Conditional Restricted
BoltzmannMachine basedworkloads acceleratedwith FPGAs and
OpenCL
Zoran Jakšić a,∗, Nicola Cadenelli a,b, David Buchaca Prats a,b, Jordà Polo a,
Josep Lluís Berral Garcia a, David Carrera Perez a,b

a Barcelona Supercomputing Center (BSC), C. Jordi Girona 1-3, 08034, Barcelona, Spain
b Universitat Politècnica de Catalunya (UPC) - BarcelonaTECH, Spain

a r t i c l e i n f o

Article history:
Received 27 May 2019
Received in revised form 21 August 2019
Accepted 27 October 2019
Available online 1 November 2019

Keywords:
CRBM
FPGA
OpenCL
Time-series
ANN
GEMM

a b s t r a c t

Conditional Restricted Boltzmann Machine (CRBM) is a promising candidate for a multidimensional
system modeling that can learn a probability distribution over a set of data. It is a specific type of an
artificial neural network with one input (visible) and one output (hidden) layer. Recently published
works demonstrate that CRBM is a suitable mechanism for modeling multidimensional time series
such as human motion, workload characterization, city traffic analysis. The process of learning and
inference of these systems relies on linear algebra functions like matrix–matrix multiplication, and for
higher data sets, they are very compute-intensive.

In this paper, we present a configurable framework for CRBM based workloads for arbitrary large
models. We show how to accelerate the learning process of CRBM with FPGAs and OpenCL, and we
conduct an extensive scalability study for different model sizes and system configurations. We show
significant improvement in performance/Watt for large models and batch sizes (from 1.51x up to 5.71x
depending on the host configuration) when we use FPGA and OpenCL for the acceleration, and limited
benefits for small models comparing to the state-of-the-art CPU solution.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Conditional Restricted Boltzmann Machine (CRBM) [1–3] is a
Machine Learning (ML) mechanism that attracts significant atten-
tion in recent years. It can learn a probability distribution over a
set of data, and its application in system modeling and prediction
is under research primarily in the area of unsupervised learning.
They are a specific type of an artificial neural network (ANN) with
two layers. Usually, authors name the input ‘‘visible layer,’’ and
the output ‘‘hidden layer’’. Recent publications demonstrate that
CRBM is a right candidate for modeling of multidimensional time-
series such as human motion [2], workload characterization [3],
road traffic analysis/predictions, etc.

In essence, the learning process of CRBMs, as in other Deep
Neural Networks (DNN), uses a gradient descent algorithm where
weights are updated continuously in an iterative process. Im-
plementation of this algorithm relies on linear algebra functions
like vector–matrix and matrix–matrix multiplication. Previous

∗ Corresponding author.
E-mail addresses: zoran.jaksic@bsc.es (Z. Jakšić), nicola.cadenelli@bsc.es

(N. Cadenelli), david.buchaca@bsc.es (D.B. Prats), jorda.polo@bsc.es (J. Polo),
josep.berral@bsc.es (J.L. Berral Garcia), david.carrera@bsc.es (D.C. Perez).

research [3] proved that the learning process of a (C)RBM is much
longer and dominates over inference time. Thus, the acceleration
of learning is essential.

For large datasets and model dimensions, these applications
are very compute-intensive. Because of that, nowadays many
proposals try to leverage technologies such as General Purpose
Graphical Processor Units (GPGPUs) or Field Programmable Gate
Arrays (FPGAs). To improve the performance of these algorithms
or to reduce the overall energy consumption. These accelerators
provide a higher number of GFLOP/s when compared to CPU, and
potentially any ML (DL) application that based on General Matrix
Multiplication (GEMM) could benefit from using it.

A big issue, on the other hand, for the usage of the het-
erogeneous architectures in the workload acceleration, is the
communication between the different parts of the system. More
precisely, the data transfer between the Host application (that
typically runs on a general-purpose CPU) and an accelerator has
to be taken into account as well. Otherwise, the benefit of code
acceleration would be significantly lower due to non-optimized
communication between a host and an accelerator, i.e., an ac-
celerator or a host can be idle a significant percentage of time
due to inadequate data transfer mechanism. Because of that, to

https://doi.org/10.1016/j.future.2019.10.025
0167-739X/© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.future.2019.10.025
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2019.10.025&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:zoran.jaksic@bsc.es
mailto:nicola.cadenelli@bsc.es
mailto:david.buchaca@bsc.es
mailto:jorda.polo@bsc.es
mailto:josep.berral@bsc.es
mailto:david.carrera@bsc.es
https://doi.org/10.1016/j.future.2019.10.025
http://creativecommons.org/licenses/by/4.0/


202 Z. Jakšić, N. Cadenelli, D.B. Prats et al. / Future Generation Computer Systems 104 (2020) 201–211

exploit the advantage of an accelerator over a CPU-only state-of-
the-art solution, a holistic approach in analyzing the application
is necessary.

Although FPGAs have existed for decades, their application in
the areas of High-Performance Computing (HPC) and Deep Learn-
ing (DL) is relatively new. Traditionally, people have used some
Hardware Description Languages (VHDL or Verilog) to implement
FPGA design. Programming FPGA with these languages allows
fine-tuning of the logic, and in conjunction with placement and
timing constraints, achieves optimal performance. However, the
design and verification of those projects are very demanding, and
they consume a significant amount of time. Because of that, some
alternative approaches as High-Level Synthesis (HLS) emerged to
offer a faster design time at the cost of some performance penalty.

OpenCL [4] is one approach for designing HPC and DL applica-
tions when we use FPGAs for their acceleration. In essence, it is
a set of C libraries that provide two different things:

1. Implementation of FPGA kernels with C language. At first,
HLS compiler takes the C code and transfer it to Verilog
RTL design, and in the second step, it takes Verilog code
and compiles it for specific FPGA.

2. Set of runtime functions that host program can use for
interaction with an accelerator card (FPGA, GPU).

Although much effort has been invested in the development
of OpenCL compilers to make FPGA technology more accessible
to people with a little background on it, many improvements
are still necessary. The compilation of OpenCL kernels for FPGA
guarantees the correct execution of the code, but achieving a
maximal performance is not a trivial task at the current stage
of development. Also, orchestrating their execution in the man-
ner that the whole system gets utilized as much as possible is
a separate problem but equally important when designing an
application.

Nowadays, the research on the OpenCL for FPGA development
is mostly focused on the acceleration of (Convolutional) Deep
Neural Networks (DNN), especially their inference part [5–7].
Although some interesting works that leverage these techniques
for the acceleration of HPC applications appear from time to
time (like in [8–10]); more effort should be put in this direction
in order to understand the real potential of OpenCL for FPGA.
Application characterizations are critical since they offer valu-
able insights to the Cloud/Data-Center/Supercomputer architects
about the system requirements at the early stage before they
get deployed. Knowing the real requirements of workloads is
especially important when they should work in an environment
with hard power or timing constraints (e.g., environment on the
edge [11]).

In this work, we present a parametrizable framework for im-
plementation of CRBM based applications accelerated with FPGA
and OpenCL. For the acceleration part, we improve the perfor-
mance of the learning part of the CRBM as we observed that it
dominates over inference.

At first, we implement matrix multiplication kernels with
OpenCL and compile it for Arria 10 FPGA board, and then we show
how to optimize the host code of a CRBM based application to
support FPGA accelerated version.

In summary, our contributions are:

1. A parametrizable framework for CRBM applications based
on OpenCL for a heterogeneous environment Xeon CPU
+ Discrete FPGA. The framework supports arbitrary large
models that are not limited by the size FPGA on-chip mem-
ory;

Fig. 1. Conditional Restricted Boltzmann Machine (CRBM) block diagram.

2. Implementation of GEMM on FPGA in two versions. In one
version, we use Host Pipes, a new OpenCL mechanism that
we use to reduce communication overhead between FPGA
and CPU. As far as we know, this is the first paper that
investigates Host Pipe benefits in a DL application based
on GEMM;

3. Optimization of the CPU (Host) code to support usage of
FPGA GEMM designs for CRBM acceleration;

4. An extensive scalability study of the application concerning
performance and energy consumption, for different models
and batch sizes and system configurations.

As far as we know, this is the first paper that describes an
implementation of (Conditional) Restricted Boltzmann Machines
using FPGA and OpenCL. The framework that we present here is
highly scalable and easily portable to any newer version of the
FPGA accelerator board that supports OpenCL. We perform in-
depth scalability study in terms of batch size, number of Gibbs
samples and model size, as well as the number of threads.

Moreover, some conclusions that we draw here overcome the
scope of CRBM acceleration, and they are relevant for any appli-
cation based on GEMM that uses discrete FPGA for acceleration,
especially when there is data dependency between input and
output.

For large models, we observe performance improvements
from 1.51x to 5.51x when we compare results with the state-
of-the-art CPU implementations compiled for a different number
of threads. Reduction in energy consumption is even higher and
goes from 1.61x to 5.71x for the same baselines and configu-
rations. However, for small CRBM models and batch sizes, we
observe a significant loss in the performance because the data
transfer between the CPU and FPGA dominates execution time.
Because of the data dependency, FPGA stays idle for a consider-
able portion of the time, which increases the overall execution
time of the application.

The rest of the paper is organized as follows. In Section 2
we give a theoretical background of Conditional Restricted Boltz-
mann Machine. In Section 3 we present related work. In Section 4
we describe our system solution and in Section 5 we present
performance and energy numbers. Finally, in Section 6 we draw
conclusions.

2. Conditional restricted Boltzmann machine

Restricted Boltzmann Machine (RBM) is a type of artificial
neural network that can learn a probability distribution over its
set of inputs. It is a form of a bipartite graph where nodes of one
part are input, usually referred to as a visible layer, and nodes of
another part are output, commonly called hidden layer (Fig. 1).

The output of a hidden unit is defined according to Eq. (1),
where: σ is the activation function (usually sigmoid Eq. (2)), wi,j



Z. Jakšić, N. Cadenelli, D.B. Prats et al. / Future Generation Computer Systems 104 (2020) 201–211 203

are weights, and bj is a threshold (bias). Hereinafter we refer to
all wi,j values as matrix W and to all bj values as vector B.

P(hj = 1 | v) = σ (bj +
m∑
i=1

wi,jvi) (1)

σ (x) =
1

1+ e−x
(2)

W and B are obtained during the learning phase in the itera-
tive process that uses the gradient descent technique presented
in Eqs. (3) and (4).

W (i+ 1) = W (i)+ α
∂W
∂t

(3)

B(i+ 1) = B(i)+ α
∂B
∂t

(4)

Lastly, the method calculates the gradient of W and B accord-
ing to Eqs. (5) and (6). Here, matrices v̂T

(k) and ĥ(k) are the values
of the visible and hidden layer after k steps of Gibbs sampling.
∂W
∂t
≈ h(1) · v

T
(1) − ĥ(k) · v̂

T
(k) (5)

∂B
∂t
≈ h(1) − ĥ(k) (6)

Conditional Restricted Boltzmann Machine is, in essence, Re-
stricted Boltzmann Machine with some special connections that
are used to model temporal dependencies. Fig. 1 presents CRBM
for one dimensional input. Visible units V (t − n) . . . V (t − 1) are
the history of the input and value V (t) is the current state of the
system. Some authors separate the history part from the last state
and accordingly divide matrices W and B in submatrices [3].

The learning process of a CRBM can be generalized in the
following five steps:

1. From the input time-series data, we generate data slices
with the length of the units in the input layer.

2. Perform Gibbs sampling over a set (batch) of the input
slices. The number of Gibbs samples can range from 2
to some predefined number N . This is the most time-
consuming part of the process.

3. Calculate gradients according to Eq. (6) and update matri-
ces W and B.

4. Repeat steps 2 and 3 for all the batches.
5. Repeat steps 2–4 for some predefined number of epochs,

or until the difference between two consecutive updates of
the matrices W and B becomes less than some predefined
value.

As in any other DL applications, we define different algorithms
based on their batch size:

• Batch gradient descent: learning algorithm that processes
all slices at once. It calculates the gradient and updates
matrices B and W in one step.
• Mini-batch gradient descent: learning algorithm that pro-

cesses the slices in subsets, called mini-batch. It calculates
the gradient and updates matrices B and W iteratively, once
per each mini-batch until all slices are processed.
• Stochastic gradient descent: learning algorithm that pro-

cesses only one slice at the time. It is the extreme case the
Mini-batch gradient with mini-batch of one single slice.

3. Related work

Research on accelerating of HPC and DL workloads with FPGAs
and GPUs is a very actual topic. A very good survey paper [12]
summarizes the current state-of-the-art in the domain of DL and

AI. Mentioning all these papers goes beyond the scope of this
work, so here we cite just the most significant for us.

We split these works into two categories. In the first category,
we put the most recent research works that propose an efficient
solution for matrix multiplication on FPGA.

In [13], the authors propose some optimization for sparse
matrices, but since there is not much data about the potential
sparsity of CRBM models, we did not focus our work in that
direction.

The authors of [14] claim the performance of almost 0.9
TFLOPs on the Arria 10 1150 FPGA, the same one that we used
in this paper. However, it is not clear if they used OpenCL for the
implementation, or they use some RTL language to optimize the
design and achieve these performance numbers. Besides, they do
not state the matrix dimensions for their benchmarks.

In [15] authors present a framework for matrix-multiply for
Intel HARPv2 platform. They state a lower performance than [14],
possibly because of smaller resources available on FPGA for this
platform. However, differently from our work, they show results
with smaller data types (16 and 8 bits), and they use the approach
to accelerate the inference part of some convolutional neural
networks. Also, in our work, we are more interested to see the
benefit in the learning process of some DL mechanism rather than
inference what was the case in [15].

Since the systolic architectures map well for FPGA, most of
these works adopt that approach for matrix multiplication im-
plementation.

In the second category, we put the papers whose primary
objective is the implementation of (C)RBM with FPGA.

Most of the works that explore (C)RBM implementation on
FPGAs evaluate the design for smaller models (with matrix W
sizes up to 512 × 512) [16–22].

Although there is a paper whose primary focus is the accel-
eration of the inference part of CRBM [18], the majority try to
speed up the learning process. In [19,20] authors prove that for
the learning phase of CRBM, the precision of 16-bit is enough,
and investigation in that direction is promising. However, since
we also tested larger models in our paper, in this paper, we
only evaluated 32-bit solutions. In [20] authors reached similar
conclusions to ours: the FPGA has limited capability to speed up
these models.

The most recent paper that we found on this topic is [22].
The architecture that the authors propose tries to minimize the
effects of data dependency when they partially compute the
gradient as data arrive. They state that the solution achieves a 4x
improvement over the previous for the same FPGA and an 87x
improvement over software solution. However, these numbers
should be considered cautiously, because their baseline software
solution is set very low (they compare results against one thread
software implementation that use double-precision data against
32-bit integer precision implementation on FPGA). Also, their so-
lution is limited to the models that can fit on the FPGA (maximal
W size that they use 512 × 512 for 32-bit data and 512 × 1024
for 18-bit).

Unlike other papers, we focused our work on four major
points:

• To show how to use CPU and FPGA in conjunction for the
execution of CRBM based application without passing an
extensive process of RTL implementation and evaluation of
an FPGA design. Besides it takes less time to develop, this is
very useful because the framework is easily portable to any
newer FPGA Board that has support for OpenCL;
• To support arbitrary large models that are not limited by the

size FPGA on-chip memory;



204 Z. Jakšić, N. Cadenelli, D.B. Prats et al. / Future Generation Computer Systems 104 (2020) 201–211

• To show how to tune CPU code to optimize the application
execution, and also to show how the application scales for
the different number of CPU threads;
• Finally, we propose the usage of a new OpenCL mechanism,

Host Pipe, to mitigate the problem of CPU–FPGA communi-
cation as we identified it as a big challenge for application
optimization. As far as we know, this is the first paper
that demonstrates usage of Host Pipe for a GEMM based
application and evaluates benefits of this implementation.

As far as we know, this is the first paper that describes an
implementation of a parametrizable CRBM framework with some
HLS tool (such as OpenCL). It presents an in-depth study of the
performance of a CRBM based application that utilizes CPU +
FPGA. We believe that this is a crucial task because it shows
how the application scales for different model sizes and config-
urations. As such, it is not just useful to Machine Learning engi-
neers/researches, but also data-center or HPC centers architects,
too.

4. System implementation

The Gibbs sampling of CRBM, described in Section 2, is the
most time-consuming part of CRBM learning process [3]. Thus,
our initial idea is to offload this sampling to FPGA. To do this, we
first divide it into two steps: A Forward step that calculates the
values of the hidden layer and a Backward pass that computes
the numbers of the visible layer. These calculations comprise two
essential components: a General matrix–matrix Multiplication
(GEMM) that we execute in both Forward and Backward pass,
and the computation of the activation function in the Forward
step [2,3].

In this section, we first present an implementation of GEMM
multiplication on FPGA, and then we describe the whole CRBM
application. We implement the entire design with OpenCL, i.e., we
used OpenCL for two purposes: (1) to perform GEMM on FPGA
and (2) as an interface between CPU and FPGA accelerator.

4.1. General Matrix Multiplication (GEMM) on FPGA

Since we implemented the learning part of a CRBM, data pre-
cision is fundamental. In this work, we use 32-bit floating-point
presentation of the data. Although in [19,20] authors show that
16-bit floating-point data could be enough for CRBM learning,
those works investigate performance on smaller models. In this
work, we want to evaluate the application for different model
sizes. It is a known fact that for larger models, to achieve the
desired accuracy, we need a higher precision of the data. Since
there is not much data how many bits are enough for specific
model size, we have taken a ‘‘skeptical’’ approach in these im-
plementations and evaluations, and we use 32-bit floating-point
data. Obviously, the usage of 16-bit floating-point data in this
implementation would leave much more resources for GEMM
on FPGA. Accordingly, we could achieve a higher number of
operations per second in FPGA, which would (without any doubt)
benefit the total execution time of the FPGA solution over the
corresponding CPU version.

Fig. 2 presents a block scheme of the solution. We implement
a systolic algorithm for GEMM. We use the standard technique of
dividing matrices into the blocks (tiles) to improve utilization of
adjacent data, which maximizes the performance. In the text that
comes, we use the terminology according to Fig. 3.

The main building block of the systolic GEMM algorithm is
a kernel Processing Element (PE) that performs multiplication
and accumulation. It receives a block of input A and a block
of input B. The dimensions of a block are 32 × 32. Each PE
has a local memory that holds 32 × 32 = 1024 intermediate

Fig. 2. Systolic matrix multiplication.

Fig. 3. Blocking of matrices.

results. It performs 32 multiplications and additions in parallel
and final summation with the previous result. When each PE
finishes computation over one pair of blocks, it receives a new
block from the row of blocks of input A and a new block from
the column of blocks of the input B.

A PE also sends processed input data to the adjacent PEs (to
the right PE which receives a block from the input A, and to the
bottom PE which receives the data block of the input B). The bor-
der PEs receive data from FEEDA and FEEDB kernels, and the first
FEEDA and FEEDB kernels collect data from the LOADA and LOADB
modules. All these kernels exchange data over separate channels,
an OpenCL mechanism which is, in essence, a FIFO buffer. To
increase the performance of PEs, we implement double buffering
(ping-pong) at the input and the output, so multiplication and
accumulation happen in parallel with data transfer.

All the blocks that we process on every PEs form a superblock
which dimension depends on the number of PEs. In our config-
uration, all PEs form a 5 × 8 matrix. We implement the design
on the Arria 10 1150 FPGA, which provides enough resources for
this structure size. Since we use 32-bit floating-point data, the
limitation comes from the number of the multipliers that Arria 10
FPGA has. For more straightforward implementation, we fix the
inner dimension of the superblock to 256 elements. So when the
data pipeline is full, the system receives and process a superblock
of the input matrix A which sizes are 160 × 256 and a superblock
of the input matrix B which sizes are 256 × 256.

When the multiplication of one row of superblocks of matrix
A and one column of superblocks of matrix B finishes, the results
are transferred to DRAINC kernels. Finally,WRITEC kernel receives
the data from the last DRAINC kernel, and it writes the output
superblock to the memory. Its dimensions are 160 × 256.

Lastly, we implement the kernel WRITEC in two flavors:

• The first one uses a classical approach. We accept data from
DRAINC kernel and write data to the card DDR memory.
• The second one uses host pipes to transfer data directly to

CPU as they arrive.



Z. Jakšić, N. Cadenelli, D.B. Prats et al. / Future Generation Computer Systems 104 (2020) 201–211 205

Table 1
FPGA Resource utilization.
Resource Utilization

Logic utilization (ALMs) 231,386/427,200 (54%)
Block memory bits 13,572,648/55,562,240 (24%)
DSP Blocks 1280/1518 (84%)
Registers 417895

Host pipe is a relatively new thing that Intel introduced in
their SDK from version 17.1. Board Support Package of the Intel
A10 Dev Kit that we used in the implementation has support
for host pipe. Instead to write the whole data to the board local
memory and after the full processing finishes, transfer all the
data traditionally with ‘‘clEnqueueReadBuffer’’ function, WRITEC
sends the result directly to the CPU as the data arrives via host
pipe. As far as we know, this is the first application of the host
pipe mechanism in the FPGA acceleration of some GEMM based
workload.

Since we want to achieve a maximal number of GFLOPs of
GEMM on FPGA, to relax the compiler, and reduce the on-chip
memory needed for an efficient implementation, we perform
blocking part on CPU, i.e., CPU takes the input data and transform
the matrices so that FPGA can process the data as they arrive
sequentially.

Table 1 presents resource utilization for the FPGA that we
use in our implementation. The critical limiting resource is the
number of DSP Blocks (84% used). We tried to compile FPGA
design with the configuration for a higher number of PEs (we
thought that compiler might use ALMs for the implementation
of multipliers and adders). However, the compilation crashes
at some point. Accordingly, we accepted this configuration as
optimal.

4.2. CRBM learning algorithm

In the Forward step of Gibbs sampling, we make a batch of
slices already formed from the input data by placing them in
the rows of a matrix. We perform multiplication of the Batch
matrix (Ba) with W, and we calculate the activation function
(sigmoid) to obtain values of the hidden layer (H). In the Backward
step, we perform multiplication of the obtained H with W T , and
we get the numbers of the visible layer (V). This process is one
Gibbs sample. The process repeats until an equilibrium is reached,
i.e., the difference between two consecutive values of the visible
layer is below some predefined value. Alternatively, the process
happens N times, where we define N at the beginning.

Implementing sigmoid in FPGA would consume its hardware
resources. Since sigmoid is calculated only once at the output of
the Forward step, we execute this function on the CPU.

Algorithm 1 shows application details. Although the algorithm
is simple, some problems are hard to solve. The portion of exe-
cution time that goes on communication between CPU and FPGA
card is the primary issue. Because of data dependency between
the Forward and the Backward Gibbs sample, double buffering
is not an option. In theory, we could solve this dependency by
processing the row of blocks when it is ready ([22] presents an
architecture that leverages this approach). However, that would
mean transferring smaller chunks between FPGA and CPU. Mov-
ing smaller chunks of data over PCIe leads to the lower PCIe
bandwidth utilization, and potential benefits of that implemen-
tation get mitigated due to the slower transfer of data, so in our
system, this is not a very good solution.

In any case, some improvements are possible. Fig. 4 shows
a block diagram of the Gibbs sampling process. The functions

initializeW , B;
for i← 1 to epoch_num do

for t ← 1 to batch_num do
load(W );
transform_to_blocks(W );
copy(W , cpu2fpga);
transpose(W );
copy(W T , cpu2fpga);
for k← 1 to gibbs_num do

load(Ba[t]);
transform_to_blocks(Ba[t]);
copy(Ba[t], cpu2fpga);
H = Ba[t] ∗W (on fpga);
copy(H, fpga2cpu);
H = sigmoid(H + B) (on cpu);
copy(H, cpu2fpga);
V = W T

∗ H (on fpga);
copy(H, fpga2cpu);
if k == 1 then

calc_grad_first_part(W ) (on cpu);
calc_grad_first_part(B) (on cpu);

end
end
compute ∂W

∂t (on cpu);
compute ∂B

∂t (on cpu);
update(W ) (on cpu);
update(B) (on cpu);

end
end

Algorithm 1: CRBM Learning Algorithm

that we execute on the CPU (blocking, sigmoid, transposition)
are parallelized for a certain number of threads using Open-
MPv3.0 [23] programming model. Besides, we use a separate
thread for copying data between CPU and the FPGA board and
to start GEMM execution on FPGA to run in parallel when there
is no data dependency.

The function copy(W , cpu2fpga) executes when W is ready,
and this is done in parallel with preparation of matrix B[t].
The first Forward GEMM on the FPGA executes in parallel with
transposing of W . Calculation of sigmoid on CPU is done in par-
allel with copy(W T , cpu2fpga). Similarly, the second step of Gibbs
sampling starts while we compute the first part of the gradients
of W (H · V T ) and B.

Although there are no data dependencies between functions
that execute on CPU (i.e., blocking of W and B[t] and transposing
W ), we have already parallelized these function for the number
of threads; thus running them in parallel on the same resources
would lead in performance loss. So, the basic rule is that we use
CPU for matrix processing (plus some simple (fast) function like,
start FPGA execution or initialize communication over PCIe).

To speed up the process of communication between FPGA to
CPU, we use a host pipe. Host pipe allows data transfer from FPGA
to CPU as results arrive. In theory, this reduces the execution time
of the application because no separate data transfer of the output
is necessary, i.e., the FPGA execution runs in parallel with output
data transfer. However, reading the data on the CPU side at slower
rate could backpressure FPGA execution. Overall benefits of this
approach we evaluate in Section 5.



206 Z. Jakšić, N. Cadenelli, D.B. Prats et al. / Future Generation Computer Systems 104 (2020) 201–211

Fig. 4. Gibbs sampling application execution block scheme.

4.3. Considerations on using this approach with other type of accel-
erators

OpenCL is a programming model that we use for writing
programs for heterogeneous platforms that consist CPU (usu-
ally called a Host) and accelerator (which can be GPU, DSP or
FPGA). Although the goal of this paper is not to compare different
technologies and to discuss which one is better for our CRBM
application, we present some essential notes about generality and
applicability of our solution to the other architectures.

It has been already shown that writing efficient OpenCL code
for a device that would map well both for FPGA or GPU is hard.
For instance, authors in [8] discuss usage of FPGA and GPU for an
acceleration of data-intensive memory-bounded genomic appli-
cation. They achieve similar results in terms of execution time
and energy consumption, but more importantly, they showed
that in order to efficiently use FPGAs, the GPU OpenCL code needs
to be rewritten entirely.

When we consider our device code, in general, we should
mention a couple of things. Although matrix multiplication can
be implemented on GPU in a systolic manner, it is a well-known
fact that this architecture maps better on FPGA due to their na-
ture [24]. Our implementation heavily uses channel (pipe) primi-
tives, which is a feature that maps very well on FPGA devices. For
the implementation of the code we used some specific functions
for Intel FPGAs (e.g., write_channel_intel, read_channel_intel), so
just compiling the code for GPU (or even Xilinx FPGA) will not
work. Also, we have chosen the parameters that are optimal for
our FPGA device (Arria 10 1150). To efficiently port our frame-
work to another architecture, a designer would have to choose
these parameters according to the available resources offered by
the target architecture.

The host code is pretty much general. Besides the part that is
responsible for starting and monitoring the kernel execution, the
rest of the code (copying data to the device, updating weights,
etc.) should work without any change.

At the moment of writing this paper, we were not aware of
any GPU or DSP device that offers the feature of Host Pipes. Of
course, there is a possibility that some will appear in the future.
If that happens, our Host code version that uses Host Pipe feature
would demand minimal change (if any) to use GPU accelerator.

5. System evaluation

For the evaluation of the proposal, we used a Workstation
with one discrete FPGA – the Arria 10 Development kit. The
most critical parameters of the system we present in Table 2.
We compiled the application and accelerator design, with Intel
OpenCL compiler for FPGA version 18.0.

We evaluate the training of the models of different sizes.
According to the size of the model, we named them from the

Table 2
System configuration.

CPU Intel Xeon E5-2609 v3,
6 Cores, AVX-256 b
Fmax 1.90 GHz

DRAM 64GB DDR4
2133 MHz

FPGA
board

Arria 10 (1150)
Dev Kit

2 GB DDR
PCIev3 x8

Intel SDK for FPGA
OpenCL v.18.0

OS CentOS 7.4
kernel v3.10

Table 3
CRBM model configurations.
Model name Visible units Hidden units

Tiny 1024 512
Small 2048 1024
Medium 4096 1024
Big 8192 2048
Huge 8192 4096

smallest to the largest: ‘‘tiny, small, medium, large and huge’’.
Table 3 shows the configuration of every model.

For the evaluation of the application performance of every
model, we generated a synthetic dataset. After that, we created a
set of 25600 vectors that we call slices. A slice is a subset of input
data with a predefined length. The length of a slice is equal to the
number of visible units of the specific model, e.g., the length of
a slice for the ‘‘small’’ model is 2048. We split the whole set of
slices into batches. To perform one epoch of training, we have to
process Batch_Num = 25 600/Batch_Size.

5.1. GEMM performance

On Fig. 5, we show the performance of GEMM on FPGA. We
show the results for different configurations and different batch
size. We see that performance of the Matrix Multiplication goes
from very poor 130 GFLOPS for ‘‘tiny’’ model and batch size
160 up to 650 GFLOPs for ‘‘huge’’ model and 2560 batch size.
These results are reasonable because the pipeline of the systolic
structure has to be warmed up at the beginning. In other words,
for ‘‘tiny’’ model the last PEs of the matrix multiplier does not
start working before we load the whole matrices. However, as
the size increases, the effects of pipeline warming up disappears,
and performance improves. It reaches saturation at 650 GFLOPs
for ‘‘large’’ inputs.



Z. Jakšić, N. Cadenelli, D.B. Prats et al. / Future Generation Computer Systems 104 (2020) 201–211 207

Fig. 5. FPGA matrix multiplication performance.

Dashed lines show the performance of GEMM when executed
on a 6-core CPU that we have in our workstation when we use
highly optimized state-of-the-art Intel Library for Linear Alge-
bra (MKL). The number is almost constant, and it is about 220
GFLOPS, which is close to the theoretical maximum that this CPU
can achieve. By limiting the execution for a smaller number of
cores, performance drops proportionally. It is essential to show
what are the maximal performance that can be achieved by CPU
and FPGA for GEMM before anything since this comparison gives
a critical insight what level of performance improvement we can
expect for the application.

After the synthesis, the compilation report shows the kernel
frequency of around 299 MHz (for both versions, the traditional
one and the one with Host Pipes). The maximal clock frequency
that Arria 10 FPGA can achieve is 450 MHz, according to Intel’s
documentation. However, this number is tough to reach, princi-
pally when we use some HLS tool as OpenCL. Maybe we could
achieve a slightly higher frequency if we set different compilation
seed or a different number of processing elements for GEMM
structure. However, testing all the configurations for a various
seed to find the solution that can improve performance couple
of percents, we do not see very useful, especially if we know that
the whole process of compilation for this design can last up to
10 h.

5.2. CRBM application results

In the following Figures, we present performance and energy
results for different use cases of CRBM. For comparison reasons,
we show the numbers for the solution when it is implemented
on CPU when we use state-of-the-art Math Kernel Library (MKL)
for computations. We believe that this code is the baseline for
comparisons since these libraries are known as highly optimized
for these kinds of algorithms. We present result for accelerated
version when we use traditional approach (FPGA_ACCEL) and
when we use host pipes for the application (FPGA_ACCEL_HP).

Before we started performance analysis, we verified the cor-
rectness of our results by comparing them with baseline CPU
implementation. Although we use 32-bit floating-point data to
implement GEMM on FPGA as well as we use it on CPU, due to
‘‘relaxed’’ implementation on FPGA (rounding to the floor, the
order of adders, etc.) there is a possibility that error accumu-
lates. We were comparing results between CPU version when
we use state-of-the-art Math Kernel Library (MKL) for imple-
mentation (CPU_MKL) with accelerated versions; the classical one
(FPGA_ACCEL) and the one that uses Host Pipes (FPGA_ACCEL_HP).

We compared results after calculating data in ‘‘Forward’’ step,
‘‘Backward’’ step of Gibbs sampling process and after calculating
the gradient, and the difference was never higher than 1% for
every element of the corresponding matrices.

We measured execution time and total energy of the system
for the different configurations, and model sizes. For energy mea-
surement, we used ‘‘Wattsup’’ power meter [25] to collect real
power data of the system. We used a simple script that performs
sampling of the power consumption when the application is
running. Sampling interval was 1 s.

Fig. 6 shows the Execution Time of the CPU version of the
CRBM application and FPGA accelerated version for different
models and batch size. It should be clear that the algorithm
convergence, in general, depends on the batch size, and it might
need more epoch to reach the final equilibrium when the batch
size is smaller. In this analysis, we do not include this effect
in our performance numbers because we are not interested in
some specific use-case of CRBM. Instead, we want to show how
the application behaves for different configurations (CPU version
and FPGA accelerated one) for the same model size and system
configuration.

As expected, the FPGA acceleration favors larger models and
larger batch sizes. On Fig. 6 we can see that for the configuration
for five threads we see performance degradation of 1.5x (for
FPGA_ACCEL version) for ‘‘tiny’’ model and a batch size of 320, but
these numbers reach CPU_MKL version as the batch size increases.
Having in mind what performance we can achieve from FPGA for
GEMM for these sizes, and if we take in the account the time for
data transfer, matrix preparation, and sigmoid calculation, these
results are logical.

FPGA_ACCEL_HP version performs better than the FPGA_ACCEL
version for larger batches than for the smaller. The reason for
this is the following. Because matrix sizes are low data transfer
over PCIe gets slower, and host pipe actually cannot transfer data
at the rate they arrive. In other words, it back pressures FPGA
kernels that perform GEMM, which reduces its performance. As a
result of that, we observe an increase in the execution time that
even the absence of separate data transfer function from FPGA to
CPU cannot compensate.

On the other hand, increasing the batch (or model) size,
the data transfer gets faster. As a consequence, configurations
FPGA_ACCEL and FPGA_ACCEL_HP perform better than the
CPU_MKL version, and FPGA_ACCEL_HP performs better than
FPGA_ACCEL. Benefits of using host pipes reduce as the model size
becomes too big (‘‘large’’ and ‘‘huge’’ models) because the overall
execution time of data transfer becomes much smaller than the
task of matrix multiplication.

Power measurements showed that FPGA_ACCEL solution con-
sumes 15% less power on the average when compared to
CPU_MKL when CPU is fully loaded (6 thread version). On the
other hand, FPGA_ACCEL_HP version consumes the same amount
of power as CPU_MKL. This result was a little unexpected for us,
but after entering in the analysis of the solution, we concluded
that the reason for this is probably permanent checking of the
host pipe from the CPU side if there is data which consumes
power.

Combining power and time numbers in the overall energy
consumption, we obtained plots presented on Fig. 7.

We perform scalability analysis of the solution, and we present
how the application behaves when it uses only a limited number
of cores. This kind of analysis is useful if someone wants to use
just a part of the CPU cores for CRBM learning and another piece
for another application. So we configured the application to run
for a different number of threads on CPU, and we present results
on the following figures.

Fig. 8 shows the results when the batch size is 1280, but
the numbers are similar for other batch sizes. When compared



208 Z. Jakšić, N. Cadenelli, D.B. Prats et al. / Future Generation Computer Systems 104 (2020) 201–211

Fig. 6. Execution time vs. batch size for different models. Thread number = 5. Gibbs samples = 4. Epoch number = 10. Smaller is better.

Fig. 7. Energy vs. batch size for different models. Thread number = 5. Gibbs samples = 4. Epoch number = 10. Smaller is batterer.

Fig. 8. Execution time vs. CPU thread number for different models. Batch size = 1280. Gibbs samples = 4. Epoch number = 10. Smaller is better.

Fig. 9. Energy vs. CPU thread number for different models. Batch size = 1280. Gibbs samples = 4. Epoch number = 10. Smaller is better.



Z. Jakšić, N. Cadenelli, D.B. Prats et al. / Future Generation Computer Systems 104 (2020) 201–211 209

Fig. 10. Execution time vs. Gibbs samples. Batch size = 1280. Thread number = 5. Epoch number = 10. Smaller is better.

Fig. 11. Energy vs. Gibbs samples. Batch size = 1280. Thread number = 5. Epoch number = 10. Smaller is better.

with one-thread application improvements in FPGA goes up to
5.5x for ‘‘huge’’ model. Even for the ‘‘tiny’’ model for one thread
configuration, the FPGA version shows better results than CPU
only version, but for ‘‘tiny’’ model those improvements disappear
very fast as the number of thread increase to 3.

Power measurements show that CPU-version, consumes the
same power as FPGA_ACCEL version when it is configured up to 3
threads, and configuration with a higher number of threads bene-
fit FPGA_ACCEL version which consumes up to 15% less than CPU
for six thread version. Again FPGA_ACCEL_HP version consumes
the most power. When we translate these numbers into energy
results, we obtain significant energy savings according to Fig. 9.

Accelerated versions show better performance metrics when
we apply a higher number of Gibbs samples per batch in gradient
calculation. The reason is that the model and its transposed
version is prepared and transferred only once to the acceleration
card. Also, batch preparation (blocking) is done only once at the
beginning of the Gibbs sampling process. So for any additional
step of Gibbs sampling, the percentage of data moving over over-
all execution time is smaller, and the pure computation power of
FPGA is more expressed. The effect is more observable for larger
models. Figs. 10 and 11 present performance and energy numbers
for the different number of Gibbs samples, and they confirm the
previously stated thesis. Again, FPGA_ACCEL_HP scales a bit better
for ‘‘small’’, ‘‘medium’’ and ‘‘large’’ models regarding execution
time but this goes on the cost of the energy.

6. Conclusion

In this paper, we presented a parametrizable framework for
implementation CRBM based workloads accelerated with FPGA

and OpenCL. We implemented kernels that perform GEMM on
FPGA, and we showed how to optimize the host application that
runs on CPU to speed up the process of Gibbs sampling, which
is a dominant part of the learning process. The paper proposes
the usage of host pipes to reduce data transfer overhead between
CPU and FPGA when there is a data dependency (as in the case of
CRBM learning process). As far as we know, this is the first paper
that proposes and evaluate all this. We performed an in-depth
scalability study of the application for different configurations
(number of threads that runs on CPU, batch sizes, Gibbs samples,
and model sizes).

The proposed solution has better performance than the state-
of-the-art CPU-MKL implementation for large models. For in-
stance, when compared to the one-thread state-of-the-art CPU-
MKL implementation, we achieve 5.6x improvement in the execu-
tion time. This number reduces when we make comparisons with
the CPU version with the higher number of threads (e.g., for six
CPU threads version improvements reach 1.55x in the execution
time and 1.61x in the energy).

Smaller models and batch sizes favor CPU-MKL version be-
cause of the two reasons. First, the total number of GFLOPS that
FPGA achieves is lower when matrix dimensions are smaller.
Second FPGA and CPU are stalled a significant percentage of the
time because of CPU–FPGA communication and data dependency
between steps of Gibbs sampling process.

Up to 15% in the reduction of the execution time, we achieved
when we used host pipes for data transfer between FPGA and
CPU. This technique reduces communication overhead. However,
these improvements go on the cost of overall energy consump-
tion. Also, increasing the number of Gibbs samples for gradient
computation scales better with FPGA versions in terms of energy
and execution time.



210 Z. Jakšić, N. Cadenelli, D.B. Prats et al. / Future Generation Computer Systems 104 (2020) 201–211

Lastly, using OpenCL for FPGA besides it shortens the design
time, it opens the possibility of using the code that is applicable
for different architectures. Although more efforts have to be put
in order to make a fully portable solution for CRBM for different
accelerators (GPU, DSP), this work is a step forward in that
direction.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work was supported by the European Research Council
(ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreements No 639595); the Min-
istry of Economy of Spain under contract TIN2015-65316-P and
Generalitat de Catalunya, Spain under contract 2014SGR1051;
the ICREA, Spain Academia program; the BSC-CNS Severo Ochoa
program, Spain (SEV-2015-0493) and Intel Corporation, United
States

References

[1] V. Mnih, H. Larochelle, G.E. Hinton, Conditional restricted boltzmann
machines for structured output prediction, CoRR abs/1202.3748. arXiv:
1202.3748. URL http://arxiv.org/abs/1202.3748.

[2] G. Taylor, G. Hinton, S. Roweis, Two distributed-state models for generating
high-dimensional time series, J. Mach. Learn. Res. 98 (1) (2011) 1025–1068.

[3] D.B. Prats, J.L. Berral, D. Carrera, Automatic generation of workload profiles
using unsupervised learning pipelines, IEEE Trans. Netw. Serv. Manag. 15
(1) (2018) 142–155, http://dx.doi.org/10.1109/TNSM.2017.2786047.

[4] https://www.khronos.org/opencl/, in: Khronos Organisation Webpage,
2018.

[5] K. Guo, S. Zeng, J. Yu, Y. Wang, H. Yang, A survey of FPGA based neural
network accelerator, CoRR abs/1712.08934. arXiv:1712.08934. URL http:
//arxiv.org/abs/1712.08934.

[6] U. Aydonat, S. O’Connell, D. Capalija, A.C. Ling, G.R. Chiu, An openclTMdeep
learning accelerator on arria 10, in: Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, in: FPGA
’17, ACM, New York, NY, USA, 2017, pp. 55–64, http://dx.doi.org/10.1145/
3020078.3021738, URL http://doi.acm.org/10.1145/3020078.3021738.

[7] J. Zhang, J. Li, Improving the performance of opencl-based fpga accelerator
for convolutional neural network, in: Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, in: FPGA
’17, ACM, New York, NY, USA, 2017, pp. 25–34, http://dx.doi.org/10.1145/
3020078.3021698, URL http://doi.acm.org/10.1145/3020078.3021698.

[8] N. Cadenelli, Z. Jaksic, J. Polo, D. Carrera, Considerations in using opencl
on gpus and fpgas for throughput-oriented genomics workloads, Fu-
ture Gener. Comput. Syst. 94 (2019) 148–159, http://dx.doi.org/10.1016/
j.future.2018.11.028, URL http://www.sciencedirect.com/science/article/pii/
S0167739X18314183.

[9] D. Castells-Rufas, J. Carrabina, Opencl-based FPGA accelerator for disparity
map generation with stereoscopic event cameras, CoRR abs/1903.03509.
arXiv:1903.03509. URL http://arxiv.org/abs/1903.03509.

[10] S. Sridharan, Evaluation of ‘opencl for FPGA’ for data acquisition and
acceleration in high energy physic, J. Phys. Conf. Ser. 664 (9) (2015)
092023, http://dx.doi.org/10.1088/1742-6596/664/9/092023, URL https://
doi.org/10.1088%2F1742-6596%2F664%2F9%2F092023.

[11] S. Biookaghazadeh, F. Ren, M. Zhao, Are fpgas suitable for edge computing?,
CoRR abs/1804.06404. arXiv:1804.06404. URL http://arxiv.org/abs/1804.
06404.

[12] T. Ben-Nun, T. Hoefler, Demystifying parallel and distributed deep learn-
ing: An in-depth concurrency analysis, CoRR abs/1802.09941. arXiv:1802.
09941. URL http://arxiv.org/abs/1802.09941.

[13] J. Yinger, E. Nurvitadhi, D. Capalija, A. Ling, D. Marr, S. Krishnan, D. Moss, S.
Subhaschandra, Customizable fpga opencl matrix multiply design template
for deep neural networks, in: 2017 International Conference on Field
Programmable Technology (ICFPT), 2017, pp. 259–262, http://dx.doi.org/
10.1109/FPT.2017.8280155.

[14] A. Vishwanath, Enabling High-Performance Floating-Point Designs, Intel
Whitepaper, 2018.

[15] D.J. Moss, S. Krishnan, E. Nurvitadhi, P. Ratuszniak, C. Johnson, J. Sim,
A. Mishra, D. Marr, S. Subhaschandra, P.H. Leong, A customizable matrix
multiplication framework for the intel harpv2 xeon+fpga platform: A deep
learning case study, in: Proceedings of the 2018 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, in: FPGA ’18, ACM, New
York, NY, USA, 2018, pp. 107–116, http://dx.doi.org/10.1145/3174243.
3174258, URL http://doi.acm.org/10.1145/3174243.3174258.

[16] D. Ly, P. Chow, A high-performance fpga architecture for restricted
boltzmann machines, in: Proceedings of the ACM/SIGDA International Sym-
posium on Field Programmable Gate Arrays, in: FPGA ’09, ACM, New York,
NY, USA, 2009, pp. 73–82, http://dx.doi.org/10.1145/1508128.1508140, URL
http://doi.acm.org/10.1145/1508128.1508140.

[17] B. Li, M.H. Najafi, D.J. Lilja, An fpga implementation of a restricted boltz-
mann machine classifier using stochastic bit streams, in: 2015 IEEE 26th
International Conference on Application-Specific Systems, Architectures
and Processors (ASAP), 2015, pp. 68–69, http://dx.doi.org/10.1109/ASAP.
2015.7245709.

[18] K. Ueyoshi, T. Marukame, T. Asai, M. Motomura, A. Schmid, Fpga im-
plementation of a scalable and highly parallel architecture for restricted
boltzmann machines, Circuits Syst. 07 (2016) 2132–2141.

[19] S.K. Kim, L.C. McAfee, P.L. McMahon, K. Olukotun, A highly scalable
restricted boltzmann machine fpga implementation, in: 2009 International
Conference on Field Programmable Logic and Applications, 2009, pp.
367–372, http://dx.doi.org/10.1109/FPL.2009.5272262.

[20] C. Lo, An fpga implementation of large restricted boltzmann machines, in:
Master Thesis, 2010.

[21] T. Xia, Fpga implementation of a restricted boltzmann machine for
handwriting recognition, in: Master Thesis, 2015.

[22] L. Kim, Deepx: Deep learning accelerator for restricted boltzmann machine
artificial neural networks, IEEE Trans. Neural Netw. Learn. Syst. 29 (5)
(2018) 1441–1453, http://dx.doi.org/10.1109/TNNLS.2017.2665555.

[23] https://www.openmp.org/, in: OpenMP Programming Model, 2018.
[24] J. Cong, Z. Fang, M. Lo, H. Wang, J. Xu, S. Zhang, Understanding

performance differences of fpgas and gpus, in: 2018 IEEE 26th An-
nual International Symposium on Field-Programmable Custom Computing
Machines (FCCM), 2018, pp. 93–96, http://dx.doi.org/10.1109/FCCM.2018.
00023.

[25] https://www.wattsupmeters.com, in: wattsup power meters, 2018.

Zoran Jakšić is a postdoctoral researcher in Barcelona
Supercomputing Center (BSC). His primary research
interest is the acceleration of compute-intensive work-
loads with FPGAs and GPUs. Before joining BSC, he was
with Broadcom Networks where he worked as an RTL
verification engineer for a year. He obtained a Ph.D.
from Universitat Politecnica de Catalunya in 2015, and
for that research, he was awarded by Intel E.U. Doctoral
Student Honor Programme.

Nicola Cadenelli received the MS degree at the Uni-
versità degli Studi di Brescia (UniBS), Italy in 2014.
During his master studies, he spent one year as a
visiting student at the University of Applied Sciences
of Leipzig, Germany in 2012, and one semester at the
Jülich Supercomputing Center, Germany in 2014.

Currently, he is a Ph.D. Student at the Techni-
cal University of Catalonia (UPC), Spain and part of
the ‘‘DataCentric Computing’’ research group at the
Barcelona Supercomputing Center (BSC), Spain.

In 2018, he was a summer visiting student at the
Massachusetts Institute of Technology (MIT), USA.

His research revolve around the scalability, both vertical and horizontal, of
real-world data-intensive workloads.

David Buchaca Prats received the degree in mathemat-
ics from University of Barcelona in 2012 and the M.Sc.
degree in artificial intelligence from BarcelonaTech-UPC
in 2014. He is currently pursuing the Ph.D. degree with
the Data-Centric Computing, Barcelona Supercomput-
ing Center. He is an applied mathematician, working
in applications of artificial neural networks.

http://arxiv.org/abs/1202.3748
http://arxiv.org/abs/1202.3748
http://arxiv.org/abs/1202.3748
http://arxiv.org/abs/1202.3748
http://refhub.elsevier.com/S0167-739X(19)31367-6/sb2
http://refhub.elsevier.com/S0167-739X(19)31367-6/sb2
http://refhub.elsevier.com/S0167-739X(19)31367-6/sb2
http://dx.doi.org/10.1109/TNSM.2017.2786047
https://www.khronos.org/opencl/
http://arxiv.org/abs/1712.08934
http://arxiv.org/abs/1712.08934
http://arxiv.org/abs/1712.08934
http://arxiv.org/abs/1712.08934
http://dx.doi.org/10.1145/3020078.3021738
http://dx.doi.org/10.1145/3020078.3021738
http://dx.doi.org/10.1145/3020078.3021738
http://doi.acm.org/10.1145/3020078.3021738
http://dx.doi.org/10.1145/3020078.3021698
http://dx.doi.org/10.1145/3020078.3021698
http://dx.doi.org/10.1145/3020078.3021698
http://doi.acm.org/10.1145/3020078.3021698
http://dx.doi.org/10.1016/j.future.2018.11.028
http://dx.doi.org/10.1016/j.future.2018.11.028
http://dx.doi.org/10.1016/j.future.2018.11.028
http://www.sciencedirect.com/science/article/pii/S0167739X18314183
http://www.sciencedirect.com/science/article/pii/S0167739X18314183
http://www.sciencedirect.com/science/article/pii/S0167739X18314183
http://arxiv.org/abs/1903.03509
http://arxiv.org/abs/1903.03509
http://dx.doi.org/10.1088/1742-6596/664/9/092023
https://doi.org/10.1088%2F1742-6596%2F664%2F9%2F092023
https://doi.org/10.1088%2F1742-6596%2F664%2F9%2F092023
https://doi.org/10.1088%2F1742-6596%2F664%2F9%2F092023
http://arxiv.org/abs/1804.06404
http://arxiv.org/abs/1804.06404
http://arxiv.org/abs/1804.06404
http://arxiv.org/abs/1804.06404
http://arxiv.org/abs/1802.09941
http://arxiv.org/abs/1802.09941
http://arxiv.org/abs/1802.09941
http://arxiv.org/abs/1802.09941
http://dx.doi.org/10.1109/FPT.2017.8280155
http://dx.doi.org/10.1109/FPT.2017.8280155
http://dx.doi.org/10.1109/FPT.2017.8280155
http://refhub.elsevier.com/S0167-739X(19)31367-6/sb14
http://refhub.elsevier.com/S0167-739X(19)31367-6/sb14
http://refhub.elsevier.com/S0167-739X(19)31367-6/sb14
http://dx.doi.org/10.1145/3174243.3174258
http://dx.doi.org/10.1145/3174243.3174258
http://dx.doi.org/10.1145/3174243.3174258
http://doi.acm.org/10.1145/3174243.3174258
http://dx.doi.org/10.1145/1508128.1508140
http://doi.acm.org/10.1145/1508128.1508140
http://dx.doi.org/10.1109/ASAP.2015.7245709
http://dx.doi.org/10.1109/ASAP.2015.7245709
http://dx.doi.org/10.1109/ASAP.2015.7245709
http://refhub.elsevier.com/S0167-739X(19)31367-6/sb18
http://refhub.elsevier.com/S0167-739X(19)31367-6/sb18
http://refhub.elsevier.com/S0167-739X(19)31367-6/sb18
http://refhub.elsevier.com/S0167-739X(19)31367-6/sb18
http://refhub.elsevier.com/S0167-739X(19)31367-6/sb18
http://dx.doi.org/10.1109/FPL.2009.5272262
http://dx.doi.org/10.1109/TNNLS.2017.2665555
https://www.openmp.org/
http://dx.doi.org/10.1109/FCCM.2018.00023
http://dx.doi.org/10.1109/FCCM.2018.00023
http://dx.doi.org/10.1109/FCCM.2018.00023
https://www.wattsupmeters.com


Z. Jakšić, N. Cadenelli, D.B. Prats et al. / Future Generation Computer Systems 104 (2020) 201–211 211

Dr. Jordà Polo received his bachelor’s degree in Com-
puter Science from Universitat Politècnica de Catalunya
in 2009.

He then started his graduate work with Professors
David Carrera and Yolanda Becerra at the Barcelona
Supercomputing Center (BSC), completing his Ph.D. in
2014.

His research focused on how to manage and model
the performance of data-intensive workloads.

He is currently working as a Postdoc in the same
institution, leading the research in software-defined

infrastructures and data-centric architectures for genomics workloads.

Josep Lluís Berral received his degree in Informatics
(2007), M.Sc in Computer Architecture (2008), and
Ph.D. at BarcelonaTech-UPC (2013). He is a data sci-
entist, working in applications of data mining and
machine learning on data-center and cloud environ-
ments at the Barcelona Supercomputing Center (BSC)
within the ‘‘Data-Centric Computing’’ research line. He
has worked at the High Performance Computing group
at the Computer Architecture Department-UPC, also
at the Relational Algorithms, Complexity and Learning
group at the Computer Science Department-UPC. He

received in 2017 a Juan de la Ciervaresearch fellowship by the Spanish Ministry
of Economy. He is an IEEE and ACM member.

David Carrera received the MS degree at the Technical
University of Catalonia (UPC) in 2002 and his PhD from
the same university in 2008. He is an associate profes-
sor at the Computer Architecture Department of the
UPC. He is also the Head of the ‘‘DataCentric Comput-
ing’’ research group at the Barcelona Supercomputing
Center (BSC). His research interests are focused on the
performance management of data center workloads.

In 2015 he was awarded an ERC Starting Grant
for the project HiEST (1.5Me, 2015–2020), and ICREA
Academia award (2015–2020) and an ERC Proof of

Concept grant (’Hi-OMICS’) in 2017 to explore the commercialization of an
SDI orchestrator for genomics workloads. He has participated in several EU-
funded projects and has led the team at BSC that has developed the Aloja
project (aloja.bsc.es) and the servIoTicy platform (servioticy.com). He is the PI
for several industrial projects and collaborations with IBM, Microsoft and Cisco
among others.

He was a summer intern at IBM Watson (Hawthorne, NY) in 2006, and a
Visiting Research Scholar at IBM Watson (Yorktown, NY) in 2012. He received
an IBM Faculty Award in 2010. He is an IEEE and ACM member.


	A highly parameterizable framework for Conditional Restricted Boltzmann Machine based workloads accelerated with FPGAs and OpenCL
	Introduction
	Conditional restricted Boltzmann machine
	Related work
	System implementation
	General Matrix Multiplication (GEMM) on FPGA
	CRBM learning algorithm
	Considerations on using this approach with other type of accelerators

	System evaluation
	GEMM performance
	CRBM application results

	Conclusion
	Declaration of competing interest
	Acknowledgments
	References


