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Abstract. Catastrophes involving mass movements has always been a great threat to
civilizations. We propse to simplify the behavior of the mass movement material as a
highly viscous fluid, possibly non-Newtonian. In this context, this study describes the
application of two improvements in highly viscous fluid simulations using the smoothed
particle hydrodynamics (SPH) method: an implicit time integration scheme to overcome
the problem of impractically small time-step restriction, and the introduction of air ghost
particles to fix problems regarding the free-surface treatment. The application of a fully
implicit time integration method implies an adaptation of the wall boundary condition,
which is also covered in this study. Furthermore, the proposed wall boundary condition
allows for different slip conditions, which is usually difficult to adopt in SPH. To solve a
persistent problem on the SPH method of unstable pressure distributions, we adopted the
incompressible SPH [1] as a basis for the implementation of these improvements, which
guarantees stable and accurate pressure distribution. We conducted non-Newtonian pipe
flow simulations to verify the method and a variety of dam break and wave generated by
underwater landslide simulations for validation. Finally, we demonstrate the potential of
this method with the highly viscous vertical jet flow over a horizontal plate test, which
features a complex viscous coiling behavior.

1 INTRODUCTION

Landslide, debris flow, avalanche and dam collapse are examples of mass movement
events. They are among the most harmful and widespread forms of disasters either natural
or manmade. For instance, the 2019 tsunami in Indonesia, aka 2018 Sunda Strait tsunami,
was caused by an underwater landslide triggered by Anak Krakatau volcano eruption. It

1

103



Daniel S. Morikawa, Mitsuteru Asai and Masaharu Isshiki

caused more than 400 deaths and 14 thousand injured people. Another example is the
Brumadinho dam disaster in Brazil, 2019. The iron ore tailings dam collapse led to a
mudflow that inundated a large area of the city of Brumadinho. More than 200 people
lost their lives. Given the recent concern in this topic, it is essential for present and future
public administrators to prepare preventive measures for mass movement events, which
requires extensive studies on the phenomenon.

We propose to use the SPH method to simulate the bahavior of mass movements
approximating its rheology into a non-Newtonian fluid, which can reach high viscosities.
Here, we show a verification and validation (V & V) procedure of the method for different
settings, which resulted in good agreement with theoretical solutions and past physical
experiments.

2 SPH METHOD FORMULATION

The SPH method is one of the several Lagrangian mesh-free particle methods which
was first proposed simultaneously by Lucy [2] and Gingold and Monaghan [3] in 1977
and it is widely applied to fluid dynamics problems. In this section, we present the basic
aspects of this method.

2.1 Governing equations

The ISPH is designed to solve numerically the two main equations of hydrodynamic
problems of incompressible flows, the continuity equation and the NavierStokes equation,
respectively,

∇ · v = 0, (1)

Dv

Dt
= −∇P

ρ
+∇2(νv) + g, (2)

where v is the velocity vector, D/Dt the time derivative, P the pressure field, ρ the
density of the fluid, ν the kinematic viscosity, g the external forces vector, and t the time.

2.2 SPH approximations

The SPH method is a space integration method that smoothly approximates the value
of functions and its derivatives by integrating the contribution of the neighbor particles
varying its influence according to a weight function W , which is chosen from a wide range
of possibilities. In this study, we speted for the quintic spline function [4]. Then, one can
approximate the value of a generic function φ for a given particle and its derivatives as

〈φi〉 =
N∑

j=1

mj

ρj
φjW (rij, h), (3)

〈∇φi〉 =
1

ρi

N∑

j=1

mj(φj − φi)∇W (rij, h), (4)
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〈∇φi〉 = ρi

N∑

j=1

mj(
φj

ρ2j
+

φi

ρ2i
)∇W (rij, h), (5)

〈∇2φi〉 =
2

ρi

N∑

j=1

mj
rij · ∇W (rij, h)

r2ij
(φi − φj), (6)

where the subscripted indices i and j labels the target and neighboring particles, respec-
tively, m is the mass, rij = xi − xj the relative position vector between particles i and j,
and symbol 〈 〉 signifies the application of the SPH approximation. Note that there are
two formulations to approximate the first spatial derivative of a function as expressed by
Eqs. 4 and 5.

3 FULLY IMPLICIT TIME INTEGRATION SCHEME

The original time integration scheme for the ISPH method [1] is based on a projection
method which updates the velocity in a semi-implicit manner divided into two steps:
predictor and corrector steps. In a similar way, we propose a fully-implicit time integration
scheme using the same predictor and corrector steps [5]. The objective is to avoid the
Courant-Friedichs-Lewy condition [6] on the maximum allowed time increment, which
could lead to infeasibly small values for highly viscous fluid simulations.

3.1 Time integration based on the projection method

First, the contribution of the viscous term and the external forces of Eq.2 results in a
predicted velocity field calculated implicitly as

v∗ = vn +∆t(∇2(νv∗) + g). (7)

Then, the pressure is calculated from a pressure Poisson equation

∇2P n+1 =
ρ0
∆t

∇ · v∗ + α
ρ0 − ρn

∆t2
. (8)

Finally, adding the contribution of the pressure field, we calculate implicitly the up-
dated velocity field as

vn+1 = v∗ +∆t
(
− ∇P n+1

ρ0

)
. (9)

In the above equations, ∆t is the time increment, ρ0 the reference density of the fluid,
ρn a SPH approximation of the density based on Eq.3, α a relaxation coefficient, n and
n+ 1 indices referring to the current and next iterations, and the superscript ∗ indicates
the predictor step. Eqs. 7 and 9 are referred to as the predictor and corrector steps,
respectively.
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3.2 Rheological model

In this study, we use three different rheological models: Newtonian, Bingham plastic
and Bingham pseudoplastic fluids.

In Newtonian fluids, the viscosity parameter has a fixed value, so ν = ν0. In con-
trast, Bingham plastic and Bingham pseudoplastic rheologies are evaluated using the
cross model and the Herschel-Bulkley model, respectively,

ν̃ = ν0 +
τy
γ̇ρ0

, (10)

ν̃ =
Kγ̇n0−1

ρ0
+

τy
γ̇ρ0

, (11)

where ν̃ represents the approximated viscosity, ν0 the initial viscosity, K the consistency
index, n0 the flow behavior index, τy the yield stress, and γ̇ the equivalent strain rate
approximated as [7]

γ̇2
i =

1

2

N∑

j=1

mj
ρi + ρj
ρiρj

rij · ∇W (rij, h)

r2ij
|vi − vj|2. (12)

To avoid numerical problems of dividing by zero, the final viscosity is evaluated as

ν =

{
νMAX if ν̃ > νMAX

ν̃ otherwise.
(13)

3.3 Discretization of the governing equations

Using the SPH approximations of Eqs. 4, 5 and 6, we discretize Eqs. 7, 8 and 9 as

v∗
i = vn

i +∆t
( N∑

j=1

Bij(v
∗
i − v∗

j) + g
)
, (14)

N∑

j=1

Aij(P
n+1
i − P n+1

j ) = bi, (15)

vn+1
i = v∗

i +∆t
(
−

N∑

j=1

mj(
P n+1
j

ρ2j
+

P n+1
i

ρ2i
)∇W (rij, h)

)
. (16)

where

Bij = mj
ρiνi + ρjνj

ρiρj

rij · ∇W (rij, h)

r2ij
, (17)

Aij =
2

ρi
mj

rij · ∇W (rij, h)

r2ij
, (18)

bi =
1

∆t

N∑

j=1

mj(vi − vj)∇W (rij, h) + α
ρ0 − ρni
∆t2

. (19)

Notice that Eq.17 uses a slightly different SPH discretization compared to Eq.6 to result
in a symmetric linear equation. In addition, it was necessary to simplify the viscosity term
on Eq.17 as the viscosity of the previous time step n, since the strain rate (Eq.12) is non-
linear by nature.
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Figure 1: Wall boundary particles input information and virtual marker

4 BOUNDARY TREATMENT

For the correct application of the abovementioned equations, we need to define the
boundary conditions accordingly. We propose the usage of ghost particles for both solid
wall and free-surface boundaries.

4.1 Solid wall boundary

Following a similar procedure as [8], we selected a fixed wall ghost particle (FWGP)
approach for the treatment of the solid wall boundary. First, fixed wall particles are
placed in the wall domain, in which, for every wall particle, it is necessary to provide the
normal direction n and the distance to the wall surface dw as input information. Then, a
virtual marker is placed on the boundary surface, as Fig.1 shows schematically.

To evaluate different slip conditions, we define the γslip parameter, which correspond
to the percentage of slip on the projection of the velocity over the wall surface; that is,
γslip = 0 means no-slip condition, γslip = 0, free-slip condition, and 1 > γslip > 0, general
slip condition.

Decomposing the velocity of a fluid particle(subscript f) near a wall particle (subscript
w) into normal (subscript n) and orthogonal directions (subscript t) leads to

vf,n = (nw · vf )nw, (20)

vf,t = vf − vf,n. (21)

where nw represents the normal direction of a wall neighbouring particle.
Then, we derived the geometrical relationship

vw,t = Cvf,t, (22)

where

C = γslip −
(1− γslip)dw

|xf − xw|cosθ − dw
, (23)
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cosθ =
nw · (xf − xw)

|xf − xw|
. (24)

Let’s define the no-penetration condition as

vw,n = −vf,n. (25)

Then, using Eqs. 22 and 25 leads to

vw = Cvf − (1 + C)(nw · vf )nw, (26)

which can be interpreted as a relationship between the velocity of a target fluid particle
and its wall neighbouring particle; therefore, can be applied on Eq.7.

Next, we define the pressure in the wall ghost particles based on a Neumann boundary
condition stating that the acceleration a of the water particles close to the boundary
surface in the normal direction of the wall should be zero; in other words,

a · n = 0. (27)

We then project the NavierStokes equation, Eq.2, along the normal to derive

a · n = [−∇P

ρ
+∇2(νv) + g] · n, (28)

∂P

∂n
= ρ(∇2(νv) + g) · n, (29)

Pw = Pw,VM − dwρ(∇2(νv) + g) · n, (30)

where the index VM represents the virtual marker of a wall particle.
Similarly to the velocity boundary condition, Eq. 30 can be applied to Eq.15 in the

case of a target fluid i particle and its neighbouring wall particle j, since it is a general
relationship between fluid and wall particles. However, to simplify this calculation, sim-
ilarly to [8], we propose to approximate the pressure of a virtual marker J linked to the
neighbouring wall particle j as

P n+1
J = (1− β)P n+1

i . (31)

6

108



Daniel S. Morikawa, Mitsuteru Asai and Masaharu Isshiki

Figure 2: Process of creating AGPs

4.2 Free-surface boundary

In the original SPH method, there is no transition between inner fluid particles and
void spaces outside the fluid domain, which causes some instability on the free-surface
particles. Here, we propose the implementation of AGPs to create a fictitious mass around
the free-surface to overcome this problem.

The algorithm described here is inspired by the space potential particle implementation
[9] as follows. First, during the neighbouring search procedure, we attach the free-surface
particle label for those with less than 160 neighboring particles in 3D simulations. Then,
with an algorithm proposed by Marrone et al. [10], we reaffirm the free-surface particle
label for those that have no particles in the conical plus a hemispherical region in the
normal direction of each particle. Lastly, we create an AGP in the normal direction of
each free-surface particle. Fig. 2 schematically illustrates this process.

If necessary, one may repeat processes (b) and (c) in Fig. 2 as often as needed to fill
entirely the domain of influence of all free-surface particles. For the quintic spline weight
function used in this study, three layers of AGPs are necessary to achieve the highest
accuracy.

Null divergence of the velocity field on the free-surface particles boundary condition
must be satisfied, which leads to a simplification in which the velocities of neighbouring
AGPs are equal to the velocity of the fluid target particle. In addition, the zero pressure
Dirichlet boundary condition must be satisfied on the AGPs.

5 NUMERICAL EXAMPLES

Here, we demonstrate the efficiency of the proposed SPH method with several numer-
ical examples. The objective is to show a full process of verification and validation (V
& V). First, the implicit time integration scheme is verified through several pipe flow
simulations. Then, we validate it with dam break numerical tests, channel flow and un-
derwater landslide. To finalize, we demonstrate the robustness of this method with the
viscous coiling behavior.
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Figure 3: (a) Geometrical parameters of the pipe flow ; (b) Comparison between numerical and theo-

retical results of the non-Newtonian pipe flow simulation

5.1 Non-Newtonian pipe flow

We conducted the non-Newtonian pipe flow problem for the Bingham fluid, to verify our
implicit time integration technique of the viscous term and the wall boundary treatment.
Fig.3(a) illustrates the geometrical parameters of this problem. We utilized the following
parameters during the simulation: R = 0.1325m, P1 = 2000Pa and P2 = 1000Pa (P =
1000Pa), L = 0.6m, 0 = 0.1m2/s, and d = 0.005m. Fig.3(b) is a graph comparing the
numerical results with the theoretical solution. The theoretical value of the pipe flow
velocity for Bingham plastic fluid is defined as [11]

u(r) =

{
∆PR2

4ρν0L

[(
1− 2Lτy

∆R

)2( r
R
− 2Lτy

∆R

)2]
if r > r0

∆PR2

4ρν0L

[(
1− r0

R

)2]
if r ≤ r0,

(32)

where

r0 =
2Lτy
∆P

. (33)

As expected, the numerical results are very consistent with the theoretical values.

5.2 Non-Newtonian Dam break

In this section, we conducted a series of dam break validation tests. First, we selected
the well-known experimental study from Martin and Moyce [12] to verify the proposed
SPH method applied on simple low viscosity case. To maintain the same notation as
utilized in [12], lets define the non-dimensional quantities

T = t
(g
a

)1/2

, (34)

Z =
z

a
, (35)

where t is the time after the dam collapse, g is the gravity acceleration, a is the base
length of the fluid, and z is the distance of the surge front from the initial wall. The
chosen parameters in this validation test are Height = a = 0.056m, width = 0.056m,
d = 0.002m, ρ0 = 1000kg/m3, ν0 = 1.4 · 10−7m2/s, and ∆t = 1 · 10−4s.
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Figure 4: Comparison between numerical and experimental results of the Newtonian dam break simu-

lation

Figure 5: Non-Newtonian dam break: (a) Particle positioning after 0s, 1s and 1.5s of simulation; (b)

Comparison of the non-Newtonian dam break results with [13]

Fig. 5.2 shows the simulation results graphically for the proposed SPH method. As
expected, the results are very accurate.

Next, we analyze the dam break of a Bingham pseudoplastic fluid comparing with
experimental results from Minussi and Maciel [13]. The following parameters were used
in this verification test: height = 0.13m, a = 0.5m, width = 0.32m, ρ0 = 1000kg/m3,
τy = 49.179Pa, k = 7.837Pa sn0 , n0 = 0.442, νMAX = 100m2/s, and ∆t = 1 · 10−4s.

Fig.5(a) shows the particle distribution of the non-Newtonian daybreak verification test
after 0s, 1s and 1.5s of simulation, and Fig.5(b) shows the comparison between the results
with different particle resolutions (d = 0.01m and d = 0.005m). The results become more
accurate as the particle resolution is finer, which shows the convergence of the proposed
method. Also, as showed in Fig.5(b), our proposed method resulted in a better accuracy
than the reference numerical solution presented in [13].
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Figure 6: Underwater landslide comparison between the numerical solution and experiments from [16]

at (a) 0.4s and (b) 0.8s

5.3 Underwater landslide

The next example is a validation test involving a multi-phase problem. [16] in collab-
oration with CEMAGREF institute (Centre National du Machinisme Agricole du Gnie
Rural des Eaux et des Forts, France) conducted an experiment to evaluate the waves
generated by underwater mass movements in a small scale experiment. The experiments
consists of a portion of sand sliding over a frictionless plane inclined at 45 degrees. Ini-
tially, the channel with geometry specified in Fig.6 is filled with water at 1.6m depth and
a sand mass of triangular cross section of 0.65m x 0.65m is positioned at the top of the
inclined plane.

The numerical parameters are listed in table 1. As demonstrated in Fig.6, the numerical
results are consistent with the experimental results, with the exception of one instance
at 0.4s, which shows one data point that seems to not agree with the present numerical
solution. We hypothesize that this one divergent data point might have been generated
by the abrupt opening of the gate that was holding the sand mass at the initial position.
In addition, this example shows the capability of our proposed method to simulate the
no-slip condition at the inclined plane (γslip = 0).

Table 1: Parameters of the underwater landslide numerical test

d ∆t ρ0,water νwater ρ0,sand ν0,sand τy,sand
(m) (s) (kg/m3) (m2/s) (kg/m3) (m2/s) (Pa)
0.01 1 · 10−5 1000 1.4 · 10−7 1950 5 · 10−5 250

5.4 Viscous coiling

The viscous coiling behavior is a widely used benchmark test for highly viscous fluid
simulation, since it is not possible to generate it without special treatment
citeVileauRodgers. It is expected that viscous coiling behavior occurs on a vertical jet
flow over a horizontal plate experiment, with a high enough viscosity and H/D (height
over diameter) proportion [15].
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Figure 7: Vertical jet flow example without (left) and with (right) AGPs

The objective is to represent the behavior of honey falling over a bread. First, Fig.7
(left) reveals a rendered visualization of the vertical jet flow without the application of
AGPs. Since the free-surface condition is not well verified, coiling could not occur, and
the result is a radial motion. As oppose to that, Fig.7 (right) shows the same simulation
solved with the introduction of AGPs. In this example, coiling occurs as a result of the
improved free-surface treatment, and the movement appears to be very natural.

6 CONCLUSIONS

We proposed several improvements for highly viscous fluid and non-Newtonian fluid
simulations using the SPH method. The main improvements are related to an implicit
time integration scheme with a special boundary treatment of both the free-surface and the
wall boundary using ghost particles. In addition, our proposed wall boundary approach
(FWGP) may be applied to different slip conditions.

In the numerical tests, we validated our method using pipe flow numerical tests with
non-Newtonian Bingham plastic rheology model. Next, we validated it with several dam
break and underwater landslide simulations, which exhibited highly accurate results com-
pared to previous experiments. Furthermore, we demonstrated the robustness of our
improvements with a coiling behavior test of a highly viscous fluid. Although the free-
surface treatment without AGPs in this last example could not reproduce the coiling
behavior, our proposed model with FWGPs and AGPs naturally reproduces the coiling
behavior.

As for future work, we plan to test the accuracy of this method in simulating large
scale disasters such as landslides and debris flow. For this, we need to increase the com-
putational speed and memory capacity of the program using high-performance computing
(HPC) with expanding slice grid domain decomposition. In addition, we plan to couple
this method with an SPH formulation for solid Mechanics to forecast the occurrence of
landslides for different situations.
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