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Abstract. This work summarizes our recent findings on mechanisms and limits for the
ice loads on wide inclined Arctic marine structures, like drilling platforms or harbour
structures. The fresults presented are based on hundreds of two-dimensional combined
finite-discrete element method (FEM-DEM) simulations on ice-structure interaction pro-
cess. In such processes, a floating sea ice cover, driven by winds and currents, fails against
a structure and fragments into a myriad of ice blocks which interact with each other and
the structure. The ice load is the end result of this interaction process. Using the simu-
lation data, we have studied the loading process, analysed the statistic of ice loads, and
recently introduced a buckling model [1] and extended it to a simple probabilistic limit
load model and algorithm [2], which predict the peak ice load values with good accuracy.
These models capture and quantify the effect of two factors that limit the values of peak
ice loads in FEM-DEM simulations: The buckling of force chains and local ice crush-
ing in ice-to-ice contacts. The work here describes the models and demonstrates their
applicability in the analysis of ice-structure interaction.

1 INTRODUCTION

Development of safe Arctic operations, such as marine transportation, offshore wind
energy and offshore drilling, requires reliable prediction of maximum sea ice loads. The
ice loads arise from a complex and stochastic ice-structure interaction process. This
paper uses 2D combined finite-discrete element method (2D FEM-DEM) simulations to
study the mechanisms that limit peak ice loads on wide, inclined, structures. Particle
based methods, such as DEM and FEM-DEM, allow detailed studies on complex ice
loading scenarios and they are often used in ice engineering [3]. Figure 1 illustrates our
simulations, which have a floating and continuous ice sheet pushed against an inclined
rigid structure. The initially intact ice sheet fails into a rubble pile of ice blocks, which
interact with each other and the structure.

An important feature of discrete element simulations is that they can describe force
chains [4]. In the case of ice-structure interaction, the force chains are chainlike groups of
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Figure 1: Snapshots of a 2D FEM-DEM-simulated ice-structure interaction process described by the

length L of the ice pushed against an inclined structure. The ice sheet moves with velocity v and breaks

into ice blocks in the vicinity of the structure. Broken ice forms an ice rubble pile in front of the structure.

The first figure shows the initial vertical velocity perturbation v0. Ice sheet thickness h was 1.25 m here.

Figure is from [9]

ice blocks, or ice floes, that transmit the loads from the intact ice sheet to the structure.
Figure 2 shows a maximum peak ice load event, in which the ice load is transmitted to the
structure through a force chain. Paavilainen and Tuhkuri [5] observed that force chains
exists within the ice rubble mass during peak ice load events.

This paper describes how to quantify the effects of force chain buckling and local ice
crushing on maximum ice loads using fairly simple mechanical models. We first describe
our simulations and a simple buckling model that captures the effect of force chain buck-
ling. We demonstrate that the model predicts the peak ice loads in our simulations and
yields plausible ice floe size predictions. Then we briefly discuss how the model can be
extended to account for the local crushing of ice in contacts. The paper summarizes the
work presented in detail in Ranta et al. [1] and Ranta and Polojärvi [2].

2 SIMULATIONS

The model is based on 2D FEM-DEM simulations, performed with an in-house code
of Aalto University ice mechanics group. The code is based on the models described in
Hopkins [6] and Paavilainen et al. [7] and its results were validated by Paavilainen et al.
[7] and Paavilainen and Tuhkuri [8]. Figures 1a-f describe our simulations, in which an ice
sheet of thickness h pushed against an inclined rigid structure with a constant horizontal
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Figure 2: Snapshot from a simulation showing a force chain — a sequence of ice blocks in contact due to

high compressive stress — transmitting the load from the intact ice sheet, moving towards the structure

from the left. Colors indicate the normalized particle stress [4]. Figure is from [2].

velocity v = 0.05 m/s. Approximately 100 m from the structure, a viscous damping
boundary condition is used to mimic a semi-infinite ice sheet. The sheet itself consists of
rectangular discrete elements connected by viscous-elastic Timoshenko beams, which fail
at locations where the beams meet a pre-defined failure criterion [10]. The beams went
through a cohesive softening process upon failure [11], with the energy dissipated due
to this process matching that of the fracture energy of ice [12]. Table 1 gives the main
parameters of the simulations.

Contact forces were solved using an elastic-viscous-plastic normal contact force model,
together with an incremental tangential contact force model with Coulomb friction [6, 7].
The model describes local crushing at ice-block-to-ice-block and ice-structure contacts.
The amount of local crushing was governed by the plastic limit parameter, σp, which
relates the maximum contact load to the contact geometry. Plastic limit parameter σp

accounts for the local crushing between the contacting ice blocks. No new ice features
were created, nor did the block geometries change during the local crushing. Water was
accounted for by applying a buoyant force and simplified drag model.

The load model development was based on 350 simulations with Table 1 giving the pa-
rameters of the simulations and Table 2 summarizing the seven simulations sets, S1. . .S7.
Each set contained 50 simulations where all parameters were constant, but the initial con-
ditions slightly differed: An initial vertical velocity of the order of 10−12 m/s was applied
at the free edge of the ice sheet at the start of the simulation (see [13] for details). Sim-
ulations within each set, differing by their initial conditions only, produced different ice
loading processes (Figure 3) and different maximum peak ice load F p values. As shown
in Table 2, the simulation sets S1. . .S6 differed from each other by the values of h and σp.
Simulation set S7 had thick ice, h = 1.25 m, and a high value of 8 MPa for σp.
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Figure 3: Two ice load F -records from two simulations with same parameterization but different initial

conditions: (a) F plotted against length of pushed ice, L, and (b) close-ups of the maximum peak ice

load, F p, events. The value of F p differs between the simulations. Here the ice thickness h = 1.25 m and

the plastic limit σp = 1 MPa. Figure is from [2].

BUCKLING MODEL

In Ranta et al. [1] we showed that a simple buckling model can be used to describe how
force chain buckling limits the ice load values on a wide, inclined, structure. The model,
shown in Figure 4, consists of a rigid system of ice floes, having a total length of Lf , lying
on an equilibrium on an elastic foundation. The modulus k of the elastic foundation,

Table 1: Main simulation parameters. The parameter values were mostly chosen following [14].

Description and symbol Unit S1. . .S7

General Gravitational acceleration g m/s2 9.81
Ice sheet velocity v m/s 0.05
Drag coefficient cd 2.0

Ice Thickness h m 0.5, 0.875, 1.25
Effective modulus E GPa 4
Poisson’s ratio ν 0.3
Density ρi kg/m3 900
Tensile strength σf MPa 0.6
Shear strength τf MPa 0.6

Contact Plastic limit σp MPa 1.0, 2.0, 8.0
Ice-ice friction coefficient µii 0.1
Ice-structure friction
coefficient

µiw 0.1

Water Density ρw kg/m3 1010
Structure Slope angle α deg 70
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Ice floe(s)

Figure 4: The buckling model we used in its initial (left) and buckled (right) states. The model consisted

of a rigid ice floe of length Lf resting on an elastic foundation with modulus k presenting water. Springs

K1 and K2 modeled the boundary conditions for the buckling modes of Table 3. Compressive force P is

due to the other floes or the structure. Figure is from [2].

chosen after the specific weight of water, was ρwg, where ρw is the mass density of the
water and g the gravitational acceleration.

The buckling model can describe different buckling modes depending on the values of
the spring constants K1 and K2 of the springs at the ends of the floe. Table 3 shows
the different modes together with the corresponding K1 and K2 values. Out of the four
modes of the table, modes 1 and 2 assume that the elastic bending of the intact ice sheet
does not have a role in a peak load event. Modes 3 and 4, on the other hand, assume that
the elastic ice sheet behind the buckling floe generates a lateral support for the left end
of it. The buckling load P for the model is [1]

P =
k2L3

f + 4k(K1 +K2)L
2
f + 12K1K2Lf

12(kLf +K1 +K2)
. (1)

The characteristic length Lc =
4
√

4EI/k of a beam on elastic foundation [15] is intro-
duced into Equation 1 by substitution of Lf = χLc, where χ is a dimensionless buckling

Table 2: Simulation sets S1. . .S7 of this study. The able also shows the number N and the indices (ID)

of the simulations in each set. More detailed list of simulation parameters is given in Table 1.

Set IDs N h [m] σp [MPa]
S1 1-50 50 0.5 1
S2 51-100 50 0.5 2
S3 101-150 50 0.875 1
S4 151-200 50 0.875 2
S5 201-250 50 1.25 1
S6 251-300 50 1.25 2
S7 301-350 50 1.25 8
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length factor. Lc and χ allow expressing P for all buckling modes of Table 3 in form

P = a(χ)
√
kEI, (2)

where a is a buckling-mode-dependent dimensionless multiplier given in Table 3. This
equation can be used to study the relation between buckling and peak loads as follows.
The F p values from all simulations (Figure 3), together with the simulation parameters (k,
E and I), are collected and substituted to the previous equation, which is then solved for
a(χ) = F p/

√
kEI. If the simple buckling model describes well how force chain buckling

limits the values of F p, the a values for all simulations should be approximately equal;
the F p values should become normalized by factor

√
kEI.

3 RESULTS AND DISCUSSION

Figure 5a shows the maximum peak ice load F p values (Figure 3a and b) from our
FEM-DEM simulations. Additionally, it shows the mean F p values with their standard
deviations for the simulations of each set, S1. . . S7 (Table 2). While the F p values from
the simulations in a given set show scatter, the mean F p values of the sets S1. . . S7 differed
considerably, by up to about 500 %, mainly due to a difference in ice thickness h between
the sets.

The simulations of set S7 with high σp yielded larger values than sets S5 and S6 with
the same ice thickness h = 1.25 m. The values of a, solved by normalizing the F p data
of Figure 5a by factor

√
kEI, are shown in Figure 5b. These indicate that the peak load

events were related to buckling: All mean values of a are in the same range and there is
no dependency between a and h. Nonetheless, the data shows scatter not explained by
the buckling model as, for example, the mean a value is clearly larger for set S7 having
high σp.

As a appears somewhat constant, we can solve χ to estimate the lengths Lf = χLc

Table 3: Four buckling modes considered in our study with the corresponding spring constants K1 and

K2 (Figure 4). The buckling load P = a(χ)
√
kEI, where a is a mode-dependent multiplier. Factor χ

gives the buckling length as described in the text. Table is from [1]

mode K1 K2 a

1 0 0
χ2

6

2 ∞ 0
2χ2

3

3
1

2
kLc −

3

4

P

Lc
∞ 12χ+ 8χ2

9χ+ 12

4 kLc −
P

2Lc
∞

12χ+ 4χ2

3χ+ 6

6
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Figure 5: The values of (a) maximum peak ice load F p values from all simulations (sets S1 . . . S7,
Table 2) and (b) dimensionless a factors derived using F p data. In addition to the data points, the

graphs show the mean values (Avg, solid lines) and standard deviations (SD, dashed lines) for the data.

of buckling floes. Figure 6 illustrates how the ice floes, having been compressed between
the ice sheet and the structure, have gone through a buckling-like failure between the two
time instances. The data points of Figure 7 are the χ values from all simulations in sets
S1. . . S6 for modes 2-4 of Table 3. (For each a value, we get four values for χ, one for
each mode, as described by Table 3.) The mean χ value for mode 1 was 1.32 ± 0.2, but
χ factors for mode 1 are not shown in the figure, as this mode is physically unfeasible. It
is justified to assume Lf < Lc, as the floes breaking off of the intact ice sheet in bending
(occurring prior the peak load event) would have the length of about Lc at maximum.

The two horizontal lines of Figure 7a correspond to the χ values, which we calculated
for the reported minimum and maximum values for average breaking lengths of an ice
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Figure 6: An example of a peak ice load event, which this simulation reached at L = 229.5 m. The

figure also shows the model at L = 229.7 m (four seconds later). Buckling occurred at x ≈ 61 m. The

line in the figure illustrates the approximate buckling length. Here h and the plastic limit σp were 1.25
m and 2 MPa, respectively. Figure is from [1].

Figure 7: The dimensionless χ factor values for buckling modes 2 and 4 of Table 3 using the a values

of Figure 5b. The two horizontal dash-dot lines correspond to full-scale observations on maximum and

minimum breaking lengths [18]. Figure is from [1].

sheet in a full-scale ice-structure interaction process [16, 17, 18] . The figure shows that
almost all of the χ values resulting from the simulated ice-structure interaction processes
fall between these limits. This gives confidence on both, our simulation results and on
our simplified buckling load model.

The above-described buckling model does not account for the effect of compressive
strength of ice, σp, on the results, which would allow the buckling model to yield peak
load values exceeding the compressive capacity of the ice. The lack of the effect of σp leads
to the mean of a showing a systematic change with a change in σp (Figure 5b): Increase
in σp leads to increase in a when h is kept constant. The so-called probabilistic limit load
model, described in detail in Ranta and Polojärvi [2], extends the buckling model by (1)
supplementing the buckling model with a local crushing model and (2) by accounting for
the stochasticity in the contact geometries of the blocks belonging to the force chains.

An elementary unit of the model is one contact interface between a pair of ice blocks
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Figure 8: Force chain transmitting a load P and one contact interface between a pair of ice blocks, an

elementary unit of the probabilistic limit load model. Blocks are of thickness h and the contact has a

length of h̄. Figure is from [2].

belonging to a force chain (Figure 8). The blocks are in a partial face-to-face contact due
to a compressive load P . Local crushing is assumed to occur in a contact interface when
P ≥ h̄σp, where h̄ is the length of the contact interface and σp is the limit for compressive
stress. In Ranta and Polojärvi [2] we show that this model for crushing, even with a
simple triangular distribution for the contact lengths h̄, leads to the model being able to
capture the combined effect of h and σp on peak ice loads.

4 CONCLUSIONS

This paper summarized our work on limiting mechanisms on ice loads on inclined
structure [1, 2]. The peak ice load data from ice-inclined structure processes was normal-
ized with good accuracy by multiplying the load values with 1/

√
h3. This suggests that

the peak ice loads in ice-inclined structure interaction process are governed by buckling.
The buckling model quantifies the force chain buckling-related peak ice load values in an
ice-inclined structure interaction process with fair accuracy.

The extension of the model to cover the effect of local ice crushing was also shortly
discussed. The extended model accounts for a mixed-mode ice failure process where the
root cause of ice failure can be due to either ice buckling or local crushing. Here we only
briefly described the use of the extended model, but more details can be found from [2],
where the model is even further extended into an algorithm, capable of producing large
amounts of virtual ice load data that compares fairly well with full-scale observations.
We believe the simple load limit load models have potential of yielding insight for the
analysis of complex ice-structure interaction processes.
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