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Abstract. In the present paper we show some preliminary results of a novel LES-SPH
scheme that extends and generalizes the approach described in [2]. Differently from that
work, the proposed scheme is based on the definition of a Quasi-Lagrangian Large-Eddy-
Simulation model where a small velocity deviation is added to the actual fluid velocity.
When the LES equations are rearranged in the SPH framework, the velocity deviation
is modelled through the Particle Shifting Technique (PST), similarly to the dplus-SPH
scheme derived in [3]. The use of the PST allows for regular particle distributions, reducing
the numerical errors in the evaluation of the spatial differential operators. As a preliminary
study of the proposed model, we consider the evolution of freely decaying turbulence in
2D. In particular we show that the present scheme predicts the correct tendencies for the
direct and inverse energy cascades.

1 INTRODUCTION

In the last years an increasing number of papers have heen dedicated to the extension
of the Smoothed Particle Hydrodynamics (SPH) to model problems characterized by
turbulent flows [13, 17, 18, 16]. Among the different approaches, the Large-Eddy-
Simulation appears as the most suited method to be included in the SPH framework,
being based on a filtering of the Navier-Stokes cquations that resembles that adopted
for the derivation of the smoothed differential operators of the SPH. The present work
follows the above-mentioned line of rescarch and extends and generalizes the approach
described in [2] where a Lagrangian LES-SPH scheme was proposed.  Specifically, the
proposed scheme is based on the definition of a Quasi-Lagrangian Large-Eddy-Simulation
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model where a small velocity deviation is added to the actual fluid velocity. This approach
allows us to cast the LES in the framework of the most advanced SPH schemes which rely
on a quasi-Lagrangian motion of the fluid particles [19, 20]. In particular, when the LES
equations are rearranged in the SPH formalism, the velocity deviation is modelled through
the Particle Shifting Technique (PST), similarly to the dplus-SPH scheme derived in [3].
The latter technique proved to be a crucial numerical tool to obtain regular particle
distributions, reducing the numerical errors in the evaluation of the spatial differential
operators.

The presence of the velocity deviation with respect to the actual fluid velocity leads
to the appearance of additional terms in the continuity and momentum equations of the
proposed LES-SPH scheme that need proper turbulence closures. Specifically, the term
in the momentum cquation is represented through a classical LES closure while that in
the continuity equation is modelled through the diffusive term of the §-SPH scheme (see,
for example, [1]).

The paper is organized as follows: section §2 briefly introduces the theoretical model
and corresponding the numerical scheme and section §3 shows the preliminary results
obtained for the evolution of freely decaying turbulence in 2D.

2 QUASI-LAGRANGIAN J/LES-SPH

Let us consider the Navier-Stokes equations for a barotropic weakly-compressible
Newtonian fluid:

pe + V-(pu) =0,
(1)

uw + (u-V)u = —%—FVA’U,—F N+v)V(V-u),

where w is the flow velocity, p and p denote the pressure and density fields respectively

and are related through a state equation, namely p = F(p). The hypothesis that the fluid
is weakly-compressible corresponds to assume:

d )
_p = 02 > max ( HUH2 s —p) 5 <2)
dp P

where 0p indicates the variation of the pressure field and ¢ = ¢(p) is the sound speed
(sce e.g. |5, 4]). The viscosity coefficients v, X indicate the ratios between the Lamé
constants p, A and the density p. Since the fluid is weakly-compressible, v and X are
assumed constant. Now, let us define a generic filter in R3 x R as follows:

p=0o¢(x,(t) —y,t—7). (3)

The above filter is supposed to have a compact support, to depend only on ||Z,(¢) —y|| and
|t — 7|. and to be an even function with respect to both arguments. Here @,(¢) indicates
the position of a quasi-lagrangian point that moves in the fluid domain according to the
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following equation:

= a@y(0),0) + ba(#(0),0) @

where da is a (small) arbitrary velocity deviation (to be specified later) while @ is given
by the following definition:

a@,0.6)= [ [ " o@0 -yt @iy, 6)

Hereinalter, we reler to @, and @ as the filtered position and velocity, respectively.
Accordingly, the main idea is to rewrite the system (2) in terms of the filtered quantities
and obtain a quasi-Lagrangian LES scheme. With respect to this point, we obsecrve
that, since the state equation is generally nonlincar, F(p) is different from F (p) and,
consequently, the filtering procedure cannot be applied to both pressure and density.
To avoid inconsistency, when we reler to filtered pressure we mean p = F(p). Under
this hypothesis, we apply the filter in (3) to the Navier-Stokes cquations for weakly-
compressible flows and, integrating over R? x R, we obtain:

¢ dp __ -
d_f:_ﬁv-(maa)+v-(ﬁa—pu)+v-(ﬁau),
dit v ) ) s _
d_";:——Np+uAu+(X+u)V(V-u)—V[G(p)—G(p) + V- T,
P (6)
tuVou + V- (a®6a) — 4 (V-oa),
d, B . . 1dF
| T—avoa. 5-Fp). G- [ s,

where the total time derivatives d/dt is done with respect to the velocity @ + du and

T,y =u®u— u®u. Note that the latter tensor is cquivalent to the sub-grid stress
tensor. Following the derivation shown in [2], we now rearrange the system (6) in the
framework of the Smoothed Particle Hydrodynamics (SPH) scheme. To this purpose, we
split the filter ¢ into

¢(®p(t) —y,t —7) = W(&p(t) —y) 0(t —7), (7)
where W indicates the SPH kernel and denote the spatial and time filtering as below:

(@) t) = W(at) —y) fw.00dV, Tyt =/Re<t—f> fly,7)dr .

]RS

Using the above definitions it is casy to prove that_f = (f) and that, gencrally, the
time and space filters do not commute, i.c. (f) # (f) (sce, for example, |2|). Since the
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time filter is the inner one, the overall LES-SPH scheme may be regarded as a spatial
Lagrangian filter appliced to a set of time-averaged variables. In this sense, the time filter
may be thought as an implicit filter whose presence is accounted for through the modeling
of the additional terms.

Now, suppose that we want to model a high Reynolds number flow, for which LES
filtering is required. Then, we need the filtered variables w, p, p for cach fluid particle at
positions &,: at the same time, we want to approximate the operators in equation (6) in
the SPH fashion. For example, using the above definitions, we can rearrange the gradient
of f as follows:

Vi=(V-1 =N+ ={H+ =1, (8)
where the first term in the right-hand side is the SPH opcrator while the latter term
accounts for small scale “fluctuations” in space, hereinafter denoted through f' = f — f.
For confined flows, the non-commutability of filtering and differentiation must be taken
into account for a rigorous extension of the filtering close to the boundaries (i.c. in those
points whose distance from the boundaries is smaller than the kernel radius). The above

procedure can bhe applied to all the remaining operators. By doing so, in SPH formalism
the system (6) reads:

'%:—p<v-(a+5a)>+<v-(ﬁ5a)>+cl+c2+c3,
d—&——<v—ﬁ> v{Au "+ -

e R R A .

+(V-(a®dia)) — u(V-ou) + My + My + Ms,
T avsn, p=F(),
where:

G = —p(V), C=V-(pa-pu), (10)
C; = —pV-(du—(6u)) + V- (péu—(pou)), (11)
M, = —<vﬁp/>+V<Au’)+()\'—|—y)<V(V-u/)), (12)
My = —V[C/J(\p/)—G(ﬁ) +uVou+ VT, (13)
My = V- (a@bi—(a®da) — aV-(6a— (5a)) . (14)

Here Cy and My come from the SPH approximation procedure and require a SPH closure,
whereas Cy and My include all terms from the Lagrangian LES and require a LES closure.
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Finally, C3 and M3 come from the use of the generic deviation velocity du. Using a Taylor
expansion and the hypothesis that the fluid is weakly-compressible. it is possible to show
that both C3 and M3 arc negligible while C; and M play a minor role with respect to
the terms Co and My, As a consequence, only Co and My are retained and modelled
following a LES closure approach. In particular, My is modelled as done in |2]:

2 2 . -
My ~ V- —%]l—gyTTr(]}))IL+2yTD : (15)
where q? represents the turbulent kinctic energy, vr is the turbulent kinetic viscosity and
D is the strain-rate tensor, that is D = (Va + Va®)/2. Similarly to [12], we assume:

P =20y 2|D|*, v = (Cs0)* | D], (16)

where ||D|| is a rescaled Frobenius norm, namely || D||=v2D:D and ¢ is the radius of
the SPH spatial kernel. The dimensionless parameters Cy and Cg are respectively called
the Yoshizawa and Smagorinsky constants.

For what concerns Ca, the closure proposed in [2] corresponds to Co = V- (5 V) where
vs is assumed to be a function of D. Tn agreement with the usual approaches adopted in
the LES framework, this is equivalent to model Cy as a diffusive term.  In the present
work we adopt a finer closure and write:

Co =0’V -(vsVAS). (17)
In the SPH framework a simple way to model Cy is obtained by using the diffusive term
proposed in [10], since this contains fourth-order spatial derivatives of the density field.
2.1 Numerical Scheme

To write the system (6) in the discrete formalism, we rely on the work of Sun et al. [3]
where the additional du-terms are included in the SPH framework in a congistent way.
In particular we obtain:

(O B (ay + Say) — (o 0)] - VAV, Y, 4
J
> (Bt + pidi;) - VW Vi + Y iy - VilWy Vi
J J
dCZi = _%Zj:(ﬁf +pi)ViWi; V; + %K Zj:%‘ i ViWi; Vi + (18)
% 3" (@ ® 6a; + @, © 5@) - VW,V
J
G wesu. B=FG). V=2
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where m; is the i-th particle mass (assumed to be constant) and V; is its volume while
Wi; = W(@; — ;). The cocfficient of the viscous term is K = 2(n + 2) where n is the
number of spatial dimensions while its arguments are:

7 U % T T, T
o <U’j — ui) ) (wj - wz) e — 14 P Vi vV
L/ ~ &2 1 T T
”m] mz” 0o v +I/j

where v = (C,€)* |Dy|| and C, is the Smagorinsky constant (set equal to 0.12). The
first contribution in the expression of «;; represents the actual fluid viscosity while the
latter onc is the LES closure for turbulence. Note that all contributions related to the
fluid compressibility have been neglected, since they are negligible in comparison to the
leading order stress tensor. The symbol 95 is the argument of the diffusive term of [10],

namely:
(z; — i)
&5 — ;|2

Vo = | (=)= 5 (V04 0lf) - @ 20 (19

Here the superscript L indicates that the gradient is evaluated through the renormalized
gradient formula [9] as follows:

Vo), =Y (pj — p) LiVWi;Vj,

;
-1 (20)
L = |Y (& —&)© VW,V

J

As done in [2| and in [11], the diffusive term is not multiplied by an external parameter
but the latter is included directly inside the summation and modelled as a viscous-like
cocfficient following a standard LES approach. In particular we choose:

12

0ij = QI/EITJV;?? where 2 = (C50)* |Dy| . (21)
in which Cjy is a dimensionless constant set equal to 1.5 . The value of this constant has
been calibrated in [2] by simulating [ree decay turbulence in periodic domains in both 2D
and 3D frameworks.

As often done for weakly-compressible fluids, the state equation is lincarized around
the reference density po, leading to p; = 2 (p; — po) where ¢g = ¢(pp) is a numerical sound
speed that satisfies the following requirement:

e ) 5~max
Ma = U ! < 0.1 with Uref = max (Umax7 b ) : (22)

Co Po

Here Upuee and 0ppge indicate the maximum fluid velocity and the maximum pressure
variation expected during the simulation. The above inequality allows the density
variations to he below 1% (see [5]).
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Finally, following [3], the velocity deviation is defined as:

U, ou;
0w; = min (H(SIIZH , ) — (23)
2 ||
where:
St; = — M, ECOZ 1+ R Wy Y VWi Vi . (24)
! ¢ ; W(Ax) B

and Az is the initial mean particle distance. Here the constants R and n are sct equal to
0.2 and 4 respectively. The expression in (23) has to be further corrected for particles close
to the domain boundaries to avoid a non-physical particle motion. For further details we
address the interested reader to [3].

3 APPLICATIONS

In the next section we consider the evolution of freely decaying turbulence in a two-
dimensional bi-periodic squared domain. The Taylor-Green vortex solution (sce [14]) is
uscd to initialize the computations. In particular a path of 8 x 8 vortex cells is considered.
The Reynolds number is defined as Re = UL /v where L is the side of the squared domain
(that is, L = 8¢ where £ is the length of a vortex cell), U is the reference initial velocity
and v is the kinematic viscosity. The SPH particles are placed by using the Particle
Packing Algorithm described in [15].

3.1 Freely decaying turbulence in 2D

Figure 1 shows the comparison between the energy spectra at Re = 10,000 obtained
by using three different SPH models for turbulence, namely the LES model of [13], the §-
LES SPH scheme defined in [2] and the present scheme. The spectra have been computed
by using a Moving Least Square interpolation with a Gaussian kernel with the same
radius of that adopted in the SPH simulations. Four different spatial resolutions have
been considered, that is L/Az = 150, 300,600, 1200 where Az is the initial mean particle
distance. In the figure the direct and inverse cascade trends have been plotted by green
and orange dashed lines respectively and the wave number associated with the kernel
radius has been indicated by the symbol kg. Generally, all the SPH models correctly
predict these trends but show a non-physical increase of the energy spectrum at wave
numbers comparable with kgr as the resolution increases. This behaviour is common to
all the SPH schemes considered here and secems to be an intrinsic characteristic of the
SPH models themselves. In any case, the proposed model, thanks to the action of the
Particle Shifting Technique, predicts a reduction of the energy at large wave numbers in
comparison to the LES model of [13] and the §-LES SPH scheme of [2]. This overall trend
is confirmed in figure 2 where the same results are displayed for Re = 1,000, 000.

To understand if the LES closures described in the equations (15) and (17) work
properly. it is useful to analyse the evolution of the heat gencrated by My and Cy in
comparison with the heat produced by the viscous fluid term v{Aw). Hereinafter we
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Figure 1: Freely decaying turbulence at Re = 10,000 for different spatial resolutions. The symbol kg
indicates the wave number associated to the kernel radius while Ax is the initial mean particle distance.

Figure 2: Freely decaying turbulence at Re = 1,000, 000 for different spatial resolutions. The symbol kg
indicates the wave number associated to the kernel radius while Ax is the initial mean particle distance.
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Figure 3: Freely decaying turbulence: the heat generated in the present model by the fluid viscous
term (namely, @,), by the LES model in the momentum equation (that is Q7) and by the LES model
in the continuity equation (i.e. Qs) for Re = 10,000 (left panel) and Re = 1,000,000 (right panel) for
L/Az = 1,200.

indicate these contributions through Qr, Qs and @, respectively. Figure (3) shows these
terms for the finest spatial resolutions, namely L/Az = 1,200, and for Re = 10,000 (left
pancl) and Re = 1,000,000 (right panel). In the former case, the simulation is very close
to a DNS simulation and, consistently, the heat produced by the terms related to the
LES closures (namely Qr and Qs) is small in comparison to the dissipation caused by the
actual viscosity of the fluid (i.e. @,). On the contrary, for Re = 1,000,000, the spatial
resolution is too coarse for a DNS simulation and. consequently, the LES terms give the
main contribution to the heat production and make Qr and s predominant over @,.
Finally, in figure (4) we compare some snapshots of the pressure field for the three
models under investigation, namely the LES model of [13] (top pancls), the 6-LES SPH
scheme defined in [2] (middle panels) and the present scheme (hottom pancls) for the
finest spatial resolution (that is L/Az = 1,200). The left column displays the outputs
obtained for Re = 10, 000 while the right column contains the results for Re = 1,000, 000.
In both the cases, the pressure field predicted by the model described in [13] is much
more noisy than those obtained though the LES model of [2] and by the present one. Tn
particular, the latter are comparable even though the present model tends to preserve the
larger eddies more efficiently, consistently with the energy spectra of figures (1) and (2).

4 CONCLUSIONS

In the present work we propose an extension of the LES model described in [2] using a
quasi-Lagrangian LES formulation. This model is based on the assumption that the fluid
particles move following a velocity that is made by the actual fluid velocity plus a small
deviation. The latter is modelled through the Particle Shifting Technique, as described
in [3].

The proposed model is preliminary tested by simulating the problem of freely decaying
turbulence and comparing the results with the LES models described in [13] and [2]. The
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results show that the present model reduces the amount of energy at large wave numbers
in comparison with the above models. Further, similarly to the scheme of 2], it predicts
a pressure field that is free from high-frequency spurious noise.
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