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Summary. The non-linear load-deform ation behaviour of textile m embranes highly depends 
on the ratio  of the applied m embrane forces in warp and weft direct ion (called load ratio 
hereafter). In practice, usually for each membrane structure the biaxial material behaviour is 
determined experimentally. The Japane se Standard MSAJ/M-02-1995 describes a 
standardized biaxial testing procedure. To achie ve input parameters for the structural design 
process, the commentary to this standard expl ains some methods how to evaluate one set of  
fictitious elastic constants based on the expe rimental results which, sim ultaneously, envelop 
different load ratios and do not  reflect the non -linear material behaviour anymore. Different 
approaches of determining such simplified, fictit ious elastic constants have been investigated 
in the present contribution, with m ainly two co nclusions: firstly, to have one set of elastic 
constants by means of which all types of structures under all types of loading can be treated is 
a highly disputable objective a nd secondly, the values of the determined elastic constants 
react quite sensitively on the underlying determination option, which should be defined by the 
users themselves. 

1 INTRODUCTION 
Typical coated woven f abrics used in m embrane structures are m ade of Glass/PTFE or 

Polyester/PVC. Both fabrics show an extr emely nonlinear load-deformation behaviour under 
biaxial tension, which is the common loading condition of textile membranes. 

The structural design of membrane structures depends on this load-deformation behaviour, 
which can vary even for one membrane type of one fabricator from batch to batch. Due to this 
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fact biaxial tensile tests are usually performed for each m embrane structure to determine its 
specific load-deformation behaviour as source fo r realistic input param eters for t he design 
calculation. 

From the engineering point of view an intern ational standardized testing and evaluation 
procedure is desirable for the determination of  the load-deformation behaviour of m embrane 
materials. A standard ized procedure should allow the comparison of different m embrane 
materials on an objective base. The Mem brane Structures Association of Japan developed 
such a standardized biaxial testing proced ure, which was publishe d 1995 in the standard 
MSAJ/M-02-1995 “Testing Method for Elasti c Constants of Me mbrane Materials”1. This 
excellent standard has been more and more internationally accepted during the last 15 years 
and has been used increasing ly as a basis fo r contractual arrangements between design 
engineers, contractors, manufacturers and/or fabricators. 

The main characteristic of th e MSAJ/M-02-1995 testing proce dure is that five different 
load ratios for the m embrane forces in warp and weft di rection have to be applied in a 
precisely defined sequence. Herewith, differe nt non-linear load-strain-paths are m easured 
depending on the applied load ratios. 

Usually, the design ca lculation of a m embrane structure is performed using m odern 
software packages which are based on finite elements and which are able to handle globa l 
geometric non-linearity as well as m aterial non-linearity, although the la tter only in term s of 
the membrane’s inability to carry in-plane compression. For simplicity, the load-deformation-
behaviour of the m embrane in tension is usua lly treated linear-elastically, which means that 
the non-linear load-deform ation-behaviour is no t considered in the design process. There  
seems to exist a great lack of knowledge how to simulate and herewith how to include th e 
non-linearity of the membrane material in the design process. 

The main topic of the MSAJ/M-02-1995 is the standardized biaxial testing procedure in 
order to deliver realistic information on the load-strain behaviour. Optimally, for each loading 
condition the specifically m easured non-linear load-strain-charac teristics would directly be 
introduced into the design calc ulation. However, up to now this is not feasible. The 
commentary to MSAJ/M-02-1995 therefore expl ains exemplarily so me methods how to 
simplify the non-linear load-strai n behaviour in order to achiev e certain fictitious elastic 
constants which shall approximately describe the membrane material. 

The simplified evaluation of the experim ental load-strain-paths according to the 
commentary of MSAJ/M-02-1995 has already led to  intensive discussions, e. g. by Bridgens 
& Gosling3. In addition to their investigations, the aim of this contribution is firstly, to discuss 
the application of the simplified m ethods on pr inciple and secondly, to present and discuss 
results of different options for the simplified determination of such fictitious elastic constants. 
The quantitative effects of these different determination options on the resulting sets of elastic 
constants will be investigated by means of exemplary test data. 

2 BIAXIAL TESTING APPLYING MSAJ/M-02-1995 
As already m entioned, MSAJ/M-02-1995 princi pally describes a standardized biaxial 

testing procedure for woven m embrane materials. The scope is to obta in the non-linear load-
strain relationship. The biaxial tests are performed applying tensile loads in the warp and weft  
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direction on a cross-shaped specim en for five different defined load ratios of the mem brane 
forces in warp and weft direction, see figure 1 and table 1. Figure 1 shows one of the biaxial 
testing machines of the Essener Labor für Le ichte Flächentragwerke of the University of  
Duisburg-Essen, which has maximal loads of 50 kN in each direction. 

 
Direction of yarn
Warp direction 1 2 1 1 0
Weft direction 1 1 2 0 1

Load ratio

 
Table 1: Load ratios applied during biaxial tensile testing starting with 1:1 and ending with 0:1 

Figure 2 (a) shows a typical load-strain-
diagram as a resu lt of a biax ial test according to 
MSAJ/M-02-1995 of a  Glass/PTFE m aterial, 
type G6 according to the European Design Guide 
for Tensile Surface Stru ctures4. This load-strain-
diagram consists of ten load-strain-paths: one 
load-strain-path each for the warp and weft  
direction at five load ratios, see figure 2 (b). The 
two zero-load-paths for the load ratios 1:0 and 
0:1 appear as horizontal straight lines in this 
particular way of plotting.  
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Figure 2: (a) Load-strain-diagram as a result of a MSAJ biaxial test on Glass/PTFE material Type G6,  
(b) ten load-strain-paths (warp/weft at five load ratios), as extracted from the diagram 

Architectural fabrics are wove n from single yarns and coated afterwards. The yarns lay 
crimped in the f abric matrix. The crim p value depends on the stress in the warp and weft  
direction that is app lied during the weaving process 4. As the stresses in warp and weft 

Figure 1: Biaxial testing machine of the Essener 
Labor für Leichte Flächentragwerke at the 

University of Duisburg-Essen with a maximum 
load of 50 kN in each direction 
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direction usually do not have the sam e values, due to the crimp interchange the fabric shrinks 
differently in both directions . Herewith, woven m embranes behave orthogonal anisotropic, 
see figure 2.  

3 DETERMINATION OF ELASTIC CONSTANTS APPLYING THE 
COMMENTARY OF MSAJ/M-02-1995 

In design practice, the m embrane material is considered as a linear-elastic orthogonal 
anisotropic two dim ensional plane-stress stru cture. For this reason, the comm entary of 
MSAJ/M-02-1995 describes several possibilities how to determine a set of fictitious elastic 
constants for the use in practical de sign, which consist of the stiffness , Ex and Ey, and 
Poisson’s ratio, νxy and νyx, each in warp and weft directi on. The defined set of constan ts 
meets the requirements of constitutive equations for linear-elastic, orthotropic materials used 
for numerical simulations, see exemplary Münsch & Reinhardt 2. This set of constants 
describes an optimized approximation while using specified load-strain-paths considering the 
full range of experimental load values for the evaluation. The sets of elastic constants have to 
be treated as “fictitious” elastic constants because firstly, they shall es timate the non-linear 
load-deformation behaviour of the m aterial and secondly, they sha ll envelop all load 
combinations in warp and weft direction. 

On the basis of the afore  described simplifications, the commentary of MSAJ/M-02-1995 
proposes to express the relationship between load and strain with the following equations  

tE
n

tE
n

y

y
xy
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x
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⋅

=ε , (1)
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Hereby, ε describes the strain, n is the load, E is the stiffness and ν is the Poisson’s ratio with 
νxy is the tr ansverse strain in x-d irection caused by a load in y-direction and νyx is the 
transverse strain in y-direction caused by a load in x-direction. The x-direction corresponds to 
the warp direction of the fabric, the y-dire ction to the weft dire ction. The number of 
unknowns in these equations is four: the two s tiffnesses and the two Poisson’s ratios. The 
further idealisation of the m embrane material to a linear-elastic orthogonal anisotropic plane 
stress plate with a symmetric stiffness matrix leads to the constraint 

xy

yx

y

x

tE
tE

ν

ν
=

⋅
⋅ , (3)

which is referred to as the “reciprocal rela tionship” in the commentary of MSAJ/M-02-1995. 
This additional constraint reduces the num ber of unknowns to three, but it does not 
necessarily correspond to the beh aviour of woven membrane materials. Modelling of the  
membrane by assuming a linear-elastic orthotropic plane stress is well k nown to be a rather 
rough structural model for a coated woven fa bric with its above-m entioned nonlinear load-
strain behaviour. Over all, it m ust be aware  that this way of  modelling of the loa d-strain 
behaviour is just a vague approximation. 

The determination of the fictitious elastic constants from the load- strain-paths has to be  
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performed stepwise in a double st ep correlation analysis. In the first step each curved loading 
path has to be substituted by a st raight line. In the second step the slopes of the straight lines 
obtained in the first step have to  be modified in such a way that  they satisfy the equations of 
the assumed linear elastic plane stres s behaviour and describe all expe rimental loading paths 
for all five load ratios optimally by just one se t of four fictitious c onstants. The commentary 
of the MSAJ-Standard recommends to use eight of the ten m easured loading paths omitting 
the two zero load paths, although, four paths woul d be sufficient to determ ine a set of four 
fictitious elastic constants. Bridgens & Gosling 3 already have discussed the significantly 
different results in the determination of the elastic constants when using all ten pa ths instead 
of the eight paths as recommended in the MSAJ-Standard. 

To determine the optimum set of elastic constants the co mmentary of MSAJ/M-02-1995 
proposes the “least squares m ethod”, the “bes t approximation method” and other sim plified 
methods. The “best approximation method” and the other methods are not presented here. The 
“least squares m ethod” is known from  the dete rmination of regression lines in statistic 
calculations and has been used in the present investigations. The scope is to minimize the sum 
of squares of errors in a certain sub ject interval [a, b] between a continuous function ( )xf and 
an approximation equation ( )xy : 

[ ]∫ →−=
b

a

mindx)x(y)x(fS 2 . (4)

The errors can either be defined as the vertical differences (load errors Sσ) or the horizontal 
differences (strain errors Sε). For the determ ination of the el astic constants this m eans that 
either the load term  or the strain term can be m inimized: Sσ → min or Sε → min. For 
clarification see figure 3 (a) a nd (b), each showing three exemplary errors - load and strain, 
respectively - between an experim ental load-strain-path and an arbitrary line. The 
commentary of MSAJ/ M-02-1995 recommends the application of various methods to 
determine the elastic constants and to use the mo st satisfactory combination of constants. It 
has not to be noted here, that this procedure does not fit with a “standardized procedure” and 
will lead to variable values depending on the chosen procedure of the user, too. 

 
    (a) 

 
     (b) 

Figure 3: (a) Vertical errors are calculated in order to minimize the load term, (b) horizontal errors are 
calculated in order to minimize the strain term 
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In the design process for a membrane structure the residual strains are taken into account in 
the process of com pensation. This m eans that the membrane material is shortened by the 
value of the residual strains before installati on. Usually, the residual st rains are not included 
in the static calculation of a m embrane structure. Therefore, it is  reasonable to remove the 
residual strains from the test data for the determination of the elastic constants.  

The commentary of MSAJ/M-02-1995 recomm ends to use straight lines connecting the 
point of 2 kN/ m (for Glass/PTFE mem branes) and the point of the m aximum experimental 
load for the determination of the constants. He rewith, the fictitious elastic constants and the 
corresponding lines are determ ined with the aim  to reflect the strain at the m aximum 
experimental load in the best way. Although this procedure satisf ies the desire for 
standardization, the service loads of the most membrane structures do not reach the maximum 
experimental loads during their life time. Herewith, this procedure might not be sufficient for  
practical design efforts. 

4 ROUTINE FOR THE DETERMINATION OF ELASTIC CONSTANTS 
For the determination of the fictitious elastic constants from test data a correlation analysis 

routine was programm ed by using th e commercial software MATLAB 5. The basis of the  
routine is the calculation of regression lines using the least squares m ethod as proposed in the 
commentary of MSAJ/M-02-1995. A regression lin e in a load-strain-diagram  follows the 
linear equation (5), in which n is the load, m is the slop e, ε is the stra in and b is th e 
intersection point of the regression line with the load-axis at zero strain: 

bmn +ε⋅= . (5)

 
In a f irst step, the r outine evaluates the 

regression lines for all experim ental load-strain-
paths. Herewith, ten regression lines and their  
values for m and b are determined so that each of 
the ten loa d-strain-paths is f itted optimally. A 
regression line for an arbitrary experimental 
load-strain-path is show n in f igure 4. It is th e 
nature of a regression line to reflect the slope of 
the path in a good m anner. Usually, the  
regression line has another intersection point b 
with the load-axis at zero strain than the test data 
path itself. To describe  the stif fness of a linear -
elastic material in a load-strain-diagram the 
intersection point of  the regre ssion line is n ot 
important but the slope. To provide the typical 
illustration of a linear load-strain behaviour, the 
intersection point of the regression line may be switched into the intersection point of the test 
data path for the plots, see figure 4. 

In order to set up fictitious straight load-str ain-lines the programmed routine generates in a 
second step all possible com binations of the four fictitious elastic constants within lim it 
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values and increments established by the user. The increm ents may be quite rough in a first 
step of the analysis. They can be set to smaller values in an adjacent fine analysis, which will 
be conducted in the periphery of the best fit result of the rough analysis. In case that the 
reciprocal relationship, see eq. (3), is applied, only those comb inations are taken into account 
that satisfy this constraint within arbitrary limits. In the investigations for this contribution the 
limits are set to 

00500050 .
E
E.

xy

yx

y

x

xy

yx +
ν

ν
<<−

ν

ν
, (6)

which seems to be precise enough. 
In a th ird step, the s train values of the fict itious load-strain-lines are calculated fo r one 

arbitrary load level at each  load ratio accord ing to equations (1) and (2) inserting  the 
generated constants. K nowing the strain values  enables th e evaluation of the slope of the 
fictitious load-strain-lines. Each fictitious load-strain-line j is related to the load -strain-path j 
of the test data. The slopes of the fictitious load-strain-lines j are calculated with equation (7) 
at the various load ratios using arbitrary values for nx and ny. The only constraint is that the 
ratios of nx and ny satisfy the respective load ratio. 

j

j
j

n
m

ε
=  (7)

For the further procedure the intersection point of each load-strain-line at the load-axis at zero 
strain is se t to the respective value b of the re lated regression line. This ensures that those 
load-strain-lines with a slope that ap proaches the slope of the respective regression lines lead 
to the “least squares”. In order to calculate the strain values for a fict itious load-strain-line j 
for each existent test data po int i of the r elated load-strain-path j, equation (5) has to be 
transformed into equation (8) 

j

ji
i m

bn −
=ε . (8)

Finally, the sum of squared strain errors over all n test data points and m load-strain-paths 
considered in a determination of constants can be calculated using the following equation  

∑∑
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_

iiS
1 1

2

, (9)

in which εi is the  result of equation (8) and 
_

iε  is the va lue of the related  test data  point, 
respectively. The value Sε is the sum of all squared horizont al differences explained in figure  
3 (b). The optimum set of constants in the m eaning of the commentary of MSAJ/M-02-1995 
is the one combination of elastic constants with the minimum value Sε. 
The programmed routine was validated with th e exemplary test data presen ted in the 
commentary of MSAJ/M-02-1995. Hereby, very si milar results were achieved by using the 
least squares m ethod minimizing the strain term  compared to the presented ones in the 
commentary of MSAJ/M-02-1995. 
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5 EXEMPLARY EVALUATION OF TEST DATA 
Based on the afore m entioned evaluation pr ocedure, the influence of different 

“determination options” on the resulting elastic constants has been investigated. For this 
purpose, test data of 70 biaxial tests on th e Verseidag-Indutex membrane material B 18089 
were considered. This is an often used a nd well-proved Glass/PTFE material type G64 with 
nominal tensile strength values of 140/120 kN/m in warp/weft direction. 

All mentioned tests had been conducted in the context of real p rojects in the las t three 
years at the Essener Labor für Leichte Flächentragwerke of the University of Duisburg-Essen. 
In order to get an insight in to how m uch even for one t ype of m aterial produced by a  
manufacturer with high quality m anagement level the calculated value s of fictitious  elastic 
constants might inevitably vary, three tests were systematically selected out of the 70 biaxial 
tests – in the following referred to as T1, T2 and T3 – with the aim to cover approximately the 
whole realistic spectrum. Within the re latively narrow range of observed behaviour 
characteristics, Test T2  represents the aver age, while Te st T1 shows a som ewhat stiffer 
behaviour in warp direction combined with a somewhat softer one in weft direction, and Test 
T3 behaves the other way around (som ewhat stiffer in weft and softer in warp direction). The 
maximum test load was max. n = 30 kN/m. 

Table 2 s hows the calcu lated elastic constants using eight di fferently defined 
“determination options”. All results were ca lculated using the least squares m ethod 
minimizing the strain term  as described in ch apter 4. The first four  determination options 
make use of  all f ive load ratio s applied in  the standardized MS AJ test, see table 1. 
Calculations have been perfor med either usin g eight load-strain-paths as proposed in the 
commentary of the MSAJ-Standard (i.e. omitting the zero-load-paths), see options 1 and 2, or 
using all ten load-strain-paths as  proposed by Bridgens & Gosling 3, see options 3 and 4. 
Additionally, a differentiation was made with regard to applyi ng the reciprocal relationship 
(yes or no), see options 1, 3 versus options 2 and 4.  

The last four determ ination options 5 to 8 in  table 2 have been de fined by the authors to 
simulate reasonable decisions of rationally thinki ng structural design engineers with regard to 
their specific membrane structure. For a synclastic structure with almost identical membrane 
forces in warp and weft direction under design loading, the determination might reasonably be 
conducted using the load ratio 1:1, com bined with either 2:1 or 1:2 (at least four load-strain-
paths are needed for the determ ination of the unknowns). For an anticla stic structure with 
predominant warp stressing under the critical de sign load case, the lo ad ratios 2:1 and 1:0 
might be reasonable (option 7), an d for the opposite type of stre ssing the load ratios 1:2 and 
0:1 (option 8). For all determ ination options 5 to 8, the reciproc al relationship is applied as  
proposed in the commentary of the MSAJ-Standard. Furthermore, in determination options 7 
and 8 three load-strain-paths are used omitting the zero-load-paths. 

Figure 5 exemplarily shows the experimental load-strain-paths of Test T2 together with the 
theoretical straight lines obtained with the f ictitious elastic constants  from determination 
option 1 in table 2, i.e. using eight load-strain-paths in compliance with the commentary of 
MSAJ/M-02-1995 and applying the reciprocal relationship. Figure 6 shows the corresponding 
results for determination option 3 in  table 2, i.e.  using all te n load-strain-paths and also the 
reciprocal relationship applied. In figures 5 and 6 the strains are plotted against the „leading 
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membrane force “, which is meant to be the larger one at each load ratio. This form of plotting 
was chosen to avoid meaningless horizontal lines for the zero-load-paths. 
 

Ext Eyt νxy νyx

T1 1322 718 0,55 1,01 41,06
T2 1292 816 0,57 0,90 32,72
T3 1122 884 0,68 0,86 24,64
T1 1212 766 0,71 0,74 27,94
T2 1188 864 0,73 0,69 23,09
T3 1066 924 0,79 0,71 20,96
T1 918 544 0,82 1,38 696,66
T2 914 610 0,83 1,24 637,19
T3 756 660 1,00 1,15 520,31
T1 888 558 0,89 1,28 690,59
T2 860 634 0,94 1,08 625,49
T3 766 658 0,99 1,19 519,63
T1 1580 798 0,45 0,89 4,89
T2 1600 924 0,48 0,83 2,14
T3 1566 1074 0,55 0,80 0,45
T1 1600 738 0,55 1,19 7,96
T2 1336 824 0,60 0,97 4,42
T3 1250 920 0,65 0,88 3,05
T1 520 770 0,88 0,59 0,67
T2 520 894 1,33 0,78 0,62
T3 500 1083 1,43 0,69 0,35
T1 522 372 0,75 1,05 0,23
T2 500 732 1,40 0,96 0,98
T3 540 500 0,74 0,80 0,29

8 Two load ratios: 1:2 / 0:1 - 3 load-strain-paths - 
reciprocal relationship applied

practical 
approach 

(anticlastic)

6 Two load ratios: 1:1 / 1:2 - reciprocal relationship 
applied

practical 
approach 

(synclastic)

7 Two load ratios: 2:1 / 1:0 - 3 load-strain-paths - 
reciprocal relationship applied

practical 
approach 

(anticlastic)

4 All load ratios - 10 load-strain-paths - reciprocal 
relationship not applied

MSAJ 
modified

5 Two load ratios: 1:1 / 2:1 - reciprocal relationship 
applied

practical 
approach 

(synclastic)

2 All load ratios - 8 load-strain-paths - reciprocal 
relationship not applied

MSAJ 
modified

3 All load ratios - 10 load-strain-paths - reciprocal 
relationship applied

MSAJ 
modified as 

in [3]

Sε Note

1 All load ratios - 8 load-strain-paths - reciprocal 
relationship applied

MSAJ 
original

Determination options Test 
data

Stiffness [kN/m] Poisson's ratio [-]

 
Table 2: Elastic constants from three biaxial tests of the same Glass/PTFE material Type G6 obtained using 

different determination options 

Using the determ ination options based on the commentary of MSAJ/M-02-1995 – fully 
original or modified, options 1 to  4 – results in an “alarmingly” great variety of values for the 
calculated elastic constants: Ex ⋅ t varies between 756 kN/ m and 1322 kN/ m, Ey ⋅ t between 
544 kN/m and 924 kN/m, νxy between 0.55 and 1.00, and νyx between 0.69 and 1.38. 

It can be seen from figure 5 that for determination option 1 the calculated load-strain-lines 
match the experimental load-strain-paths, in particular the points of  maximum experimental 
load quite well – of course exce pt for the ze ro-load-paths of the load ratios 1:0 and 0:1, 
because they were omitted from the correlation process. Bridgens & Gosling 3 propose to take 
into account these zero-load-paths, too, because they contain relevant mechanical information 
regarding the load bearing behaviour of anticlastic structur es. However, it may be concluded 
by plausibility from  figure 5 th at, in ord er to achieve  an improved matching of the two 
calculated zero-load-lines with their experimental counterparts, smaller theoretical values for 
εy at 1:0 and εx at 0:1 would be necessary. This would imply smaller values for the stiffnesses 
and higher values for the Poisson’s ratios, as  becomes obvious from eqns. (1) and (2). For 
example: at 1:0, with ny = 0, the s train εy in eq. (2) decreases if νyx increases and Ex ⋅ t 
decreases. 
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Figure 5: Results for Test T2, 8 load-strain-paths, reciprocal relationship applied (det. opt. 1) 
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Figure 6: Results for Test T2, 10 load-strain-paths, reciprocal relationship applied (det. opt. 3) 
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Figure 6 shows that – using determ ination option 3 – the two calcu lated zero-load-lines fit 
indeed somewhat better with their experim ental counterparts, but for the “price” o f greater 
disagreement for all other calculated load-strain-lines. This effect is reflected by the results in 
table 2, comparing options 1 and 2 with options 3 and 4. For exam ple, the calculated stiffness 
Ex ⋅ t decreases dramatically from values greater than 1000 kN/m to values smaller than 1000 
kN/m when the zero-load-paths are taken into account. Attention should be paid to the m uch 
worse correlation measure Sε for the determination options 3 and 4 (column 8 in table 2).  

A comparison of the determ ination options 1 and 2 shows, that applying the reciprocal 
relationship has a significant infl uence on the calculated constants if only eight load-strain-
paths are evaluated, especially on the Poisson’ s ratios. Applying the reciprocal relationship 
increases the values of νyx and decreases those of νxy, e.g. for Test T2 f rom 0.90 to 0.69 and 
from 0.57 to 0.73, respectively. The in fluence of the reciprocal re lationship is smaller if ten 
load-strain-paths are evaluated, as can be seen f rom the results f or determination options 3  
and 4: For Test T2, νyx decreases from 1.24 to 1.08 and νxy increases from 0.83 to 0.94. 

If a practical, i.e. a stru ctural design engineer’s approach is used for the determ ination of 
the fictitious constants, see determination options 5 to 8 in table 2, the results vary even more. 
Especially, the s tiffness values reach extrem e values: Ex ⋅ t varies from  500 kN/m  up to 
1600 kN/m and Ey⋅ t varies from 372 kN/m up to 1083 kN/m. 

It can be summarized, that the values of fictitious elastic constants evaluated from one and 
the same biaxial MSAJ-test depend extrem ely on the underlying determination option – even 
if, as perform ed in the  present investigations, only one nu merical correlation m ethod is 
applied (here: the least squares method minimizing the strain term), and if the calculated lines 
are optimized only for one load range (here:  between minimum and maximum experimental 
test load).  

6 CONCLUSIONS 
The Japanese Standard MSAJ/M-02-1995 descri bes first and forem ost a standardized 

experimental biaxial testing procedure. It is the main feature of the procedure, that the 
specimens are loaded in warp an d weft dire ction with a prec isely defined consecutive 
sequence of five different load ratios. In the authors’ opinion this is the prim ary merit of 
MSAJ/M-02-1995. 

The secondary (and highly ambitious) scope of the MSAJ-Standard is to provide the design 
engineer with information how to transform  the observed biaxial load-s train-behaviour into 
ready-to-use stiffness parameters for his de sign calculations. The commentary of the MSAJ-
Standard idealizes the m embrane material for this purpose as a linear-elastic orthotrophic 
plane stress material, which may be described by only three fictitious elastic constants, but 
which is known to be a rather  rough structural model for woven membranes with their highly 
nonlinear load-strain-behaviour. On this basis, the commenta ry gives recommendations how 
to extract an optimum set of these elastic constants from the biaxial test data.  

Disregarding the roughness of the model, the e ffects of different determination options on 
the resulting sets of fi ctitious elastic constants were investigated in this contribu tion. To 
determine the optimum sets of elastic constants, a MATLAB correlation analysis routine was 
programmed using the least squares m ethod minimizing the strain term , which is one of the 
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proposed methods in the MSAJ/M-02-1995 comment ary. Three real test data sets were 
investigated with this tool us ing several determ ination options. They represent, on the one 
hand, the evaluation proposals of the commentar y of MSAJ/M-02-1995, both in their original 
version and in the modified version according to Bridgens & Gosling, and, on the other hand, 
thinkable design engineer’s approaches aim ing at covering the actual load bearing behaviour 
of typical membrane structures. 

It could be dem onstrated that a great variety of values fo r the elas tic constants can be 
obtained for one and the sam e material, only depending on the different determination 
options. Having the roughness of the underlying structural model in mind, the question arises, 
if it is not a disputable objective of the co mmentary of MSAJ/M-02-1995 to determ ine only 
one single set of fictitious constants by m eans of which all types of  membrane structures 
under all types of load cases shall be treated. In th e design practice it m ight be m ore 
reasonable to use constants which are determ ined for specific load ranges and load ratios  
depending on the project’s needs. Further, concerning the design practice, it m ight be 
recommendable in the light of the great variety of the constants’ values to calculate membrane 
structures with two limitative sets of elastic constants instead of using only one single set. 

Nonetheless, from an engineering point of view an international standardized procedure for 
testing and evaluating the biaxia l load-strain-behaviour is desi rable to enable the co mparison 
of materials on an objective base. However, it is not reasonable to evaluate values for 
fictitious elastic constants with an ostensibly high accuracy considering the rough character of 
a linear approxim ation of the m aterial behaviour and the variety of possible determ ination 
options and evaluation methods.  
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