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Abstract—A novel independence test for continuous random
sequences is proposed in this paper. The test is based on seeking
for coherence in a particular fixed-dimension feature space based
on a uniform sampling of the sample characteristic function of
the data, providing significant computational advantages over
kernel methods. This feature space relates uncorrelation and
independence, allowing to analyze the second order statistics as
it is encountered in traditional signal processing. As a result,
the possibility of utilizing well known correlation tools arises,
motivating the usage of Canonical Correlation Analysis as the
main tool for detecting independence. Comparative simulation
results are provided using a model based on fading AWGN
channels.

Index Terms—Independence Detection, Characteristic Func-
tion, Mutual Information, ITL, Kernel, HSIC, CCA.

I. INTRODUCTION

Methods for measuring and/or detecting statistical depen-
dence, a problem that has a long history, has recently found
applications in a wide variety of areas ([10][19] and ref-
erences therein). Some important examples from the broad
literature are the Maximal Information Coefficient (MIC) [11],
the distance Correlation (dCor) [16], the Mutual Information
Dimension (MID) [15] and the Hilbert-Schmidt Independence
Criterion (HSIC) [5]. Detecting dependence has a close link
with machine learning, which, in general terms, tries to
discover structure in data. In both cases the objective is to
construct a non-linear mapping from the data onto a higher-
dimensional space (referred to as feature space) in which, in
some sense, the original problem becomes simpler, resorting
the Cover’s theorem [2]. For the specific problem of detecting
statistical dependence, the objective of the mapping is to move
the original problem into a simpler problem of measuring
second order statistics.

Kernel methods ([17][6][1]), which are based on the rig-
orous mathematical framework of reproducing kernel Hilbert
spaces (RKHS), provide an elegant solution for this mapping
known as kernel trick: replacing inner products by positive-
definite kernels is equivalent to implicitly processing the data
on an extremely high dimensional feature space. However,
apart from the need of regularization to control the smoothness
of the results, an important drawback of kernel methods is
their compromised computational complexity for large data
sets, which requires the use of some special techniques to
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avoid the need of accessing to all pairs of input data points,
such as the Incomplete Cholesky decomposition [13].

This paper proposes an alternative to the kernel trick based
on a particular feature space. Following the rationale of the
Information Theoretic Learning (ITL) issued in [14], the
objective is to define a detector based on quadratic measures
on the space of the Characteristic Function (CF), and we will
show that we are capable of defining an independence test
based solely on first and second order statistics in this space.

The mapping is based on uniformly sampling the CF whose
fixed-dimension is independent of the data size, allowing to
ameliorate the complexity issues raised by the kernels. This
feature space resembles an analog memory-less frequency-
modulation of the data, giving rise to second-order auto-
correlation matrices, which, jointly with the link between
uncorrelation and independence, allows to expand the study
to the Canonical Correlation Analysis (CCA), which is shown
to avoid the well-known overfitting problem that arises in
Kernel CCA (K-CCA) [7]. The rationale is similar to the
study of independent component analysis under a CF approach
present in [3], in which the empirical joint CF is compared
to the marginal ones. However, while their work is based on
expanding the analysis of the CF through its cumulants from
the Taylor expansion around zero, we are more interested on
studying the sampling of the feature space in order to handle
the problem with classical signal processing.

Finally, we provide a comparative analysis of the method
with respect to other known methods, in addition with a
genie-aided detector based on the sample Mutual Information
(MI) estimation with known Probability Density Function
(PDF). To this end, three data models based on Gaussian
mixtures are defined at different Signal to Noise Ratio (SNR)
regimes, which are inspired on fading AWGN communications
channels.

II. SAMPLE CHARACTERISTIC FUNCTION AS A
FEATURE SPACE

Let fx,y(x, y) be the joint PDF of the random variables
x, y ∈ R. The joint CF is

φx,y(ω1;ω2) =

∫ ∫
R
fx,y(x, y)ejω1x+jω2ydxdy

= E
[
ejω1x+jω2y

]
= E

[
ejω1xejω2y

]
(1)

for any ω1, ω2 ∈ R. A necessary and sufficient condition for
independence is the separability of the CF φx,y(ω1;ω2) =
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φx(ω1)φy(ω2) = E
[
ejω1x

]
E
[
ejω2y

]
. Considering the ran-

dom variables z1 = ejω1x and z2 = ejω2y the condition for
independence can be written as

E
[
(z1 − E [z1]) (z2 − E [z2])

∗]
= 0 (2)

which constitutes the requisite for uncorrelation. This property
succeeds in moving the independence condition to an equiv-
alent uncorrelation one, which will be used as the basis of
independence criteria.

A. Sample characteristic function analysis

Consider {xi}i=1...N a N -length sequence composed by
i.i.d. data observations drawn from the random variable x with
PDF fx (x) and associated CF φx(ω) =

∫∞
−∞ fx(x)ejxωdx.

Since the CF exists at all values of ω, we are interested in
studying under which conditions a finite dimensional feature
space is sufficient for detecting independence.

Taking a specific sample xi, the windowed sample CF is

φxi(ω) = ejωxiG (ω) (3)

being G (ω) an even and positive window function with
G (0) = 1 and

∫
|G (ω)| dω < ∞. The function G (ω)

assumes that most of the informative part of the CF is
concentrated around the window bandwidth σ. Let us consider
an additional mapping based on the Fourier Transform (FT):

Φi (β) =

∞∫
−∞

φxi(ω)e−jβωdω =

∞∫
−∞

G (ω) e−jω(β−xi)dω (4)

Defining g (β) =
∫
G (ω) e−jωβdω as the FT of G (ω), then

we have
Φi (β) = g (β − xi) (5)

corresponding to a real function g (β) centered around the data
value xi.

Let us now define the first and second order statistics. The
expectation over the data samples is

µΦ (β) = E [Φi (β)] =

∞∫
−∞

g (β − x) fx (x) dx

= (fx ∗ g) (β) (6)

and its empirical version is given by

µ̂Φ (β) =
1

N

N∑
i=1

g (β − xi) (7)

which is in fact a kernel density estimate [9] given g (β) is
a unitary area function. This result ensures that the expected
value of the FT of the sample CF is a smoothed estimate of
the original PDF.

We define the second order statistic as:

rΦ (β1, β2) = E [Φi (β1) Φ∗i (β2)]

=

∞∫
−∞

g (β1 − x) g∗ (β2 − x) fx (x) dx (8)

It is worth noting that for g (β) narrow enough, a data
association phenomenon occurs such that

rΦ (β1, β2) ≈ 0 ∀ |β1 − β2| > ε (9)

for any small positive ε > 0 , whose insight is to measure
closeness between data, and resembling the pairwise sample
interactions present in [10]. If we restrict Eq. (8) to lay in the
same β, then we can express it as

rΦ (β) =

∞∫
−∞

h (β − x) fx (x) dx = (fx ∗ h) (β) (10)

and its empirical estimate as

r̂Φ (β) =
1

N

N∑
i=1

h (β − xi) (11)

with h (β) = |g (β)|2. Since the window G (ω) is expected
to be wide enough in order to cover most of the informative
part of the CF, then the support of its squared FT h (β) tends
to decrease. If we approximate h (β) as a delta-like function
such that h (β) ' δ (β) with

∫
δ (β) dβ = k � 1, then

rΦ (β) ' (fx ∗ δ) (β) = kfx (β) (12)

which is a scaled version of the original PDF.
Let us assume a new set of i.i.d. data {yi}i=1...N extracted

from the random variable y with PDF fy (y). The cross-
correlation between the two data sets evaluated in the feature
space can now be expressed in terms of (6) and (8). To this
end, consider d (xi) = g (β1 − xi) and d (yi) = g (β2 − yi)
and formulate the squared Pearson coefficient as follows:

ρ2 =
(E [d (xi) d (yi)]− E [d (xi)]E [d (yi)])

2

(E [d2 (xi)]− E2 [d (xi)]) (E [d2 (yi)]− E2 [d (yi)])
(13)

where E [d (xi) d (yi)] is an approximate of the joint PDF
fxy (x, y):

E [d (xi) d (yi)] =

∞∫
−∞

∞∫
−∞

g (β1 − x) g (β2 − y)

× fx,y (x, y) dxdy ' fx,y (β1, β2) (14)

and the expectation E [d (xi)] is the same as in Eq. (6),
which is approximately fx (β1), and analogously E [d (yi)] '
fy (β2). By analyzing Eq. (13) with the same rationale and
using Eq. (12) we get:

ρ2 →
∞∫
−∞

∞∫
−∞

(fx,y (β1, β2)− fx (β1) fy (β2))
2

(kfx (β1)− f2
x (β1)) (kfx (β2)− f2

x (β2))
dβ1dβ2

(15)

Interestingly, if we let k to increase without limit, then the
squared Pearson coefficient tends to

ρ2 −→
k→∞

∞∫
−∞

∞∫
−∞

(fx,y (β1, β2)− fx (β1) fy (β2))
2

k2fx (β1) fy (β2)
dβ1dβ2



=
1

k2

∞∫
−∞

∞∫
−∞

(
fx,y (x, y)

fx (x) fy (y)
− 1

)2

fx (x) fy (y) dxdy (16)

which results in the kernel-free expression of the Normalized
Cross-Covariance Operator (NOCCO) developed by Fukumizu
et al. ([4]) that studies the dependence structure based on
normalized cross-covariance operators.

Eq. (16) constitutes an indicator of independence between
random variables through the joint PDF and the product of the
marginal ones, and compiles it as a correlation measure based
on the squared Pearson coefficient. The possibility of drawing
correlation metrics from the first and second order statistics in
the proposed feature space, as well as the capability of linking
uncorrelation and independence in terms of the CF, motivates
us to explore the CCA from the uniform sampling of the CF,
as we will see in Section III.

B. Uniform sampling

In order to operate with the CF from data samples, we
will proceed by applying a uniform sampling of the sam-
ple feature space φxi(ω1), and equivalently for φyi(ω2), by
evaluating ω1 and ω2 for nα being α ∈ R the sampling
period and n = − (Nz − 1) /2, ..., (Nz − 1) /2 with Nz any
real number. Then, we construct the mapped data matri-
ces Zx = [zx(1), zx(2), ..., zx(N)] ∈ CNz×N and Zy =
[zy(1), zy(2), ..., zy(N)] ∈ CNz×N containing in their i-th
column the mapping of the CF for a given sample1:

[zx(i)]n = ejnαxi

[zy(i)]n = ejnαyi (17)

This sampling assumes that the relevant CF space is contained
in a support of Nzα, and so the feature space dimension
Nz is sufficiently large for the detection task but still lower
than the data dimensionality (Nz � N ) in order to reduce
the computational complexity from O

(
N2
)

present in kernel
methods to O (NzN). Moreover, this assumption also mini-
mizes the aliasing induced by the sampling and the Inverse
Fourier Transform intrinsic in the CF. Considering the space
between replicas to be 1/α, the inverse of the sampling period,
then we must ensure that α < 1/σ, with σ corresponding to
the window bandwidth. Note also that it is possible to sample
asymmetrically with n = 1, ..., Nz since the CF is Hermitian.

The sample mean vectors evaluated in the feature map are
then z̄x = Zx1N/N and z̄y = Zy1N/N , auto-covariance
matrices Ĉx = ZxPZH

x /N and Ĉy = ZyPZH
y /N , and the

cross-covariance matrices Ĉxy = ZxPZH
y /N and Ĉyx =

Ĉ
H

xy being 1N a N × 1 column vector of ones, P = IN −
1N1TN/N the projection matrix and IN the N × N identity
matrix.

III. CANONICAL CORRELATION ANALYSIS

Given two data matrices Zx, Zy ∈ CNz×N , the CCA
problem is based on finding the canonical variables u and v

1Both even and odd Nz are permitted. Although an odd real value induces
bias given by [z(i)]n=0 = 1, it does not impact the performance of the
detector since the bias is known and can be fixed.

Algorithm 1 Inversion algorithm pseudocode.
Input: Z matrix of dimension Nz ×N
Initialize: R−1 (0) = δINz

with δ � 1
for i = 0, 1, ..., N − 1 do

g = 1 + zH(i)R−1 (i) z (i)
R−1 (i+ 1)← R−1 (i) z (i) zH(i)R−1 (i) /g

end

that maximize the correlation between the canonical variates
wx = uTZx and wy = vTZy , i.e.

arg max
u,v

ρ2 =

∣∣∣∣∣∣∣∣
uT Ĉxyv√(

uT Ĉxu
)(

vT Ĉyv
)
∣∣∣∣∣∣∣∣
2

(18)

where ρ2 corresponds to the squared maximum canonical
correlation. The solution to this problem, and thereby the
canonical variates, is given by the Singular Value Decompo-
sition (SVD) of the Coherence matrix, a whitened version of
the cross-covariance matrix, defined as

∆ = Ĉ
−1/2

x ĈxyĈ
−1/2

y (19)

The eigenvalues of ∆ are the non-negative roots of the
eigenvalues λm=1,...,Nz

of the squared Coherence matrix K =
∆∆H with λ1 ≥ λ2 ≥ ··· ≥ λNz

≥ 0 ([12]), corresponding
to all the canonical correlations ρ2

m with the highest being ρ2.
Thus, the maximum squared canonical correlation ρ2 is given
by the largest eigenvalue of K, and so we can evaluate the
main solution as:

λ1 = λmax

(
Ĉ
−1/2

x ĈxyĈ
−1

y Ĉ
H

xyĈ
−1/2

x

)
= λmax

(
Ĉ
−1

x ĈxyĈ
−1

y Ĉyx

)
(20)

However, the auto-covariance matrices Ĉx and Ĉy are ill-
conditioned, making the inversion task difficult under real
simulations. In this case, the inversion of the auto-covariance
matrices can be solved through Algorithm 1 by means of the
Woodbury matrix identity ([8]).

Finally, we can build the Characteristic Canonical Indepen-
dence Test (CCIT) as the maximum canonical correlation:

CCIT (x,y, Nz, α) = λmax

(
Ĉ
−1

x ĈxyĈ
−1

y Ĉyx

)
(21)

Then, the proposed detector is

CCIT (x,y, Nz, α)
H1

≷
H0

γ (22)

being γ the detector threshold, H0 the independence hypoth-
esis and H1 the dependence hypothesis.

Note that we can also evaluate the trace of K as a detector
such as CCIT2 (x,y, Nz, α) = tr (K) since it contains all
the subsequent canonical correlations ρ2

m from the CCA and
permitting to avoid the SVD of K. But, this test contributes
with a bias given the addition of the lesser eigenvalues.
However, since the canonical correlations are concentrated at
the largest eigenvalues, the impact to the test is minimal as
we will see in the numerical results.



Figure 1. Contour plots of the joint probability functions with SNR = 8
and p = 0.95 in the third model.

IV. NUMERICAL RESULTS

In order to evaluate the detector, the data is modeled as:

x(i) = hx (i)
(
−√p+

√
1− pzx (i)

)
+ wx (i)

y(i) = hy (i)
(√

p+
√

1− pzy (i)
)

+ wy (i) (23)

corresponding to fast fading AWGN channels, with zx, zy ∼
N (0, 1) independent from each other under independence
hypothesis H0 and equal under dependence hypothesis H1,
and the noise wx, wy ∼ N

(
0, σ2

w

)
mutually independent for

both hypothesis. The intention is to generate data with different
kinds of associations through the parameter p and the channels
hx and hy , following the examples in [11], while maintaining
a close relation with a communication channel. Thus, we are
able to relate the difficulty of detecting independence with the
SNR. Additionally, each one of the three models, observed in
Figure 1, holds the same marginal PDFs for both independence
and dependence hypothesis.

The basic and first model consists on the presence of
correlation and dependence, represented by a linear structure
of the data. For this model, the parameters are p = 0,
hx (i) = hy (i) = 1 and its MI is given by I (x, y) =
1
2 ln

(
1 + 4SNR2/ (1 + 4SNR)

)
with SNR = 1/

(
2σ2

w

)
,

which for high SNR is asymptotically the MI of an AWGN
channel I (x, y) = 1

2 ln (1 + SNR).
The second model is based on the dependence of variables

while being uncorrelated. The intention is to evaluate if
the CCIT can properly detect dependence under non-linear
associations of the data. For this model, p = 0 and hx (i),
hy (i) are binary distributed with equal probability [−1, 1] and
independent to each other, which act as fast fading channels.

Lastly, the third model provides uncorrelation but with an
increased difficulty of detection. For this model hx (i) and
hy (i) are distributed as the second model but the parameter
0 < p < 1 determines the difficulty of detection, being p = 0
akin to the second model and p = 1 nullifies the dependence.

The generated data is shaped as a Gaussian Mixture Model
(GMM), allowing an explicit expression of the PDFs and
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Figure 2. True MI vs. SNR of the three models obtained by the unbiased
genie-aided estimator given in Eq. (24) with N = 106.

ensuring a consistent estimate of the MI based on the sample
mean as

Î =
1

N

N∑
i=1

ln
fx,y (xi, yi)

fx (xi) fx (yi)
(24)

We will compare the performance of the detector with a
benchmark based on a threshold from the genie-aided statistic
in Eq. (24), whose values for each model as can be seen
in Figure 2. Note also that the proposed models provide an
increased difficulty for detecting dependence, as appreciated
by a higher threshold effect of MI vs. SNR.

Figure 3 provides a comparative analysis of the Probability
of Detection PD for multiple detectors for a fixed false alarm
probability of 5%. The results were obtained with 400 Monte
Carlo simulations and the parameters optimized for each case.
For the HSIC, a Gaussian kernel was used with the bandwidth
recommended in [5], which is the heuristic for these cases.
Regarding the parameters of the CCIT, Nz = 21 and the
sampling period α = 0.001 were chosen, providing a trade-off
between computational complexity and leakage in the form of
aliasing in the FT.

Figure 3a shows the performance of the first model, focusing
on the low SNR scenario. It can be seen that for linear
associations of the data, HSIC and dCor slightly outperform
the CCIT with all of them presenting a high robustness to
noise, while MIC and MID are very sensitive to it. On the
other hand, Figure 3b and 3c show that CCIT improves the
detection rate with respect to other detectors for uncorrelated
data. Specifically, CCIT provides a higher convergence for low
SNR values, whose SNR threshold for a PD close to 100% is
near to that of the genie-aided estimate.

The underperformance of the CCIT for linear dependencies
is caused by an increase of the condition number of the auto-
covariance matrices given precisely by this linear relation,
since the data mapped in the feature space is confined in a
small dimensional subspace. Under non-linear dependencies,
the feature space spreads the subspace dimension and the
inverse of the matrices can be better estimated. This affectation
can be solved by reducing the sampling period α, thus limiting
the mapping into the desired subspace. Then, the CCIT is



Figure 3. Probability of Detection for PFA = 5% vs SNR from 0.125
to 64 of the three models. In dashed blue, the PD of Eq. (24) estimate.
(N = 300, p = 0.95, Nz = 21, α = 0.001)

more aware of the linear dependence and the PD is improved.
However, in the figures a fixed value of α is chosen due to the
seek of universality of the detector ([19]), and so to be fair
in the comparison with the case of non-linear dependencies.
Alternatively, the detection rate could be improved by avoiding
the inverse process and measuring the canonical correlation
through adaptive methods instead of CCA [18].

V. CONCLUSIONS

In this paper we have presented a feature space based
on the uniform sampling of the marginal sample CFs. This
mapping allowed us to take advantage of the relation between

uncorrelation and independence from the chosen feature space,
and we have used a correlation measure to build the detector.
We have shown that by applying a specific condition on the
sample characteristic function we can relate, at least asymp-
totically, the proposed CCIT with other quadratic measures
of information. The numerical simulations proved that this
method is capable of improving the detection rate with respect
to others in the literature, specifically under non-linear associ-
ations, and with a clear computational advantage over kernel
signal processing. However, an exhaustive analysis on adaptive
methods is needed in order to solve the numerical problems
when inverting the ill-conditioned matrices. Moreover, the
study of dependence under the proposed feature space for non
i.i.d. data provides an interesting future research line.
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