
A Vulnerability Factor for ECC-protected Memory
Luc Jaulmes, Miquel Moretó, Mateo Valero and Marc Casas

Barcelona Supercomputing Center (BSC)
Universidad Politecnica de Catalunya (UPC)

name.surname@bsc.es

Abstract—Fault injection studies and vulnerability analyses
have been used to estimate the reliability of data structures in
memory. We survey these metrics and look at their adequacy
to describe the data stored in ECC-protected memory. We also
introduce FEA, a new metric improving on the memory derating
factor by ignoring a class of false errors. We measure all metrics
using simulations and compare them to the outcomes of injecting
errors in real runs. This in-depth study reveals that FEA provides
more accurate results than any state-of-the-art vulnerability
metric. Furthermore, FEA gives an upper bound on the failure
probability due to an error in memory, making this metric a tool
of choice to quantify memory vulnerability. Finally, we show that
ignoring these false errors reduces the failure rate on average by
12.75% and up to over 45%.

I. INTRODUCTION

Faults in DRAM cells are becoming ever more prevalent
with new process technologies, causing the protection us-
ing Error Correcting Codes (ECC) to increase from strong
ChipKill protection [7] to include a second layer of ECC
on-chip [13]. This trend includes even mobile devices [21]
and efforts to gain in energy efficiency could further multiply
the soft error rates [2]. To apply more granular protection
techniques than uniformly increasing ECC strength, such as
dynamically adaptable ECC [27], it is necessary to quantify
the risk associated with any data stored in memory.

In particular, we want to find out if there is a good
indicator to identify which memory to protect in priority, given
the current and future ECC-protected memory. Some metrics
have been proposed, and applied to exploit heterogeneous
memory with different reliability characteristics [6, 10, 18, 20].
Experimental approaches focus on injecting errors, to identify
which data structures to protect with software fault-tolerance
techniques [4, 5, 9]. However, most of these approaches
suppose an error model based on flipped bits, which is not
realistic for ECC-protected memory.

In this paper, we survey metrics from the literature, includ-
ing derating factors [22, 28], and metrics based on memory
accesses [10, 18]. We also identify a subset of Detected and
Uncorrected Errors (DUE) in memory that are reported but
would have no impact on the running program if ignored. We
extend the appropriate factor to take these false DUE into
account and call the resulting metric the False Error Aware
(FEA) vulnerability metric. Furthermore, we compare all the
vulnerability metrics against the effects of injecting errors in
real systems, evaluating not only the effects of flipping bits
in memory, but also of injecting DUE. These experiments
demonstrate that FEA is the metric that correlates best with

the probability of program failure due to a DUE, while giving
a consistent upper bound on this probability. FEA also shows
higher variability than the metric it extends, allowing for more
opportunities to identify regions with different vulnerability.

The paper is organised as follows: in Section II we review
the state-of-the-art memory vulnerability metrics, while in Sec-
tion III we define FEA. Section IV presents our experimental
setup and Section V the comparison between metrics and error
rates, as well as the reduction in failure rates from ignoring
false errors. We present our concluding remarks in Section VI.

II. EXISTING VULNERABILITY METRICS FOR MEMORY

A. Access-Based Metrics

Yu et al. [28] define the Data Vulnerability Factor (DVF)
per data structure d, defined as the multiplication of the
structure’s size Sd, the program execution time T , the number
of hardware accesses to this structure in memory Nha, and
the overall fault rate λ: DV Fd = λ · T · Sd ·Nha. As λ and T
are constant respectively per system and program, they do not
help in differentiating vulnerability between data structures in
the same program. For this reason, and due to the similarity
with the formulation for expected number of errors using the
derating factors (see Section II-C), we look simply at Sd ·Nha.
Gupta et al. [10] also use a heuristic, which is the ratio of
stores (ST ) to loads (LD), thus ST/LD.

These two metrics do not take into account the relative
timing of the memory accesses, and DVF does not consider
whether errors are masked, only considering if they are
accessed. The DVF is computed using mathematical models
based on memory access patterns, while the store-to-load ratio
is used as a proxy for a timing-based metric.

B. Timing-Based Metrics (also known as Derating Factors)

The most widely used metric for architectural components
is the Architectural Vulnerability Factor (AVF) [22]. The AVF
of a bit is the percentage of cycles during which it is required
for Architecturally Correct Execution (ACE). A bit is said to
be ACE when it affects the final program output. That is, the
AVF of a bit is the fraction of time it contains a value that
will affect program outcome.

A similar timing analysis can be performed by defining
errors as a wrong value returned from memory, instead of con-
sidering program output. Then, the masking of faults simply
takes into account whether a memory location is subsequently
loaded. In that case, any faults are returned and cause an
error. On the other hand, if a memory location is subsequently

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or 
future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for 
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.. 
DOI 10.1109/IOLTS.2019.8854397



overwritten or not used until the end of the program, the fault is
masked. Gupta et al. [10] reuse the name AVF, having defined
an error as an erroneous value from memory rather than
an incorrect program output. For clarity, we call this timing
vulnerability factor the Memory Vulnerability Factor (MVF).
The relevant granularity here is that of memory accesses, thus
cache lines, and the MVF of a cache line in memory is the
fraction of time it contains a value that will be accessed.

Luo et al. [18] use the safe ratio, which is the fraction of
time that data resides in memory before being overwritten.
This quantifies the same effects as MVF, as the safe ratio sr
and MVF are related by MV F + sr = 1. Hence it is only
necessary to look at MVF for the purpose of this work.

C. Linking Derating Factors to Program Outcome

We categorise the outcome of a program as correct when
its execution is indistinguishable from an execution without
errors. We also call incorrect outcomes failures. The average
program failure rate can be derived from timing vulnerability
metrics under common assumptions for soft errors [17]. In
particular, for a set of components c with vulnerability factors
Fc, a duration T , and a memoryless distribution of faults with
rate λ such that λ · T � 1, then the expected number of errors
per component is λ·T ·Fc and the overall failure rate

∑
c λ·Fc.

However, care must be taken in considering which
error model is used. AVF is computed per bit, thus∑

bits (λbit flip ·AV F ) is the expected failure rate due to single
bit faults. However, the use of ECC in memory to correct
faults (thus using codes stronger than parity) complicates
looking at the impact of individual bits in two ways: any bit
taken individually has no impact on the memory or program
outcome, and many multi-bit faults that can not be corrected
are still detected, causing DUEs.

Using the AVF then requires to compute the occurrence
rates and derating factors of multiple bit flips observed si-
multaneously [26], for every multi-bit fault pattern that can
not be corrected by the ECC. Furthermore, those patterns are
different for every ECC code.

A more appropriate error model is to consider DUE in
memory instead of individual bit flips, since any multi-bit
fault pattern that causes a DUE will have the same final
impact, regardless of which ECC is used. Indeed, the oper-
ating system kills any process attempting to access corrupted
data [15], which is the main cause of hardware failures in
supercomputers [16]. Furthermore, all the most frequent multi-
bit faults cause a DUE by design. For example, for a Single
Error Correct Double Error Detect (SECDED) code, all double
bit flips in a single word cause a DUE. The program failure
rate is then

∑
memory cache lines (λDUE ·MV F ), with λDUE the

arrival rate of DUE.
Some of the uncorrectable errors in memory may have no

impact on the program outcome if left uncorrected, due to
being ignored or having a negligible impact on the program.
These errors are called false DUE and can be quantified, by the
difference between the program failure rate due to DUE and
the failure rate due to the same uncorrected multi-bit faults.

III. FEA METRIC DEFINITION

A. Accounting for False DUE

In this section, we identify one specific cause of false DUE
and introduce a metric to quantify it. Let us consider a write
or a set of writes that spans a full ECC word (thus 8B for
SECDED or 16B for ChipKill [7]). In a cache with a write-
allocate policy, if these writes cause a cache miss, data will be
fetched from memory. MVF quantifies this data as vulnerable
because it is accessed, while any errors in this data are masked
as they are immediately overwritten.

Therefore, we introduce the False Error Aware MVF (FEA),
which we define as the fraction of time a memory location
contains data that will be consumed. That is, we consider a
memory location as safe not only when it is next accessed by
a store, but also when it is next accessed by a load whose
contents will be overwritten without being used. The data is
considered vulnerable in memory only before a load whose
contents will be used. As DUE is reported per ECC word,
that is the granularity at which FEA must be computed. The
advantage of the FEA metric is that it is still easily quantifiable
with simple timing metrics, while slightly more complex than
MVF as it includes the cache hierarchy in its analysis instead
of only memory. It is worth noting that FEA does not take into
account errors that happen in caches, only whether errors that
happen in memory are immediately overwritten in the cache
hierarchy, or if they may be propagated.

B. FEA is linked to Program Outcome with Deferred Errors

In modern processors, the reporting of errors in various
caches and register files is delayed until this error is actually
consumed [1, chap. 9.4] [11, chap. 15.5] [3, chap. A8.3].
When data in a cache is found to be inconsistent with its
ECC, the error is reported in a machine check register that
can be later polled. If the data can not be corrected, the cache
hierarchy tracks this data marked as known bad (or poisoned)
and the error is reported as an uncorrected error. An interrupt
requiring a software recovery is only triggered when the data
is consumed.

It is unclear however whether this deferred error capability
is already implemented in hardware for DRAM errors. DUE
in memory discovered during scrubbing and during a load are
explicitly listed as recoverable uncorrected errors, however
there is no mention of DUE in memory discovered through
indirect accesses (e.g. a store, or data fetched as part of a
cache line where only another ECC word is accessed). In
any case, as modern microarchitectures already track incorrect
data from other causes, this tracking can be reused or very
simply expanded to mark lines that contain errors originating
in DRAM. For example, marking such data in cache as both
dirty and poisoned would cause an exception only if accessed.

Supposing that the reporting of DUE is delayed until the
erroneous data is consumed, the false errors due to fetched
but overwritten ECC words will be ignored. Then the program
failure rate then becomes

∑
memory cache lines (λDUE · FEA) in-

stead of
∑

memory cache lines (λDUE ·MV F ).

2



TABLE I: Benchmarks used for evaluation
Name (shortened) Benchmark description Category Input size Built-in verification
BlackScholes (BlkSch) Option pricing Partial Differential Equation 400M options 3
Cholesky (Chol.) Cholesky factorization Dense linear algebra 8192×8192 matrix 3
CG Conjugate Gradient [12] Sparse linear algebra 16Mi×16Mi matrix 3
DGEMM (MM) Matrix multiplication Dense linear algebra 5120×5120 matrix 3
FFT Stockham Fast Fourier Transform Spectral method 1 dimension, 2Mi points 7
Gauss-Seidel (G-S) Heat diffusion, Gauss-Seidel solver Structured grid 4500×4500 grid 7
Jacobi Heat diffusion, Jacobi solver Structured grid 4500×4500 grid 7
KNN K-nearest neighbours classification Machine learning 500K points training, 5k testing sets 7
PRK2 Stencil (Stencil) Parallel Research Kernels stencil [25] Stencil operation 16Ki×16Ki grid, 130 iterations 3
Red-Black (R-B) Heat diffusion, red-black solver Structured grid 4500×4500 grid 7
SMI Symmetric matrix inverse Dense linear algebra 4608×4608 matrix 3
Stream Stream Triad [19] Memory bandwidth benchmark 192MB 3

IV. EXPERIMENTAL METHODOLOGY

To compare FEA and the state-of-the-art vulnerability met-
rics with the program failure rates, we examine outcomes when
injecting errors in native runs of 12 parallel benchmarks, and
measure vulnerability ratings precisely using a cycle-accurate
simulation infrastructure. We first explain the simulator setup,
then detail the error injection experiments.

We use parallel benchmarks from various origins, selected
because they represent a varied set of application types, and
because they can all have the validity of their output verified.
These parallel benchmarks are listed in Table I and are all
written for a shared-memory environment using the OmpSs
programming model [8], with tasks that use real data-flow
dependencies.

A. Measuring the Memory Vulnerability

We extend TaskSim [23, 24], a cycle-accurate task-trace
based multicore simulator, to compute the exact memory
vulnerability ratings of data. Its infrastructure relies on task-
based execution models to generate detailed traces for each
task, including the basic blocks that are executed and memory
addresses that are accessed. TaskSim’s multicore architecture
simulator then simulates parallel runs in detail by fetching and
executing all instructions, using a simple core model and a full
memory hierarchy. The simulator also relies on a real runtime
system, to schedule the tasks across the simulated hardware.
The memory is simulated using Ramulator [14].

To compute the various vulnerability metrics, we capture
all loads and stores and the time at which they reach main
memory. We then update at each access the necessary counters
per memory location: time before stores, time before loads
whose contents will be overwritten (FEA safe time), time
before remaining loads, and time before the end of the
program. We also count the number of loads and stores. From
this data, we compute the fraction of time that each location
is vulnerable, the DVF and the store-to-load ratio. For MVF
and FEA the time until the end of the program is counted as
vulnerable only for the program’s output. We only update these
counters during the Region Of Interest (ROI), thus excluding
the setup and clean up parts of the benchmarks. We compute
all metrics at a 64 bit granularity, which is the granularity used
for SECDED and a subset of the granularity commonly used
in ChipKill. Finally, we also report for each memory page of
a benchmark the average fraction of time it resides in cache.

TABLE II: TaskSim cache parameters
cache shared assoc. size latency MSHRs
L1D private 8-way 32kB 4 cycles 32

L2 private 8-way 256kB 12 cycles 32
L3 shared 16-way 20MB 28 cycles 128

We trace applications on an Intel x86 64 Xeon E5-2670
and simulate a multicore architecture whose configuration
mirrors the Xeon E5-2670’s characteristics. It consists of 8
cores running at a frequency of 2.6GHz, each with a reorder
buffer of 192 entries, and one thread per core. The cache
hierarchy’s parameters are summed up in Table II. All cache
levels have 64B lines, write-back and write-allocate policies,
are non inclusive, and track outstanding misses in Miss Status
Handling Registers (MSHRs). Ramulator simulates 4GB of
DDR4 DRAM memory, organised in one rank of 4Gb x8 chips
clocked at 2400MHz.

B. Measuring the Program Outcome

To analyse and validate the memory vulnerability metrics,
they need to be compared against the outcomes of injecting
errors in the memory of the benchmark. Thus, we inject errors
in native parallel runs on a real system, using the same Xeon
E5-2670 as modelled by the simulation infrastructure.

Errors are injected using a separate thread, at a uniformly
random point in the targeted application-level data, and at a
uniformly random time during the ROI. The injector thread
sleeps for the selected amount of time, then injects either
a number of bit flips (1, 2 or 3), where random bits in the
selected 64 bit word are flipped, or a DUE. A DUE consists
in poisoning the data, and always causes an incorrect program
outcome if and only if the data is consumed. In practice, it
consists of inserting a NaN in floating-point data or a very high
value for integer data, causing a crash if this data is used to
index other arrays, or an incorrect result otherwise. In systems
with any level of ECC, DUE is the more likely type of error to
be encountered. However, looking at both bit flips and DUE
allows to both gauge the false DUE rate, and to compare the
metrics with non-ECC failure rates as well.

Each experiment consists of a single error injection in
a single data structure. The program runs until it finishes
abnormally or until completion, in which case the validity
of its solution is verified, which is always done against the
unmodified input data. If the program performs more work
(e.g., more iterations) than the baseline, we classify its execu-
tion as incorrect. There are between 3 and 768 data structures

3



0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

KNN FFT Stream Jacobi BlkSch Chol. MM SMI CG Stencil G-S R-B Average

Fa
ilu

re
 p

ro
ba

bi
lit

y,
 V

ul
ne

ra
bi

lit
ie

s

DUE
3 flips
2 flips
1 flip
 
FEA
MVF
LD / (LD + ST)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

KNN FFT Stream Jacobi BlkSch Chol. MM SMI CG Stencil G-S R-B Average

1e7
1e9

1e11
1e13

Fa
ilu

re
 p

ro
ba

bi
lit

y,
 V

ul
ne

ra
bi

lit
ie

s

DVF

1e7
1e9

1e11
1e13

Fig. 1: Incorrect outcome frequencies from fault injections and vulnerability metrics, averaged per benchmark.
Bars represent the average failure rate when injecting faults in real runs, with 95% confidence intervals as whiskers.

Simulation-based vulnerability ratings are displayed as lines. Vulnerability metrics have values between 0 and 1, except DVF which is unbounded.

per benchmark, and we run at least 100 experiments per data
structure. We also ensure a minimum of 1500 experiments per
benchmark, which guarantees a 95% confidence interval of at
most ±2.5 percentage points for a discrete probability distri-
bution with 2 possible outcomes (program success or failure).

Since the error is injected at the CPU level, the program
consumes errors that would be hidden by caching behaviour.
Indeed, an error in data that is cached would not be seen
by the program as it would not be fetched from memory. We
account for this masking by correcting the outcome frequency,
using the fraction of time that data is cached obtained from
simulations.

V. COMPARING VULNERABILITY METRICS

In this section, we compare the failure probability when
injecting errors against MVF, FEA, and other related metrics.

A. Outcomes from Fault Injections

The results of error injections in real runs are presented as
bars in Figure 1, while the various vulnerability ratings ob-
tained from cycle-accurate simulations are presented as lines.
The bars represent the average number of incorrect program
outcomes obtained from error injections, with whiskers on top
of the bars representing the 95% confidence interval for the
failure probability. Benchmarks are sorted in increasing failure
probability for DUE.

The failure probabilities are varied per benchmark and per
data structure within each benchmark. First, we should note
that the probability of failure due to a DUE is always bigger
than for any number of bit flips, sometimes by several orders of
magnitude. Similarly, failures are always increasingly probable
with the number of bits flipped.

Some benchmarks are very tolerant to faults, such as KNN,
which uses training points that are assigned a class, and
classifies a different set of points based on the classes of
their nearest neighbours. Indeed, a bit flip in the biggest data
structure, which is the set of points used for training, modifies
at most one point, which in itself does not significantly
alter the outcome of the classifications. Benchmarks such

as Cholesky, Jacobi, Gauss-Seidel and Red-black are more
resilient to bit flips due to the nature of their data. Modifying
a single of many floating point values is likely to only have a
small impact on the final outcome. The outcome can however
be significantly perturbed if this error is significant for Red-
black and Gauss-Seidel, as indicated by the high failure
probabilities for DUE. On the more vulnerable side of the
spectrum, modifying any data in the precise computations of
BlackScholes or the numerically unstable SMI directly impacts
the output computations. Similarly, the biggest data structures
in CG are the matrix values, columns, and rows. The two latter
of those data structures are integer data, and used to index the
values, thus even a single bit flip can cause a benchmark crash.

The difference between bit flip and DUE failure probability
constitutes the amount of false errors caused by the ECC.
Depending on the ECC level, different bars must be consid-
ered. For example for SECDED, double bit flips cause DUE
while single bit flips are corrected silently, thus the false DUE
probability is the difference between the DUE and double
bit flip failure probabilities. For more complex codes such
as ChipKill, additional assumptions must be made as to the
physical distribution of errors, thus the exact probability of
false DUE is harder to derive.

B. Comparing Metrics and Fault Injections

The various vulnerability metrics are presented as lines in
Figure 1. They are MVF (dashed line), defined in Section II-B
and similar to the safe ratio [18], FEA (unbroken line), defined
in Section III-A, the store-to-load ratio [10] (dotted line),
and finally DVF [28] in the separate graph above. MVF
consistently gives an upper bound of all failure probabilities,
both due to bit flips and DUE. However the MVF ratings
of most benchmarks are between 80% and 100%, and thus
not very useful to distinguish vulnerable benchmarks or data
structures from safe ones.

FEA often has the same value as MVF, and also always
provides an upper bound on all failure probabilities. FEA
gives a much tighter bound for the Jacobi, FFT and Stream
benchmarks, and a slightly tighter bound for BlackScholes and

4



CG. This is due to these benchmarks having data structures
that are overwritten and not updated, thus false errors that can
be ignored. Overall, FEA correlates very well with the failure
probability for DUE injections, and noticeably overestimates
the vulnerability only of KNN and BlackScholes. This is
due to these benchmarks having a relatively small memory
footprint, thus with an important error masking effect from
the cache. The only two other benchmarks where FEA differs
from the DUE failure probability are Cholesky and SMI, which
are two benchmarks respectively factorising and inverting a
symmetric matrix. In these benchmarks, the diagonal blocks
are fetched entirely from memory, however only half of this
data is used and thus affects the program outcome. The unused
data that is fetched is not overwritten however, thus FEA does
not identify it as safe. The reason why unimportant data is
accessed is unclear, as the accesses are part of Lapack library
calls. All remaining benchmarks have an average FEA value
very close to the average failure frequency when injecting
DUE. As such, it also gives a reasonable good proxy and
consistent upper bound for the bit flip error injections.

As the store-to-load ratio ST/LD [10] is unbounded and
inversely correlated to the vulnerability, we normalize it as
LD/(LD + ST ), and present this value as the dotted line in
Figure 1. This transformation maintains the relative ordering
of the ratings’ values (in opposite direction), while bringing
them back in the interval [0, 1]. We see several problems with
this metric: KNN, which is a very safe benchmark, is rated
with maximal vulnerability, and the vulnerability of several
other benchmarks is lower than their failure probability. This
metric can thus not be safely used as an upper bound on
failure probability. On Cholesky, Gauss-Seidel and Red-black,
the load-to-store ratio severely underestimates the probability
of failure due to a DUE. This metric correlates better with
the bit flip failure rates than the failure rate due to DUE,
with Gauss-Seidel and Red-black rated lower than FFT and
Stream, and those lower than BlackScholes and CG. However
many other benchmarks contradict this correlation, such as
DGEMM, Cholesky, Jacobi, KNN, and in particular PRK2
Stencil. While this metric might be a satisfying heuristic for
online optimisations, due to the fact it is simple to compute,
it is easy to see that it lacks the timing information to
satisfyingly inform on vulnerability. One example is the iterate
of CG, which is an iterative method that updates this vector
at every iteration to get closer to the solution. The load-to-
store ratio sees as many loads as stores, and thus rates it
with a value of 50%, the lowest data structure of the whole
benchmark. However the store immediately follows the load,
as the iterate is simply updated, and a whole iteration subsides
before the next update. Thus the iterate is in fact one of the
most vulnerable data structures of CG, with 70% of incorrect
outcomes for double bit flips and 96% for DUE.

The DVF metric [28] is not bounded either and its values are
high and very spread out, hence we display them on a log scale
at the top of Figure 1. The main factor impacting the DVF of
a data structure is its size, which causes benchmarks such as
CG and PRK2 Stencil to be rated with high DVF, however

0.91 0.75 0.47 -0.43 0.24

0.91 0.77 0.37 -0.33 0.22

0.75 0.77 0.49 -0.54 0.17

0.47 0.37 0.49 -0.98 -0.24

-0.43 -0.33 -0.54 -0.98 0.27

0.24 0.22 0.17 -0.24 0.27

DUE FEA MVF ST/LD      LD     
(LD+ST) DVF

DVF

     LD     
(LD+ST)

ST/LD

MVF

FEA

DUE

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 2: Correlations between the failure rate from DUE
injections and the various vulnerability metrics.

BlackScholes has low DVF while being the second most
vulnerable benchmark for bit flips. Similarly, DVF correlates
poorly with the probability of failures due to DUE, as Red-
black, Gauss-Seidel and DGEMM are rated with middle to low
DVF values when compared to other benchmarks. Finally, the
fact that the metric is not bounded makes it harder to use
at runtime, as the metric only has meaning when comparing
values relative to each other.

C. Quantifying the Correlation Between Metric and DUE

We report in Figure 2 the Pearson correlation coefficients
between all the vulnerability metrics and the DUE failure
rate. For each pair of metrics, the correlation is computed
using all of the data structure values from every benchmark,
normalised for data structure size within each benchmark.
Metrics are sorted using the magnitude of correlation with
DUE. In addition to the metrics used so far, we display the
original ST/LD metric from Gupta et al. [10], which allows to
verify that the normalised version, LD/(LD + ST ), gives the
same information. Indeed, both metrics correlate with a factor
of −0.98, meaning a very strong negative linear correlation.

Confirming our previous observations, the DVF is the metric
correlating the worst with DUE fault rates. Furthermore, it
correlates weakly (≤ 0.27) with all other metrics. While the
DVF provides some information on vulnerability, it seems to
be the least suitable metric. The ST/LD and LD/(LD + ST )
metrics correlate with the DUE failure rate with coefficients
of 0.47 and −0.43 respectively. These two metrics use the
same information, however it seems that the distribution of
the non-normalised version is slightly better at informing
on vulnerability. Interestingly, Gupta et al. verify the rele-
vance of the ST/LD metric by comparing it against a MVF
value obtained from simulation, and report a correlation of
−0.32. This is contrary to our findings, even when computing
the correlation with MVF per memory page instead of per
data structure (respectively 0.37 for ST/LD and −0.40 for
LD/(LD + ST )). It is worth noting however that in their
work, Gupta et al. use benchmarks from different suites, for
which they report much lower MVF (ranging from 1.7%
to 22.5%) than what we measure for our benchmarks. This
difference could be the cause for the correlation discrepancies.

The MVF metric correlates rather well with FEA (0.77) and
with the DUE failure rate (0.75), while FEA correlates really

5



0.01%

0.1%

1%

10%

100%

MM SMI Stencil R-B G-S Chol. KNN CG BlkSch    Stream  FFTJacobi Average

Fig. 3: Reduction in failure rate from ignoring false errors

well with DUE (0.91). This confirms that FEA improves the
precision from MVF, and that the timing information which is
exploited by these two metrics only is key in providing useful
information on memory reliability.

D. Failure Rate Reduction from Delaying Error Reporting

The metrics evaluation reveals that there are a number of
benchmarks where the impact of false errors significantly
causes the failure probability to be overestimated. We quan-
tify here the effects of ignoring false errors by delaying
the reporting of DUE until they are actually consumed. As
explained in Section III-A, the program failure rate due to
DUE becomes λDUEFEA instead of λDUEMV F . Thus, we
present in Figure 3 the reduction in the failure rate from
deferring the reporting of errors and ignoring false DUE, that
is, (MV F − FEA)/MV F .

A number of benchmarks have their average failure rate
reduced by over 45%: Stream with 45.4%, FFT with 48.1%,
and Jacobi with 50.5%. FFT and Jacobi are benchmarks
that can not perform in-place computations. Instead, these
algorithms use additional memory to store results of inter-
mediate computations, which creates memory accesses that
overwrite data. Other benchmarks only overwrite one of their
data structures, such as CG and BlackScholes. The remaining
benchmarks have no or negligible amounts of data (less than
0.1%) that is accessed without being consumed. The overall
average reduction in failure rate is of 12.75%.

VI. CONCLUSION

A number of metrics aim at quantifying the risk associated
with encountering an error in data in memory. Comparing
these metrics with the likelihood of incorrect program out-
comes due to an error in memory indicates that the metric
we introduce in this paper, FEA, is the most accurate one.
This is especially true for DUE, which is the most common
type of error for ECC-protected memory. Simultaneously,
FEA also consistently provides an upper bound on the failure
probability. This can be explained by the fact that it takes
into account timing effects, as opposed to metrics based on
access counts, and by the fact that it takes into account false
errors that are overlooked by MVF. This work opens the door
to runtime-level optimizations that can now accurately model
the risk associated with any given data by providing a more
precise metric that allows to identify a wider range of memory
vulnerability profiles across memory.

ACKNOWLEDGEMENTS
This work has been supported by the RoMoL ERC Advanced Grant

(GA 321253), by the European HiPEAC Network of Excellence, by the
Spanish Ministry of Economy and Competitiveness (contract TIN2015-65316-
P), by the Generalitat de Catalunya (contracts 2017-SGR-1414 and 2017-
SGR-1328), by the Spanish Government (Severo Ochoa grant SEV-2015-
0493) and by the European Union’s Horizon 2020 research and innovation
programme (grant agreements 671697 and 779877). L. Jaulmes has been
partially supported by the Spanish Ministry of Education, Culture and Sports
under grant FPU2013/06982. M. Moretó and M. Casas have been partially
supported by the Spanish Ministry of Economy, Industry and Competitiveness
under Ramón y Cajal fellowships RYC-2016-21104 and RYC-2017-23269.

The authors would like to thank Francesc Martı́nez Palau for his precious
help and support with the TaskSim infrastructure.

REFERENCES

[1] Advanced Micro Devices, Inc., “AMD64 Architecture Programmer’s Man-
ual Vol. 2: System Programming,” Publication # 24593, 2018, rev. 2.30.

[2] J. H. Ahn et al., “Future scaling of processor-memory interfaces,” in
SC’09, 2009. DOI: 10.1145/1654059.1654102.

[3] ARM, “ARM Cortex-A55 Core,” Technical Reference Manual
100442 0100 00 en, 2017, Revision: r1p0.

[4] G. Bronevetsky et al., “Soft error vulnerability of iterative linear algebra
methods,” in ICS’08, 2008. DOI: 10.1145/1375527.1375552.

[5] M. Casas et al., “Fault resilience of the algebraic multi-grid solver,” in
ICS’12, ACM, 2012, DOI: 10.1145/2304576.2304590.

[6] G. Chen et al., “Compiler-directed Selective Data Protection Against Soft
Errors,” in ASP-DAC’05, 2005, DOI: 10.1145/1120725.1121000.

[7] T. J. Dell, “A White Paper on the Benefits of Chipkill-Correct ECC for
PC Server Main Memory,” IBM Microelectronics, white paper, 1997.

[8] A. Duran et al., “OmpSs,” Parallel Process. Lett., vol. 21, no. 2, pp. 173–
193, 2011, DOI: 10.1142/S0129626411000151.

[9] J. Elliott et al., “Evaluating the Impact of SDC on the GMRES Iterative
Solver,” in IPDPS, 2014, DOI: 10.1109/IPDPS.2014.123.

[10] M. Gupta et al., “Reliability-Aware Data Placement for Heterogeneous
Memory Architecture,” in HPCA, 2018. DOI: 10.1109/HPCA.2018.00056.

[11] Intel Corporation, “Intel R© 64 and IA-32 Architectures Software Developer
Manual Vol. 3: System Programming Guide,” 325384, 2017, version 052.

[12] L. Jaulmes et al., “Exploiting Asynchrony from Exact Forward Recovery
for DUE,” in SC’15, 2015, DOI: 10.1145/2807591.2807599.

[13] U. Kang et al., “Co-Architecting Controllers and DRAM to Enhance
DRAM Process Scaling,” in The Memory Forum, 2014.

[14] Y. Kim et al., “Ramulator,” IEEE Comput. Archit. Lett., vol. 15, no. 1,
pp. 45–49, 2016, DOI: 10.1109/LCA.2015.2414456.

[15] A. Kleen, “mcelog,” presented at the Linux Kongress, 2010, pp. 159–166,
[16] S. Levy et al., “Lessons Learned from Memory Errors Observed over the

Lifetime of Cielo,” in SC ’18, 2018.
[17] X. Li et al., “Architecture-Level Soft Error Analysis: Examining the Limits

of Common Assumptions,” in DSN, 2007. DOI: 10.1109/DSN.2007.15.
[18] Y. Luo et al., “Characterizing Application Memory Error Vulnerability,”

in DSN, 2014, DOI: 10.1109/DSN.2014.50.
[19] J. D. McCalpin, “Memory Bandwidth and Machine Balance in Current

HPC,” IEEE Comp. Soc. TCCA Newsletter, pp. 19–25, 1995.
[20] M. Mehrara et al., “Exploiting Selective Placement for Low-cost Memory

Protection,” Trans. Archit. Code Optim., vol. 5, no. 3, 14:1–14:24, 2008,
DOI: 10.1145/1455650.1455653.

[21] Micron Technology, Inc., “ECC Brings Reliability and Power Efficiency
to Mobile Devices,” white paper, 2017.

[22] S. S. Mukherjee et al., “A Systematic Methodology to Compute the
Architectural Vulnerability Factors,” in MICRO 36, 2003, DOI: 10.1109/
MICRO.2003.1253181.

[23] A. Rico et al., “Trace-driven simulation of multithreaded applications,” in
ISPASS, 2011. DOI: 10.1109/ISPASS.2011.5762718.

[24] A. Rico et al., “On the Simulation of Large-scale Architectures Using
Multiple Application Abstraction Levels,” ACM Trans. Architec. Code
Optim., vol. 8, no. 4, 36:1–36:20, 2012, DOI: 10.1145/2086696.2086715.

[25] R. F. V. d. Wijngaart et al., “The Parallel Research Kernels,” in HPEC,
2014. DOI: 10.1109/HPEC.2014.7040972.

[26] M. Wilkening et al., “Calculating AVF for Spatial Multi-Bit Transient
Faults,” in MICRO 47, 2014. DOI: 10.1109/MICRO.2014.15.

[27] D. H. Yoon et al., “Virtualized and Flexible ECC for Main Memory,” in
ASPLOS XV, 2010, DOI: 10.1145/1736020.1736064.

[28] L. Yu et al., “Quantitatively Modeling Application Resilience with the
Data Vulnerability Factor,” in SC’14, 2014, DOI: 10.1109/SC.2014.62.

6

https://doi.org/10.1145/1654059.1654102
https://doi.org/10.1145/1375527.1375552
https://doi.org/10.1145/2304576.2304590
https://doi.org/10.1145/1120725.1121000
https://doi.org/10.1142/S0129626411000151
https://doi.org/10.1109/IPDPS.2014.123
https://doi.org/10.1109/HPCA.2018.00056
https://doi.org/10.1145/2807591.2807599
https://doi.org/10.1109/LCA.2015.2414456
https://doi.org/10.1109/DSN.2007.15
https://doi.org/10.1109/DSN.2014.50
https://doi.org/10.1145/1455650.1455653
https://doi.org/10.1109/MICRO.2003.1253181
https://doi.org/10.1109/MICRO.2003.1253181
https://doi.org/10.1109/ISPASS.2011.5762718
https://doi.org/10.1145/2086696.2086715
https://doi.org/10.1109/HPEC.2014.7040972
https://doi.org/10.1109/MICRO.2014.15
https://doi.org/10.1145/1736020.1736064
https://doi.org/10.1109/SC.2014.62

	I Introduction
	II Existing Vulnerability Metrics for Memory
	II-A Access-Based Metrics
	II-B Timing-Based Metrics (also known as Derating Factors)
	II-C Linking Derating Factors to Program Outcome

	III FEA Metric Definition
	III-A Accounting for False DUE
	III-B FEA is linked to Program Outcome with Deferred Errors

	IV Experimental Methodology
	IV-A Measuring the Memory Vulnerability
	IV-B Measuring the Program Outcome

	V Comparing Vulnerability Metrics
	V-A Outcomes from Fault Injections
	V-B Comparing Metrics and Fault Injections
	V-C Quantifying the Correlation Between Metric and DUE
	V-D Failure Rate Reduction from Delaying Error Reporting

	VI Conclusion

