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Abstract. For the mechanical modeling and simulation of the heterogeneous com-
position of a fiber structured material, the material properties at the micro level and
the contact between the fibers have to be taken into account. The material behavior is
strongly influenced by the material properties of the fibers, but also by their geometrical
arrangement. In consideration of the different length scales the problem involves, it is
necessary to introduce a multi scale approach based on the concept of a representative
volume element (RVE). For planar structures like technical textiles the macromodel is
discretized by shell elements. In contrast the microscopic RVE is modeled with three
dimensional elements to account for the contact between the fibers. The macro-micro
scale transition requires a method to impose the deformation at a macroscopic point onto
the RVE by suited boundary conditions. The reversing scale transition, based on the
Hill-Mandel condition, requires the equality of the macroscopic average of the variation
of work on the RVE and the local variation of the work on the macroscale. For the micro-
macro transition the averaged forces and the resulting moments have to be extracted by
a homogenization scheme. From these results an effective constitutive law can be derived.

1 INTRODUCTION

The sector of technical textiles is expanding because of a variety of applications of
recently developed fiber shapes, materials and structures. Innovative potential and eco-
nomic growth make technical textiles to an important research area. Examining textiles
it is obvious that on the macro scale textiles show inhomogeneous material properties,
which are different from the underlying fiber material. These nonlinearities rely on inter-
actions in between the fibers on the micro level and the friction in the contact areas. The
determination of phenomenological constitutive laws for this material group by classical
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material testing procedures is very time and cost intensive. Therefore numerical methods
to determine the material characteristics of textiles are developed. Apparently discretiza-
tion of the whole macro structures modeled in micro scale element dimensions leads to
systems with too many degrees of freedom. So for the macro- and microscopic considera-
tion multi scale methods, so called FE2-methods are introduced. Hence each macroscopic
material point is assigned a microscopic, heterogeneous Representative Volume Element
(RVE). For a simultaneous calculation a relation between microscopic and macroscopic
scale has to be derived. From the deformations on macro scale boundary conditions for
the micro calculation were developed. For the reversing scale transition a homogenization
scheme is introduced.

2 TOWARDS FIBER STRUCTURED MATERIALS

Technical textiles are considered to be all textile products with an application in the
technical sector. Thereby they can be used in architecture, agriculture or engineering.
Textiles are flexible materials, which consist of particular fibers where a fiber has a high
length to diameter ratio. In this paper, without loss of generality, a fiber is assumed to
consist of homogeneous material and to be characterized by a circular cross section.

Solution
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Figure 1: Towards a FE2-scheme

The mechanical properties are closely linked to the manufactured materials. Generally
one can differentiate between natural and chemical fibers. Polymers as well as glass,
ceramic, carbon and metal fibers belong to the last-mentioned ones. Because of growing
ecological awareness there is a trend towards natural fibers like hemp and jute. They find
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application in architecture and as geological and agricultural textiles. For textile behavior
material properties and volume fraction are as important as the assembly of the fibers
[1]. On the one hand there are periodic assemblies like woven or knitted structures, on
the other hand there are random ones like felt.

In the following, technical textiles are examined in a multi scale homogenization scheme,
which is different to the classical first order approach. A requirement of the first order
homogenization is that the macroscopic and the microscopic length scales differ in di-
mension [2]. This is achieved for textiles for the in plane direction, but in thickness
direction the lengths are considered the like. For that reason no classical homogenization
can be accomplished in this direction. Textiles are rather assumed to be shells on the
macroscopic level. Intrinsically, shell problems are second order homogenization problems
because beside stretching and shearing, bending and twisting of the shell are considered.

3 SHELL-KINEMATICS

For the description of a shell continuum B0 in the material configuration and Bt in the
spatial configuration in a three dimensional space, two coordinate systems are introduced
[5]. One cartesian system xi with the orthonormal vector Ei and one curvilinear, convec-
tive system θi that is connected to the middle surface M0 and Mt of the shell. For the
notations it is introduced that Latin indices range from 1 to 3 and Greek indices range
from 1 to 2. A description of a finite deformation shell is given by the equations

X(θi) = X̄(θα) + θ3D(θα) and

ϕ(θi) = ϕ̄(θα) + θ3λ(θα)d(θα) ,
(1)

where X is the position vector of a material point in the undeformed shell and ϕ is the
position vector of a material point in the deformed shell. Streching in thickness direction
is neglected λ(θα) = 1.

The vectors X̄ and ϕ̄ provide a parametric representation of the middle surface of the
shell in the reference and the current state. The parameter θ3 ∈ [−h0

2
, h0

2
] determines the

position of a point normal to the middle surface in the undeformed state.
All kinematic values can be calculated, if the shell geometry in the material and the

spatial configuration are known. For this the covariant basis vectors on the middle surface
of the shell can be derived from the partial derivative of the material vector X̄ and the
spatial vector ϕ̄ with respect to the curvilinear coordinates

Aα =
∂X̄

∂θα
= X̄ ,α , A3 = D ,

aα =
∂ϕ̄

∂θα
= ϕ̄,α and a3 = d .

(2)

The unit director D, which is normal to the shell in the material configuration is given
by
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Figure 2: Towards a FE2-scheme

D =
A1 ×A2

|A1 ×A2|
. (3)

For the displacement u(θi) of a point from the reference to the current state it reads

u(θi) = ϕ̄(θα)− X̄(θα) + θ3(a3 −A3). (4)

For the macro to micro scale transition the shell formulation has to be extended to
a three dimensional formulation [6]. From equation (1) covariant basis vectors for the
description of the shell body can be derived to

Gi =
∂X

∂θi
and gi =

∂x

∂θi
, (5)

with the connection to the covariant shell basis vectors

Gα =
∂X

∂θα
=

∂X̄

∂θα
+ θ3

∂D

∂θα
= Aα + θ3A3,α ,

G3 =
∂X

∂θ3
= A3 ,

gα =
∂ϕ

∂θα
=

∂ϕ̄

∂θα
+ θ3

∂a3

∂θα
= aα + θ3a3,α ,

g3 =
∂ϕ

∂θ3
= a3 .

(6)
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The contravariant basis vectors result from the relation

G
i
·Gj = δij and g

i
· gj = δij , (7)

with the Kronecker delta δij . For the deformation map the deformation gradient F is
introduced

F =
∂ϕ

∂X
=

∂ϕ

∂θi
⊗

∂θi

∂X
= gi ⊗G

i . (8)

Due to the shell kinematics in equation (1) reads

F = [aα + θ3a3,α]⊗G
α + a3 ⊗G

3 . (9)

For a Kirchhoff-Love shell the director d in the current state is also normal to the
middle surface

d =
a1 × a2

|a1 × a2|
. (10)

Therefore, the contribution of the transverse shear is neglected. Based on that assump-
tions only the in plane components of the deformation gradient are necessary to be taken
into account, with the projection on the middle surface

â = a · (I − a3 ⊗ a3) , (11)

with the second order unit tensor I. With that the in plane deformation gradient F̂

reads

F̂ = Ĥ + θ3K̂ , (12)

with

Ĥ = aα ⊗G
α and K̂ = a3,α ⊗G

α . (13)

4 SCALE-TRANSITIONS

The approach to create a boundary value problem for a mircostructural RVE requires
to consider the shell deformation gradient derived in equation (12) to be the macroscopic

gradient F̂M of the multi scale analysis [3]. Furthermore the macroscopic deformation
gradient has to be equal to the volume average of the microscopic deformation gradient
F̂m. The index Xm is connected to quantities on the micro structure and the index XM

is assigned to quantities on the macro structure. For the homogenization the position of
a point in the microscopic RVE is given by

ϕ̂m = F̂M ·Xm + ω̂(Xm) , (14)
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where

�FM =
1

V0

�

B0m

�FmdVm =
1

V0

�

∂B0m

�ϕm ⊗NmdAm , (15)

with the micro fluctuation �ω(Xm) and the outward normal in the material configura-
tion Nm. Inserting equation (14) in (15) leads to the condition for the micro fluctuation
field

�

∂B0m

�ω(Xm)⊗NmdAm = 0 . (16)

This equation is a requirement for the boundary conditions of the RVE and a possibility
for the realization are periodic ones. For this the boundary has to be split in three parts
∂B0 = ∂B+

0 ∪∂B−

0 ∪∂B0t. The parts ∂B
+
0 and ∂B−

0 are on opposite sides on the RVE faces
normal to the plane direction. On this faces periodic boundary conditions are applied
with the condition to the fluctuation

�ω+ = �ω− , (17)

as pointed out in [2] and antiperiodic tractions

�t+0 = �t−0 . (18)

On the faces ∂B0t, parallel to the textile plane zero traction boundary conditions are
applied. The reversing scale transition is based on an averaging of the microscopic stresses.
An energy averaging theorem, which requires the equality of the microscopic average of
the virtual work δWm on the RVE and the virtual work on the macro scale δWM is the
Hill-Mandel condition. The Hill-Mandel condition can be expressed for a volume RVE

δWm =
1

A0m

�

B0m

Pm : δFmdVm = �NM : δ�HM + δ�MM : δ�KM = δWM , (19)

where δa is the variation of a and the coefficients of the stress resultants are given by

�NM =

�

H


 1

A0m

�

M0m

�PmdA0m


 dθ3 =

1

A0m

�

∂B+
0m∪∂B−

0m

t0mXmd∂B0m ,

�MM =

�

H


 1

A0m

�

M0m

θ3 �PmdA0m


 dθ3 =

1

A0m

�

∂B+
0m∪∂B−

0m

θ3t0mXmd∂B0m ,

(20)
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for heterogeneous RVE sections [4]. Therewith the coefficients of the generalized forces
are

N̂
i

M = N̂M ·G
i
M ,

M̂
α

M = M̂M ·G
α
M .

(21)

5 CHARACTERIZATION OF THE MICRO LEVEL AND EXAMPLES

For the exemplary application of the introduced methods a periodic woven RVE is
considered. With a size of 4 × 4 × 2 mm3 the RVE is composed of 20-node hexahedral
elements. The constitutive law of the fiber material is chosen to be isotropic, linear elastic,
so the stress-strain relation can expressed by Hooke’s Law

σ =
E

1 + ν

[
ν

1− 2ν
tr(ε)I + ε

]
, (22)

where I is the identity matrix and tr(ε) is the trace of the linearized strain tensor ε.
E is the Young’s modulus and ν is the Poisson ratio. After characterization of the
material behavior also the interaction between the fibers has to be considered. Contact
is a unilateral, nonlinear coupling condition where forces are transferred in the common
contact zone.

Thereby stresses are acting between the contact partners, which can be classified in
stresses tn normal to the contact plane and tangential stresses tt in the contact plane with
the contact stresses

tc = tn + tt. (23)

Further the relation between normal and tangential stress is introduced

|tn| = µ |tt| , (24)

known as Coulomb friction with the friction coefficient µ chosen in this exemplary
model to µ = 0.5, realized by a Penalty method.

For the testing of the introduced methods calculations on the micro level were accom-
plished to evaluate the nonlinear textile behavior. Considering two typical deformations
like bending (Fig. 3(a)) and membrane shearing (Fig. 3(b)) the deformed shape and
the von Mises stress is plotted. Further the homogenized, macroscopic response over
deformation for bending κ22 and shearing γ12 is shown.

6 CONCLUSIONS

This paper treats the basic principles to consider technical textiles in a multi scale
scheme, connecting macroscopic shells with 3D-modeled fiber structures. It allows to
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Figure 3: Macroscopic homogenized response for different RVE deformations

account for the coupling between structural heterogeneous shells and the underlying mi-
crostructural features that cause this behavior. Main focus was put on the extraction of
the macroscopic phenomenological constitutive laws of the textile. A analysis of different
3D deformations was shown within the context of a shell response.

REFERENCES

[1] B. C. N. Mercatoris, T. J. Massart A coupled two-scale computational scheme for

the failure of periodic quasi-brittle thin planar shells and its application to masonry,
International Journal for Numerical Methods in Engineering, Vol. 85, pp. 1177-1206,
2011

[2] E.W.T.Coenen, V.G. Kouznetsova, M.G.D. Geers, Computational homogenization

for the heterogeneous thin sheets, International Journal for Numerical Methods in
Engineering, 83, pp. 1180-1205, 2010

[3] V.G. Kouznetsova, M.G.D Geers, W.A.M. Brekelmans Multi-scale second-order com-

putational homogenization of multi-phase materials: a nested finite element solution

8



571

S. Fillep and P. Steinmann

strategy, Computer Methods in Applied Mechanics and Engineering, Vol. 192, pp.
5525-5550 , 2003

[4] C. Miehe, Computational micro-to-macro transitions for discretized micro-structures

of heterogeneous materials at finite strains based on the minimization of averaged

incremental energy, Computer Methods in Applied Mechanics and Engineering, Vol.
192, 2003

[5] F. Cirak, M. Ortiz Fully C1-conforming subdivision elements for finite deformation

thin-shell analysis, International Journal for Numerical Methods in Engineering, Vol.
51, pp. 757882, 2001
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