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Abstract. Within this work, direct minimization approaches on static problems of membranes 
are discussed. In the first half, standard direct minimization methods are discussed. Some 
form-finding analyses of tension structures are also illustrated as simple direct minimization 
approaches. In the second half, the principle of virtual works for cables, membranes, and 3-
dimensional bodies are examined and they are approximated in a common way by  using 
Galerkin method. Finally, some examples that direct minimization approaches can solve are 
reported. 

1 INTRODUCTION
It is widely known that direct minimization approaches are sometimes very effective for 

solving simple static problems [2], such as minimal surface problem. This work aims to 
propose a common framework that can solve various types of static problems by direct 
minimization approaches. In this framework, not only simple problems but also general 
problems of continuum bodies can be solved by direct minimization approaches. 

In chapter 2, standard direct minimization methods are discussed. The dual estimate is also 
introduced to include constraint conditions into direct minimization approaches. In chapter 3, 
the principle of virtual works for cables, membranes, and 3-dimensional bodies are examined 
and they are approximated in a common way by Galerkin method. In chapter 5, it is pointed 
out that some principle of virtual works can be solved by direct minimization methods even 
though their objective functions that are to be minimized are not clear. 

2. DIRECT MINIMIZATION APPROACHES

2.1 Three Term Method without Constraint Conditions
For form-finding of cable-net structures, let us discuss the following stationary problem: 
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where jj Lw ,  are the weight coefficient and the length of the j-th cable respectively. In 
addition, 
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where { }nxx ,,1 L  is a set of unknown variables and f∇  is the gradient of a function f. 
It has been reported by the authors [1] that Eq. (1) is the problem that simply represents the 

Force Density Method [3]. While making use of inverse matrix is proposed in the original 
article, direct minimization approach can also solve the same problem. 

In the following discussion, suppose { }nxx ,,1 L  represents the Cartesian coordinates of the 
free nodes and remark that those of the fixed nodes are eliminated beforehand and directly 
substituted into each )(xjL . 

The stationary condition (to be solved) of Eq. (1) is expressed as follows: 

0=∇=Π∇ ∑
j

jjj LLw2 .  (3) 

When this problem is solved by direct minimization methods, Π∇  is used as the standard 
search direction. The simplest direct minimization recursive strategy is given by 
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which is usually called the steepest decent method; however, in the relation with the following 
discussion, we shall call Eq. (4) as 2-term method. In Eq. (4), Currentr  is normalized because 
too large Currentr  or too small Currentr  sometimes causes trouble. In addition, α  is a unique 
parameter which can be adjusted manually for controlling the step-size. 

By the way, the following remedy of Eq. (4) sometimes provides a remarkable 
improvement of global convergence efficiency: 
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which gives the simplest 3-term method. 
Fig. 1(a) shows a numerical example for verification which can be solved by either 2-term 

method or 3-term method. The model consists of 220 cables and 5 fixed nodes. The first 
author has tested giving random numbers for initial configuration of }{ 1 nxx L , which were 
ranging from -2.5 to 2.5 as shown in Fig. 1(b). Then, when }{ 1 mww L }11{ L= , Fig.1 (c) was 
obtained and the corresponding minimum value of Π  was 160.214. When 4 times greater 
weight coefficients were assigned onto the boundary cables, Fig. 1 (d) was obtained and the 
corresponding minimum value was 188.09. 

The history of Π  in the 3-term method corresponding to Fig. 1 (c) is shown by Fig. 2 (α
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was constantly set as 0.2). When α  was gradually decreased manually, Π∇  also decreased 
gradually as shown in Fig.3.  

It is important to note that Eq. (5) has a close relation with the family	methods	with	three	
term	 recursion	 formulae. In 1982, M. Papadrakakis stated that two popular direc 
minimization methods, the Dynamic Relaxation method and the Conjugate Gradient Method, 
can be classified under one category, the family methods with three term recursion formulae 
[4], which was first proposed by M. Engeli et. al [3] in 1959. 
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Figure	1: Form-finding of Cable-net Structure 
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	 Figure	2: History of Π  (α =0.2) (by 3-term method) Figure	3: History of Π∇ (by 3-term method) 

By using either 2-term method or 3-term method, both Fig. 1(c) and (d) can be obtained. 
However, the behavior of the 3-term method is always very impressive, smooth, and seems 
to be the best method for solving various types of static problems by direct minimization 
approaches. Therefore, the scope of the 3-term method must be examined and every 
numerical example illustrated below was solved by the 3-term method. 

2.2 Three Term Method with Constraint Conditions 

(a) Connections of members (b) Result ( 180004 =∑ jL ) 
Figure	4: Form-Finding of Simplex Tensegrity 

For form-finding of Simplex Tensegrities that consist of 3 struts (compression) and 9 
cables (tension), let us discuss 
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where the first sum is taken for all the length of the cables and the second sum is taken for all 
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the length of the struts. The connections over the members are shown by Fig. 4(a). Such a 
modified functional is obtained by applying the Lagrange multiplier method to a 
minimization problem with equality constraint conditions. The supplemented multipliers are 
denoted by kλ  and the prescribed length of the struts are denoted by kmL + . When 
{ } { }10,,10,1,,1,,,,, 121091 LLLL =LLww , Fig. 4 (b) was obtained as the unique solution and the 

corresponding minimum value of ∑
=

m

j
jj Lw

1

4 )(x  was 18000. (See Ref. [1] for further detail) 

To solve such a problems, let 
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Then, the stationary condition of Eq. (6) is represented by 

0
λ

0 =
∂
Π∂=Π∇ & .  (9) 

Let us discuss the first condition. Due to the supplemented multipliers { }rλλ L1 , Π∇  is still 
unknown even if x  is given. The simplest idea to determine Π∇  uniquely is making use of 
general inverse matrix. Let us rewrite 0=Π∇  into the following form: 

0λJx =+Π∇=Π∇ λ)(w wΠ−∇=⇔ λλJ ,  (10) 

For example, in this case, 
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Eq. (10) is not satisfied unless a solution is given as x . Nevertheless, by using Moore-
Penrose type pseudo inverse matrix +

λJ , λ  can be determined by 
+⋅Π−∇= λJxλ )(w ,  (12) 

which provides basically a least squared solution of Eq. (10). This strategy seems rather rough 
but it works fine because when Eq. (12) turns to a least norm solution, Eq. (10) is 
simultaneously satisfied and vice versa. A popular numerical environments such as Matlab®, 
Scilab®, and Octave® provide pinv() for this purpose. A popular linear algebra package 
Lapack® provides direct least squared solvers such as dgels(). 

As the result, 1 to 1 mapping between Π∇andx  can be defined by 

))(()( +⋅Π−∇=+Π∇=Π∇ λλ JxλλJx ww o ,  (13) 

which enables 2-term method and 3-term method feasible. This strategy is often called the 
dual	estimate in the context of linear programming [7]. Here, one might notice that Eq. (13) 
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immediately reduces to the projected	gradient, in which λ  vanishes; however, λ  is always 
calculated explicitly in this work because Eq. (13) simply represents the composition	 of	
forces	(see Fig. 5 (a)). 

Let us discuss the second condition in Eq. (9). For example, in this case, it expands as 
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The simplest idea to satisfy Eq. (14) is to solve 
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Again, +
λJ  plays an important role as follows 

rJx ⋅−=∆ +
λ ,  (16) 

which gives the least norm solution of Eq. (15). It is highly recommended to scale x∆  when it 
is substituted into Currentx , e.g. 

xxx ∆+= 5.0: CurrentCurrent .  (17) 

Fig. 5 (b) shows an over-view of above mentioned strategies. In each step, if Eq. (17) is 
performed once just before Eq. (4) or Eq. (5) is performed, Currentx  would gradually approaches 
to the hyper-surface on which the prescribed constraint conditions are satisfied. By using 
either 2-term or 3-term method, Fig.4 (b) can be obtained. It was even giving random 
numbers for the initial configuration of }{ 1 nxx L  as well as the previous example. In the 
analysis α was always set as 0.2. 
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Figure	5: Overview of Minimization under Constraint Conditions 

Fig. 6 shows another example, which illustrates a form-finding analysis of a tension 
structure that consists of cables, membranes, struts and fixed points. In this analysis, the 
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Fig. 6 shows another example, which illustrates a form-finding analysis of a tension 
structure that consists of cables, membranes, struts and fixed points. In this analysis, the 
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following stationary problem was solved by abovementioned strategies: 

stationary))(()()(),( 24 →−++=Π ∑∑∑
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jj LLSwLw xxxλx λ ,  (18) 

where the first sum is taken for all the line elements, the second is for all the triangle elements, 
and the third is for all the struts. In addition, kS is a function to give the area of k-th triangle 
element. Fig. 6 (a) shows the initial configuration of x  and it was given by random numbers 
as well as the previous examples. 

It is important to note that Fig.6 (b) and (c) were obtained by only 3-term method and it 
was almost impossible to solve the same problem by 2-term method. It is because of that 2-
term method always traces “bumpy” objective function precisely whereas 3-term method
does roughly. By using the 3-term method, unless the process terminated, the process can 
continue forever and the form can be varied at any moment by varying lkj Lww ,, .  

Pseudo codes of 3-term method are presented in Appendix A. 

 (a) Initial Step (b) Variation 1 (c) Final decision 
Figure	6: Form-Finding of Tanzbrunnen Koln (F. Otto, 1959) 

3. PRINCIPLE OF VIRTUAL WORK 

3.1	 Principle	of	Virtual	Work	for	General	Membranes
In the following discussion, Einstein summation convention and standard notations of 

tensor algebra are used. Let us discuss the surface area of a surface, which is given by 

∫=
a

a da  , )2,1(detda 21 ≤≤≡ jiddgij θθ , (19) 

where 21,, θθijg  represents the Riemannian metric and the local coordinates defined on the 
surface respectively. 

Using ijij

ij

ij gggg det2/1det δδ =  where ( ) 1−≡ ij

ij gg , the minimal surface problem is 
expressed as 

0da
2
1 == ∫a ij

ij gga δδ . (20) 

By the way, let us discuss a self-equilibrium membrane whose boundary is fixed. The 
principle	of	virtual	work for such a membrane is expressed as 

)2,1(0da
2
1 ≤≤== ∫ jigtw

a ij

ijδσδ , (21) 

where t, ijσ  represents the thickness and the Cauchy stress tensor respectively. Here, ijgδ is 
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used instead of the variation of strain tensor ijeδ , due to the essential identity of them. 
Using kj

k
iij g⋅= σσ , the principle	of	virtual	work for such a membrane is rewritten as 
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2
1 ≤≤== ∫ ⋅ kjiggtw
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i

k
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On the other hand, Eq. (20) can be rewritten as 
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2
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kj
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i δδδ , (24) 

which can be a simple demonstration of the essential identity of minimal surface and uniform 
stress surface. 

3.2	 Principle	of	Virtual	Work	for	N-Dimensional	Riemannian	Manifolds	
The length of a curve, the area of a surface, and the volume of a body are respectively 

given by: 

∫=
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v dv , where (25) 
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By using the concept of N-dimensional Riemannian manifold, they can be unified. The 
volume element, the volume, and the variation of the volume for an N-dimensional 
Riemannian manifold M are respectively given by 
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Then, the variational problem of the volume of M is defined by 
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By the way, the principle	 of	 virtual	 works for self-equilibrium cables, membranes, 
deformable bodies are expressed as follows: 
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where tA, respectively denote the sectional area of the cable and the thickness of the 
membrane. Then, when a new stress tensor k

iT ⋅  is defined for each dimension separately by 

)1( =≡ ⋅⋅ NAT k
i

k
i σ , )2( =≡ ⋅⋅ NtT k

i
k

i σ , and )3( =≡ ⋅⋅ NT k
i

k
i σ , (32) 

a common form of Eq. (29), (30), (31) is found and it is expressed as 

),,1(0dv
2
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iN ≤≤== ∫ ⋅ δδ , (33) 

which is the principle	of	virtual	work for N-dimensional Riemannian manifold M. This can 
be naturally read that kj

k
iij gTT ⋅=  is a general force which act within M and tend to produce 

small change of ijg  [7]. Additionally, Eq. (28) is a special case of Eq. (33) such that k
i

k
iT ⋅⋅ = δ . 

3.3	 Galerkin	Method
Suppose a form of a curve, a surface, or a body is represented by n independent parameters 

such as [ ]T

nxx L1=x . Let us define gradient vector of a function f with respect to x by 
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In such a case, at most n independent ijgδ  can satisfy Eq. (33). Such a set of ijgδ  is provided 
by weighted residual method family. The Galerkin method is one of them. Using the Galerkin 
method, ijgδ  is altered into 

xδδ ⋅∇≡ ijij gg~ . (35) 

where xδ  is the variation of x , or just an arbitrary column vector, namely [ ]Tnxx δδδ L1≡x .

Then, the discrete stationary condition is deduced as follows: 
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2
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For general problems of statics, the following can be used: 

0pωxpx =−∇=⇔⋅=⋅
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1dv

2
1 δδ , (38) 

where p  represents the nodal forces. 

3.4	 N-dimensional	Simplex	Elements	
When the form of a structure is represented by m independent elements such as line 

elements, triangle elements, and tetrahedron elements, Eq. (37) expands to 
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0ω =∇=∑ ∫ ⋅
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α , (39) 

where the sum is taken for all the elements and integrals are calculated separately within each 
element. Let us define 
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2
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so that the discrete stationary condition can be simply represented by 

0ωω ==∑
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j

N

j . (41) 

The simplest idea to calculate Eq. (40) is making use N-dimensional Simplex elements 
which are shown by Fig. 7. Within each dimensional element, the base vectors Ngg L1  are 
constant and they are given by 

)1(1 Niiii ≤≤−= +ppg , (42) 

where ip  represents the global Cartesian coordinate of i-th node. Then, 
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where ‘:’ symbol is defined by ij

ijij baba ≡αβ: . In addition, jjj VSL ,,  denote the length, the area, 
and the volume of each element, namely 

j
j

j
j

j
j gVgSgL αβαβαβ det

6
1,det

2
1,det === . (45) 
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Figure	7: Simplex Elements 
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To conclude this section, it is important to note that 

jj L∇=⋅ )(1 α
γδω , jj S∇=⋅ )(2 α

γδω , and jj V∇=⋅ )(3 α
γδω . (46) 

Therefore, the examples illustrated in chapter 2 are the special and simple cases of Eq. (41) 
such that each k

iT ⋅  is given as just a scalar multiple of k
i
⋅δ . It seems obvious that Such simple 

cases can be solved by direct minimization methods. Conversely, if such special cases can be 
solved by direct minimization methods, it may be also possible that general cases such that 

k
iT ⋅  are not a scalar multiple of k

i
⋅δ  can be solved by direct minimization methods. Since ω  is 

just a mixture of gradient vectors, Eq. (4) or Eq. (5) may still feasible when Π∇  is altered into 
ω . 

5 ST. VENANT BODY 
To solve the principle	 of	 virtual	 works by direct minimization approaches, an explicit 

expression of i

kT⋅  that provides 1 to 1 mapping between ijg  and i

kT⋅  must be prescribed, which 
is called constitutive law. Let us examine 

)( lklk
ili

k ggEgT −=⋅ ,  (47) 

which gives a simplest one (St. Venant body when Poisson ratio is 0). Here, note that lkg  is 
the Riemannian metric on the undeformed state which is measured in advance. In the analyses 
illustrated below, unlike the above discussed examples, the initial configurations of 
{ }nxx L1  were given by just the undeformed state and were not given by random numbers. 

Fig. 8 and 9 show two natural forms of handkerchief under gravity whose dimensions are 
8.0-8.0. For both results, 

( ) 0pωω =−=∑ ⋅
j

i

kj T2

 (49) 

was solved by the 3-term method, in which  Π∇  is altered into ω . The prescribed α,, pE for 
both results were 50, [ ]1.001.0001.000 −−− L , and 0.2. 

 (a) Undeformed shape (b) Result 
Figure	8: Natural Forms of Handkerchief under Gravity Hanged by 1-Point 

 (a) Undeformed shape (b) Result1 (c) Result2 
Figure	9: Natural Forms of Handkerchief under Gravity Hanged by 2-Points 
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Fig. 10 shows a large deformation analysis of a cantilever whose dimension is 2.0-2.0-12.0. 
Fig. 11 also shows a large deformation of the same body after bucking. For obtaining both the 
results, 

( ) 0pωω =−=∑ ⋅
j

i

kj T3

 (50) 

was solved by the 3-term method. The prescribed αandE  were 50 and 0.2. In Fig. 10, p
represents the values which were set to the components of p that represents the z-components 
of all the nodal forces. In Fig 11, p denotes the values which were set to z-components of only 
9 nodes and they place on top of the body. 

For the body shown by Fig. 11, the Euler’s buckling load is 14.1=crp , then its division by 9 
is 0.126 and note that it places just between Fig. 11 (a) and (b). 

 (a) p=0.00 (b) p=0.05 (c) p=0.1
Figure	10: Large Deformation of Cantilever under Gravity 

 (a) p=0.10 (b) p=0.20 (c) p=1.0 
Figure	11: Large Deformation after Buckling 

6. CONCLUSIONS 
2-term method and 3-term method were described for not only simple minimization 

problems but also for minimization problems under constraint conditions. The	 principle	 of	
virtual	work for N-dimensional Riemannian manifolds was also formulated. Finally, some
principle	 of	 virtual	works	 that can be solved by the 3-term method were shwon, which 
imply the potential ability of the 3-term method for solving various types of static problems. 
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Appendix A.  Pseudo Codes 
 (a) 3-term method (b) 3-term method under constraint conditions
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