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Abstract. The computational challenges posed by fluid–structure interaction (FSI) mod-
eling of ringsail parachute clusters include the lightness of the membrane and cable struc-
ture of the canopy compared to the air masses involved in the parachute dynamics, ge-
ometric complexities created by the construction of the canopy from “rings” and “sails”
with hundreds of ring gaps and sail slits, and the contact between the parachutes. The
Team for Advanced Flow Simulation and Modeling (T�AFSM) has successfully addressed
these computational challenges with the Stabilized Space–Time FSI technique (SSTFSI),
which was developed and improved over the years by the T�AFSM and serves as the
core numerical technology, and a number of special techniques developed in conjunction
with the SSTFSI. We present the results obtained with the FSI computation of parachute
clusters and the related dynamical analysis.

1 INTRODUCTION

Fluid–structure interaction (FSI) modeling of ringsail parachute clusters poses a num-
ber of computational challenges. The membrane and cable structure of the canopy is
much lighter compared to the air masses involved in the parachute dynamics, and this re-
quires a robust FSI coupling technique. This challenge is of course not limited to ringsail
parachutes but is common to all parachute FSI computations. The geometric challenge
created by the construction of the canopy from “rings” and “sails” with hundreds of ring
gaps and sail slits requires a computational model that makes the problem tractable.
Contact between the parachutes requires an algorithm that protects the fluid mechanics
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mesh from excessive deformation, and this computational challenge might also be encoun-
tered in other classes of FSI problems where two solid surfaces come into contact. The
Team for Advanced Flow Simulation and Modeling (T�AFSM) has successfully addressed
these computational challenges with the Stabilized Space–Time FSI technique (SSTFSI),
which was developed and improved over the years by the T�AFSM and serves as the core
numerical technology, and special techniques developed in conjunction with the SSTFSI.

The SSTFSI technique was introduced in [1]. It is based on the new-generation
Deforming-Spatial-Domain/Stabilized Space–Time (DSD/SST) formulations, which were
also introduced in [1], increasing the scope and performance of the DSD/SST formula-
tions developed earlier [2, 3, 4, 5] for computation of flows with moving boundaries and
interfaces, including FSI. This core technology was used in a large number of parachute
FSI computations (see, for example, [1, 6, 7, 8, 9, 10, 11, 12]). The direct and quasi-direct
FSI coupling techniques, which are generalizations of the monolithic solution techniques
to cases with incompatible fluid and structure meshes at the interface, were introduced
in [13]. They provide robustness even in computations where the structure is light com-
pared to the fluid masses involved in the dynamics of the FSI problem and were also used in
a large number of parachute FSI computations (see, for example, [1, 6, 7, 8, 9, 10, 11, 12]).
Computer modeling of large ringsail parachutes by the T�AFSM was first reported
in [6, 7]. The geometric challenge created by the ringsail construction was addressed
with the Homogenized Modeling of Geometric Porosity (HMGP) [6], adaptive HMGP [8]
and a new version of the HMGP that is called “HMGP-FG” [9]. Additional special tech-
niques the T�AFSM introduced in the context of ringsail parachutes include the FSI
Geometric Smoothing Technique (FSI-GST) [1], Separated Stress Projection (SSP) [6],
“symmetric FSI” technique [8], a method that accounts for the fluid forces acting on struc-
tural components (such as parachute suspension lines) that are not expected to influence
the flow [8], and other interface projection techniques [14].

The T�AFSM recently started addressing (see [10, 11]) the challenge created by the
contact between the parachutes. In a contact algorithm to be used in this context, the
objective is to prevent the structural surfaces from coming closer than a predetermined
minimum distance we would like to maintain to protect the quality of the fluid me-
chanics mesh between the structural surfaces. The Surface-Edge-Node Contact Tracking
(SENCT) technique was introduced in [1] for this purpose. It had two versions: SENCT-
Force (SENCT-F) and SENCT-Displacement (SENCT-D). In the SENCT-F technique,
which is the relevant version here, the contacted node is subjected to penalty forces that
are inversely proportional to the projection distances to the contacting surfaces, edges
and nodes. For FSI problems with incompatible fluid and structure meshes at the inter-
face, it was proposed in Remark 1 of [6] to formulate the contact model based on the
fluid mechanics mesh at the interface. This version of the SENCT was denoted with the
option key “-M1”. The contact algorithm used in the parachute cluster computations
reported in [10] has some features in common with the SENCT-F technique but is more
robust. Also, compared to the SENCT-F technique, the forces are applied in a conserva-
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tive fashion. We call the new technique “SENCT-FC”, where the letter “C” stands for
“conservative”. The new technique was used with option M1 in [10]. The SENCT-FC
technique was described in detail in [11] and was used with option M1 also in the cluster
computations reported in that article. This short article uses material from [11]. We
present the computational results together with the related dynamical analysis.

2 CLUSTER COMPUTATIONS

A series of two-parachute cluster computations were carried out in [11] to determine
how the parameters representing the payload models and starting conditions affect long-
term cluster dynamics. The parachute clusters reported in [11] were used with a 19,200 lb
payload. Each parachute has 80 gores and 4 rings and 9 sails, with 4 ring gaps and 8
sail slits. Figure 1 shows, for an inflated ringsail parachute from [9], the ring and sail
construction and the ring gaps and sail slits. More information on the parachutes can be

Figure 1: A four-gore slice of a ringsail parachute in its inflated form. The pictures on the right illustrate
the ring and sail construction of the canopy and show the shapes of the ring gaps and sail slits.

found in [7, 8, 9]. The parameters selected for testing were the payload-model configura-
tions and initial coning angles (θINIT) and parachute diameters (DINIT) (for readers not
familiar with the term “coning angle”, see [11]). We also investigated two scenarios to
approximate the conditions immediately after parachute disreefing. This is explained in
more detail in a later paragraph. In all cases, the θINIT is the same for both parachutes

The first set of computations were carried out to investigate the effect of the payload
model. In drop tests, the parachutes are connected to a rectangular pallet that is weighted
to represent the mass and inertial properties of a proposed crew capsule. The preliminary
parachute cluster computations reported in [10] modeled the payload as a point mass
located at the confluence of the risers. We will refer to this as the payload at the confluence
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(PAC) configuration. Two new computational payload models were created to see how
they would influence parachute behavior. The payload lower than the confluence (PLC)
configuration adds another cable element below the confluence and models the payload as
a point mass at the location of the pallet center of gravity. The payload as a truss element
(PTE) configuration further enhances the model by distributing the payload mass at 9
different points to match the mass, center of gravity, and six components of the inertia
tensor of the pallet. This is accomplished by adding 5 cable elements and 26 truss elements
below the confluence. In all of the payload comparison computations, θINIT = 35◦.

The second set of computations were carried out to investigate the effect of θINIT. Three
values of θINIT were tested: 15◦, 25◦, and 35◦. It should be noted that 35◦ is greater than
the θ values seen in drop tests. The average θ during normal descent is around 15◦, and
the maximum θ does not usually exceed 25◦. We used θINIT = 35◦ only to cause a large
perturbation in order to analyze the dynamic response of the parachute cluster. All of
the θINIT comparison computations used the PTE configuration.

The parachute described in [11] uses a reefing technique to permit incremental opening
of the canopy. The parachute skirt is initially constricted by reefing lines and the reefing
lines are cut at predetermined time intervals to allow the canopy to “disreef” to larger
diameters. In the third set of computations, two scenarios were computed to analyze how
conditions immediately after disreefing could have an effect on long-term dynamics. In
the first scenario, which we call “simulated disreef”, θINIT = 10◦, and for both parachutes
DINIT = 70 ft. These values represent the approximate θ during final disreefing and
the average minimum D during nominal descent. The second scenario represents an
“asynchronous disreef” by using for one parachute DINIT = 70 ft, and for the other DINIT

= 90 ft. These values represent the average minimum and maximum parachute diameters
during nominal descent, respectively. Both scenarios used the PTE configuration.

2.1 Starting conditions

Before an FSI computation is started, a series of pre-FSI computations are carried out
to build a good starting condition. For the process of building the starting condition, we
refer the reader to [11].

2.2 Computational conditions

Figure 2 shows, for a single parachute, the canopy structure mesh and the fluid mechan-
ics interface mesh. The fluid mechanics mesh is cylindrical with a diameter of 1,740 ft and
a height of 1,566 ft. It consists of four-node tetrahedral elements, while the fluid interface
mesh consists of three-node triangular elements. The number of nodes and elements are
given in Table 1. The porosity model is HMGP-FG. The interface-stress projection is
based on the SSP. For more information on the computational conditions, we refer the
reader to [11]. We computed each parachute cluster for a total of about 75 s, with remesh
as needed to preserve mesh quality. The frequency of remeshing varies for each compu-
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Figure 2: Canopy structure mesh (left) and fluid mechanics interface mesh (right) for a single parachute.
The structure has 30,722 nodes, 26,000 four-node quadrilateral membrane elements, and 12,521 two-node
cable elements. There are 29,200 nodes on the canopy. The fluid mechanics interface mesh has 2,140
nodes and 4,180 three-node triangular elements.

tation and usually depends on how often the parachutes collide, how much the cluster
rotates about the vertical axis, and how much each parachute rotates about its own axis.
Depending on the computation, remeshing was needed every 170 to 370 time steps.

2.3 Results

Figures 3–6 show the descent speed U and the drag coefficient, which is calculated as
CD = W/(1

2
ρU2So), where W is the payload weight, ρ is the density of the air, and So is

the nominal area of the parachute.
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Figure 3: Cluster computations for different payload models and θINIT = 35◦.
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Volume (15◦, 80/80 ft)
nn 197,288
ne 1,210,349

Volume (25◦, 80/80 ft)
nn 280,601
ne 1,739,739

Volume (35◦, 80/80 ft)
nn 289,679
ne 1,797,003

Volume (10◦, 70/70 ft)
nn 352,861
ne 2,199,472

Volume (35◦, 70/90 ft)
nn 289,221
ne 1,795,542

Table 1: Number of nodes and elements for the two-parachute clusters before any payload modifications.
Here nn and ne are number of nodes and elements, respectively. The fluid mechanics volume mesh
is tabulated for different combinations of θINIT and DINIT values. The PLC configuration has 1 more
structure node and 1 more cable element. The PTE configuration has 10 more structure nodes, 5 more
cable elements, 26 more truss elements, and 8 more payload elements.

Figures 7–8 show the contact between two parachutes from the asynchronous-disreef
computation. Figures 9–12 show the vent-separation distance (LV S) for all cluster com-
putations. The horizontal black line on each plot shows the approximate vent-separation
distance when the parachutes are in contact. Tables 2–4 summarize the payload descent
speeds and drag coefficients for all of the cluster computations.

Payload Model U (ft/s) CD

PAC 28.1 0.97
PLC 30.1 0.85
PTE 29.5 0.88

Table 2: Average U and CD for different payload models with θINIT = 35◦. Statistical analysis begins
20 s after the start of the computation.

3 CONCLUDING REMARKS

We have presented our FSI computations of clusters of large ringsail parachutes, which
are constructed from membranes and cables with hundreds of ring gaps and sail slits. The
core technology is the SSTFSI technique, supplemented with special FSI techniques. Many
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Figure 4: Cluster computations for PTE and different θINIT values.
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Figure 5: Cluster computations for simulated disreef.

of the special techniques were developed to address the challenges involved in computer
modeling of ringsail parachutes. They include the homogenization techniques that make
the problem tractable despite hundreds of gaps and slits. Another special technique
addresses the computational challenge created by the contact between the parachutes of
a cluster. We have also presented a dynamical analysis of the computed results.
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Figure 8: Parachutes at t = 55.68 s, t = 56.84 s and t = 58.00 s during the asynchronous-disreef
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Figure 9: Vent-separation distance. Left: PAC and θINIT = 35◦, Right: PLC and θINIT = 35◦.
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Figure 11: Vent-separation distance. Left: PTE and θINIT = 15◦, Right: PTE and θINIT = 25◦.
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Figure 12: Vent-separation distance. Left: Simulated-disreef, Right: Asynchronous-disreef.
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