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Abstract—Recently, efforts have been made to bring together
the areas of high-performance computing (HPC) and massive
data processing (Big Data). Traditional HPC frameworks, like
COMPSs, are mostly task-based, while popular big-data envi-
ronments, like Spark, are based on functional programming
principles. The earlier are know for their good performance
for regular, matrix-based computations; on the other hand,
for fine-grained, data-parallel workloads, the later has often
been considered more successful. In this paper we present our
experience with the integration of some dataflow techniques
into COMPSs, a task-based framework, in an effort to bring
together the best aspects of both worlds. We present our API,
called DDF, which provides a new data abstraction that addresses
the challenges of integrating Big Data application scenarios into
COMPS:s. DDF has a functional-based interface, similar to many
Data Science tools, that allows us to use dynamic evaluation to
adapt the task execution in runtime. Besides the performance
optimization it provides, the API facilitates the development
of applications by experts in the application domain. In this
paper we evaluate DDF’s effectiveness by comparing the resulting
programs to their original versions in COMPSs and Spark. The
results show that DDF can improve COMPSs execution time and
even outperform Spark in many use cases.

Index Terms—COMPSs, Big Data, Performance Evaluation,
DataFlow Programming

I. INTRODUCTION

Convergence between high-performance computing (HPC)
and Big Data has become an important research area, driven in
part by the need to incorporate high-level libraries, platforms,
and algorithms for machine learning and graph processing,
and in part by the idea of using Big Data’s fine-grained data
awareness to increase the productivity of HPC systems [1], [2].
Several proposals of higher-level abstractions have emerged
to address the requirements of these two areas in com-
puter systems [3], [4]. Recent frameworks, like COMPSs [3],
Twister2 [4], Spark [5] and Flink [6], share a common dataflow
programming model, but are still focused on a single area.

Dataflow is a special case of task-based models where an
application can be represented as a directed acyclic graph
(DAG), with nodes representing computational steps and edges
indicating communication between nodes. The computation at
a node is activated when its inputs (events, task data) become
available. A well-designed dataflow framework hides low-
level operational details, such as communication, concurrency
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control, and disk I/O, from the users developing parallel
applications, allowing them to focus on the application itself.

While sharing that common model, each framework has
its own abstraction and run time system, which are generally
related to its original environment. Traditionally, HPC environ-
ments provide an interface through User-Defined Functions,
which gives freedom for users to write their applications by
defining its tasks. For instance, in COMPSs, an MPI-based
framework commonly used in HPC scenarios, applications are
written following the sequential paradigm with the addition of
annotations in the code that are used to inform that a given
method is a task and what are its inputs and outputs. Such
frameworks are commonly used in scientific algorithms such
as matrix computations. Despite the good performance in those
scenarios, it is often hard to implement optimized applications
that handle irregular data and complex data flows, such as
those commonly found in machine learning and data mining
areas.

The process of transmitting large volumes of input data
to tasks has a high cost in many HPC systems, specially
when that data is the output of a previous task, as it is
the case in COMPSs, because it involves data serialization
and deserialization steps. Because of that, a common practice
adopted by advanced programmers is to minimize the number
of different tasks by joining the code of multiple functions in
a single task. This is a challenge when black-box libraries of
parallel algorithms are used, because, depending on the flow of
operations, it might be necessary to join the code of different
functions in order to obtain better performance, but that code
would not be available.

On the other hand, recent Big Data environments have
adopted functional languages [5], [6] as a form to express their
data abstractions and flows. Those frameworks implement a
set of common operations and basic algorithms to facilitate
the development of applications by experts in the applica-
tion domain. However, some research [7], [8] shows that,
depending on the application (e.g., matrix computations), those
frameworks achieve good scalability, but poor performance
when compared with an MPI implementation.

In that context, our work discusses our experience in bring-
ing together the programming model of COMPSs and the
functional programming abstractions usually found in frame-
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works like Spark. Our contributions to the convergence path
between HPC and Big Data frameworks are: (7) a discussion
of different implementation techniques used in recent dataflow
models to build more optimized systems and their evaluation in
COMPSs; (ii) an API, in the form of the DDF Library, that
provides our vision of a big data analytic tool that runs on
top of an HPC framework to execute applications efficiently;
and (i7i) a performance comparison of COMPSs and Spark
applications using Python. The goal of DDF is to provide users
with performance comparable to HPC systems while exposing
a well-known user-friendly dataflow abstraction for application
development. We chose to work on COMPSs, extending it
with DDF, because it is a good framework for Data Scientists
that want to create and execute Big Data applications: it has
been gaining popularity, it supports high-level languages like
Python, and it has good performance [7].

To describe our work, the remainder of the paper is
structured as follows: Section II presents some related work;
Section III introduces the COMPSs framework and Section IV
presents some optimization techniques; Section V presents our
API, which provides a new data abstraction and interface to
COMPSs users. The validation of our solution is discussed
in Section VI, and Section VII presents our conclusions and
discusses future work.

II. RELATED WORK

While dataflow is a prevalent model in many parallel and
distributed programming frameworks [4], functional program-
ming is slowly becoming a commom interface. In addition
to Big Data frameworks like Spark, Flink and Swift [9],
functional interfaces are also being frequently used in other
Data Sciences programming tools (e.g., Scikit-Learn' and
Pandas? use it to express their dataflow models).

In the Big Data field, Spark is probably the framework
that most contributed to the popularization of the functional
interface. It was originally built on top of the Resilient
Distributed Dataset abstraction (RDD), a read-only multiset
of objects partitioned across multiple nodes that holds prove-
nance information (lineage). More recently, since Version 2.4,
Spark added the DataFrame, an abstraction equivalent to a
table in a relational database, built on top of the RDD. By
working with structured data, the DataFrame allowed Spark to
gain performance using an optimized execution engine [10].
Besides a set of RDD/DataFrame operators, Spark offers other
tools and libraries for machine learning, graph analytics and
stream processing, among others. In particular, it provides the
MLIib [11] and ML machine learning libraries, but on top of
RDD and DataFrames, respectively.

In past years, many proposed research tried to increase
Spark’s performance in order to make it competitive with
HPC frameworks. One of them is Spark-DIY [12], where
authors created a prototype framework with the integration of
an MPI layer into Spark. The prototype is based on overloaded

Uhttps://scikit-learn.org
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Spark RDD operators with MPI-based implementations (DIY).
Although the authors showed a performance gain by using
DIY, Spark’s usability is affected: users need to provide their
own MPI code to replace a given operator.

In the effort to support functional language constructs,
existing frameworks have been extended to make them more
attractive to users who are already familiar with that interface,
such as the TSet abstraction for Twister2 framework [4],
DDS [13] and DisLib® for COMPSs. In the case of Twister2,
the goal of TSet was to provide users with performance of
an HPC framework while exposing a user-friendly dataflow
abstraction, similar to Spark’s RDD, in Java. Although the ope-
rators provided are limited, the authors showed that Twister2
outperforms Spark in algorithms like KMeans and SVM, that
can be written using those operators. DDS and DisLib are
the first official efforts of the COMPSs team to provide an
abstraction similar to the RDD and a library like Spark’s
MLIib, respectively. Using the DDS interface, applications
can be written using operators like 1oad, map, filter,
and reduce and using Dislib, users can execute machine
learning algorithms. Although both projects are in Python, they
do not have a strong integration to Spark, so users might need
to convert their data to use both frameworks.

The DDF Library we present here resembles TSet and
DDS by providing DDF, a new auxiliary data abstraction
for COMPSs to handle Big Data. Unlike those projects, we
adopted a DataFrame abstraction, an increasingly popular
structure in Data Science [14], [15]. We implemented a large
set of operations and algorithms, many of them not available
in DDS and Dislib. We work on Big Data scenarios, where we
assume that we cannot fit all data in a single memory node.
In addition, all available algorithms are integrated in the same
interface and use a context manager to submit dynamical tasks.

III. THE COMPSS FRAMEWORK

COMPS:s is a programming framework whose main objec-
tive is to ease the development of applications for distributed
environments, composed of a programming model and an
execution runtime that supports it. Applications in COMPSs
are written following the sequential paradigm with the addition
of code annotations that are used to inform that a given method
is a task. That means it can be asynchronously offloaded at
execution time, and can potentially be executed in parallel with
other tasks. In the case of Java and C++, those annotations
are provided in an interface file that indicates, among other
information, whether a parameter is an input or output. In
the case of Python (PyCOMPS), tasks are identified with an
annotation in the form of a decorator started with @task on
top of a method. With that information, COMPSs generates a
task graph at execution time where each node denotes a task,
and edges between them represent data dependencies. The task
graph expresses the inherent parallelism of the application at
task level, which is used by the runtime.

3https://github.com/bsc-wdc/dislib
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Fig. 1. Preprocessing Titanic’s data set in PyCOMPSs.

The COMPSs runtime architecture is based on a main com-
ponent, the master that executes the main code of the applica-
tion, and a set of worker processes deployed on computational
nodes that execute the tasks. Those nodes can be part of
a physical cluster, dynamically instantiated virtual machines,
or containers. The runtime takes care of data transfers, task
scheduling and infrastructure management.

Regarding the programming model, to port an application
to COMPSs, besides requiring the identification of the func-
tions as tasks, may require structural changes to the code in
order to improve application efficiency and to achieve more
parallelism. COMPSs is able to transfer, transparently, files
that are used as input parameter for a task; it also supports
shared disks or HDFS (by using a connector [16]) to speed
up the read step.

As an example, Fig. 1(a) shows the visual workflow of an
application that performs a preprocessing step to predict sur-
vival on the Titanic Disaster*. The idea for this implementation
is to break the input in two partitions and to process them
concurrently, when possible; the dependency graph, similar to
the produced during execution, is shown in Fig. 1(b). Some
operations are embarrassingly parallel and do not need more
than one stage for each partition, as Categorize Name.

“based  on:  https://bit.ly/2MyBOpa,
https://www.kaggle.com/c/titanic

which uses data from

Others, however, like String Indexer, need more than
one stage, since they have some actions that depend on the
combination of partial results obtained from each partition. To
illustrate the use of PyCOMPSs, Fig. 1(c) shows part of the
code, including the Categorize Name step, which converts
passengers names to an index based on its title (“Mr.” will
be mapped to 1, “Miss” to 2, etc.). That can be done using
function udf_name on each partition. The @task annotation
indicates that the function is a COMPSs task which returns one
output.

IV. OPTIMIZATION TECHNIQUES

In distributed systems, the transmission of volumes of
data between workers is one of the main factors that affect
performance. This process often involves another costly step,
the serialization of data into formats that can be transmitted
and interpreted (de-serialization) by the receiver.

Generic purpose frameworks, such as COMPSs and Spark,
adopt standard serialization solutions to ensure universal com-
patibility with data that users will develop in their codes.
Usually such frameworks focus on minimizing the amount of
serialized data, or reducing the number of data transfers. In the
sections that follow, we describe the optimization techniques
that can be used for those frameworks.

A. Grouping tasks

The process to switch from one task to another can vary
between different Dataflow-based frameworks. In COMPSs,
for instance, the output of a task is always serialized and
saved to disk until some other task requests it. In Spark, the
result is serialized and saved in memory; only when that is not
possible the result is written to disk. Whatever the procedure
adopted, that context change always causes overhead. Building
an efficient runtime depends on minimizing it by reducing the
number of different tasks. To be able to do that, we must
characterize the way tasks depend on each other. We define
dependencies as narrow (green arrows in Fig. 1(b)) when each
instance of a task depends on at most one instance of each
of its parents; otherwise, it will be a wide dependency (red
arrows in Fig. 1(b)). To filter or drop rows, and to replace
values, are other examples of narrow dependencies; to sort
data, to perform aggregations/joins and to find duplicated
elements are wide dependencies. In the Titanic application, the
Categorize Name task produces one output item directly
for each input, so it is has a narrow dependency. However, the
String Indexer has a wide dependency, because it needs
to create a global result based on all its partial inputs.

Advanced programmers group sets of tasks that have narrow
dependencies in a single set: since those tasks do not need
data from other partitions, that set can be executed in a
single pipeline. For example, in the Titanic application, each
set of tasks of equal color can be grouped into one set;
in that example, the Standard Scaler: transform
data and Save data task could be performed together. In
case of bifurcation (i.e., when the output of a task is used
in two distinct operation flows), that grouping would have



to be interrupted at that level and a serialization would be
necessary for that step. Spark adopted that technique internally,
by grouping sets of narrow tasks into a unit called a Stage.
On the other hand, in COMPSs, the implementation of each
task is the responsibility of the programmer.

B. Lazy evaluation

Frameworks generally create and analyze a DAG of code
to decide when a set of tasks can be grouped. However, when
it comes to an interactive environment, often used for Data
Science exploratory tasks, the complete code is not always
available. Lazy evaluation is a technique used in frameworks
based on functional language to delay the execution of a task
until the user actually needs its result. In general, operations
submitted by a user are added to a queue until a certain
condition is met. In Spark, if a data transformation operation
has narrow dependencies on its parents, it is added to a queue
with them, creating a Stage. When an action (operations that
return values to the user) is submitted, the enqueued tasks are
executed. That technique allows frameworks to analyze and
optimize the flow of operations.

C. Repartitioning to minimize data shuffle

Wide dependency tasks generally need to collect data gene-
rated in another worker. For example, consider an inner join
operation of two large tables (77 and 72) in a scenario where
each table is divided into four fragments. A naive strategy
to join them would be to compare each fragment of T/ with
each fragment of 72; the merged result would correspond to
an exact solution, however, it would be necessary to create
16 partial inner join tasks to create that result. The naive
inner join is an expensive operation because, in addition to the
computational cost of having to do 16 inner joins, it incurs in
the network transfer, serialization and de-serialization costs.

One smarter approach to minimize the cost of wide de-
pendencies is to reorganize (re-partition) the data as part of
the process, to reduce communication. The two most common
partitioning modes are hash and range partitioning. In the first
one, given a set of keys (which will be used in the inner
join), the new partition index of each element is defined by
its hash code. In the second, each partition must establish
a range condition using key values. The idea is similar to
MapReduce’s shuffle step [17], where it re-organizes its data
before the reduce step.

This idea can be also be extended by reducing the data
before re-partitioning. For instance, the operation of removing
duplicated rows based on their keys needs to shuffle data
between partitions. However, instead of re-partitioning the raw
data, a more beneficial approach might remove the duplicated
keys in each partition, reducing the amount of data to be
re-partitioned. Another case that can be optimized is when
a shuffle occurs after an operation that reduces data. For
instance, a flow that contains a sort operation following a
filter. In this example, a better approach would be to filter
the data before the sort operation. Recent frameworks, like
Spark, use their functional-based interface to hide all this

complexity of optimizing parallel code by analyzing the flow
of the operations and re-organizing its tasks.

D. Exploring data locality

Besides the mentioned techniques, another way to decrease
the transfers between nodes is by exploring data locality by
scheduling tasks on nodes that already possess the input data.
Recent frameworks, such as COMPSs and Spark, implement
different schedulers to explore data locality and other policies
transparently to users. In addition, distributed storage systems
(e.g., HDFS, Cassandra, Hive, among others) that are sup-
ported in many frameworks like Spark (natively) or COMPSs
(through an API [16]) can help the schedulers by increasing
the possibilities of improving data locality when reading files.
Frameworks that use a conventional file system typically adopt
as a rule that input files will be located on the master computer
and will be transferred over the network when requested by
a task. When using HDFS, for instance, data is distributed
over nodes and replicated to increase data availability; that
information can be used by schedulers to direct executions to
the best data provider.

E. Integrating pre-compiled code in applications

Python is an easy-to-use language that has been gaining
momentum in recent years in scientific computing, sometimes
replacing traditional tools as Matlab [3]. However, there are
well-known factors (e.g., the absence of strong typing), that
can significantly decrease its performance. As a solution, many
libraries such as NumPyS , Pandas and Scikit-Learn, provide a
set of Python high-performance operations using pre-compiled
functions based on C/C++. When implementing an application,
it is expected that users use the maximum amount of pre-
implemented functions, also called vectorized functions, in
contrast to pure Python code, to speedup their applications.
Spark adopts a similar idea: its algorithms and operations
available in PySpark (Spark using Python) are executed in
Scala through a connector in the Spark runtime.

V. THE DDF LIBRARY

Based on our experience in developing Data Science ap-
plications and the approaches discussed in section IV, we
developed the DDF Library, a high-level data abstraction for
COMPSs applications with a functional language interface,
and with an initial library of algorithms for Python. DDF
currently includes approximately 40 Extract-Transform-Load
(ETL) operations (e.g., data set union, data load, drop columns
and rows, joins, sort) and more than 30 machine learning algo-
rithms (including scalers, classifiers, regressions and clustering
algorithms), all documented at the official site®.

Distributed DataFrame (DDF) is based on the abstraction of
DataFrame, similar to Spark’s and Panda’s DataFrame, where
data is distributed over nodes. Similar to those tools, DDF
expresses operations by using operators that hide all code
related to those tasks and the optimization policies. DDF runs

Shttps://www.numpy.org
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on top of Pandas, a library providing high-performance, easy-
to-use data structures and data analysis tools for Python. It
abstracts its data as a list of n DataFrames that represents the
data fragmented in n parts. Using Panda’s abstraction allows
us to use a wide set of well-implemented and documented
functions. However, there is no fixed relationship between
functions provided by Pandas and by DDF, because working in
a distributed environment may require additional operations.
For instance, to sort data in DDF, internally the data is re-
partitioned as mentioned in Section IV before sorting. Also,
some available algorithms in DDF use NumPy functions to
speedup Python execution by using well-implemented C/C++
functions.

Fig. 2 shows the code of the Titanic application, previously
mentioned in Fig. 1, using DDF’. As the figure shows,
first we import our DDF data abstraction and the machine
learning functions available in the library. From the operators
supported by the API, we can read a file stored in HDFS. After
that, a flow can be created by using other DDF operators.
Each operator contains a previously implemented COMPSs
function. The input and output of each operator is fixed: a
function can have one or two data inputs, each a DDF variable,
which internally keeps a list of n DataFrames. In addition,
each operator has its particular parameters, described in the
official documentation. The output of each function will be
a DDF variable (e.g., when the result is generated by the
transformation of input data), a primitive data type (e.g., the
result of a statistical operation), or a simple DataFrame (e.g.,
when the result is a table that can fit in memory). Internally,
some machine learning algorithms may have more than one
stage, which produce different types of output; however, the
final output will follow the mentioned standardization. DDF
can export the data to users that want to use their own custom
algorithms following the default COMPSs interface, and also
import their DataFrame-based data to DDF.

Internally, DDF implements COMPSsContext, a class to
manage task submission based on the operation flow’s context.
It allows DDF to adopt lazy evaluation: when an operator is
submitted, COMPSsContext adds that operation to a queue that
describes the operation flow. Currently, operations in the queue
are mapped to three types based on their dependency category:
operations with narrow dependencies are labeled serial, which
indicates that they can be grouped with others if there is no
bifurcation in their flow; operations labeled as last indicate
operations that involve more than one processing stage, in
which the first one must be done individually, and the second
can be grouped with the following tasks, if they have a serial
type (e.g., the sort operation has two stages, the first one, where
partitioning occurs, which cannot be grouped, and the second
one, where the ordering itself takes place; the later stage
can be grouped with other serial operations); and operations
with wide dependencies are labeled others and indicate that
they currently cannot benefit from optimization policies, like

Tthe equivalent Spark code is available on GitHub: https:/github.com/
eubr-bigsea/Compss- Python/tree/master/tests/benchmark/titanic

from ddf library.ddf import DDF
from ddf library.functions.ml.feature import \

StringIndexer, StandardScaler

ddf0 = DDF () .load text('/titanic.csv', storage='hdfs')
sti = StringIndexer (input col='Embarked') .fit (ddf0)

ddfl = sti.transform(ddf0, output col='Embarked')\

.drop ([ 'PassengerId', 'Cabin', 'Ticket']) \
.dropna (features, how='any')\
.replace({'male': 1, 'female': 0},
subset=["'Sex'])\
.map (title checker, 'Name')\
.map (age categorizer, 'Age')\
.map (fare categorizer, 'Fare')
ddf2 = StandardScaler (with mean=False, with std=True)\

.fit transform(ddf2, input col=features,
output col=features)\
.save ("/titanic", storage='hdfs"')

Fig. 2. Using DDF to implement Titanic’s workflow.

grouping tasks, and must be submitted individually. Similar to
Spark, operations can be labeled as a transformation operation,
that transforms a DDF into another one, or an action, that
will force the execution of the flow. Transformation tasks are
queued until an action (like save or cache) is submitted.

In Fig. 2 we divide the flow of operations into three
variables (ddf0 to ddf2) to match the color boxes in
Fig. 1, representing how COMPSsContext will schedule those
operations. For instance, operations related to the creation of
ddfl can be submitted as a single task by COMPSsContext.
However, we could write the code in different forms (e.g.,
using a single sequence or multiple lines); the abstraction is
robust enough to analyze the flow of operations internally and
decide if they should be grouped. Currently, COMPSsContext
is capable of deciding how an operation will be submitted,
whether is should be merged with others following it, or
executed by itself. Its design and its Lazy evaluation nature
support the addition of other aspects that can be implemented
in the future like, for instance, re-organizing the order of some
operations, when possible, to reduce the data size before a
shuffle operation.

In COMPSs, by definition, a task result is always serialized
and stored on disk between workers. The master node holds the
location of that output and interprets it as a COMPSs Future
Object until a synchronization is requested (which transfers
that output to the master as data in memory). We use this
feature in DDF to not overload the central computer: once a
task has been executed, COMPSsContext updates its status to
avoid re-computation and saves its result as a COMPSs Future
Object. Besides the data output, each transformation on DDF
also generates a schema output. This schema contains some
useful information about the current state, like the column
name, the number of rows in each partition and its size in
memory. This schema is a lightweight data used internally in
many operations that need some previous information about
the data without requiring auxiliary tasks — for example, the



sample operation requires the length of each partition before
it can define the sampling parameters.

Operations with wide dependency tasks are expensive for
task-based frameworks such as COMPSs, especially when
their output can be large (e.g., inner joins or sort operations).
To minimize the data shuffle, when possible, DDF tries to re-
duce data size when partitioning (e.g., the process of dropping
duplicated rows involves a partial rows drop when data is being
re-partitioned to reduce data size in the second step). However,
this is not possible for all operations that need a shuffle; for
instance, sorting is a process where the input size is equal
of the output size. Unlike Spark, that manages it in-memory,
COMPSs requires that each sub-fragment is written to disk to
be transferred to workers that will be in charge of merging
sub-fragments with same indices. Although partitioning can
significantly reduce that overhead in COMPSs, it is still a
high-cost step. When a task in COMPSs produces more than
one output, all data are saved at the same time, at the end of
the task, even if one output is produced at the beginning. A
better approach, as Spark does, might be to save/transfer each
output at the moment it is produced inside the task, reducing
idle time. The next Section will evaluate this and other aspects
of DDF performance.

VI. EVALUATION

The main purpose of this assessment is to validate DDF
as a high-level abstraction capable of generating optimized
PyCOMPSs code. We analyzed the gain of performance of
using our API in contrast to a traditional implementation that
does not follow the guidelines mentioned in Section IV. In
addition, we have compared the performance of COMPSs
using our data abstraction with Spark applications.

The applications used to evaluate the performance are
the Titanic workflow, K-Means, Distributed SVM, Sort and
Distinct. Titanic’s workflow (as presented in Fig. 1) is a
good example of a long flow of operations used in Big
Data analytics. We choose K-Means and Distributed SVM as
examples of computationally intensive iterative applications
also used in many high-performance evaluations [4], [8]. Sort
and Distinct (drop duplicate rows) are examples of wide
dependency operations that need a re-partition step (by range
and by hash, respectively). Distinct, differently from Sort, can
also be optimized by trying to reduce data before the re-
partitioning step. All input data are artificially generated: in
Titanic, we replicated the original data set multiple times to
create an input file varying from 2 to 20 GB; after the data
interpretation in memory, that size varied from 8.8 to 94 GB;
the other applications use artificial data generated by a uniform
distribution varying from 10% to 10° rows. In KMeans, four
columns are used as features (varying from 3 to 30 GB) and
in SVM, one binary column is added to be used as label; in
Sort, two of the four columns are used as keys to order; in
Distinct, the four columns are used to define if a row is equal
to others. We perform our experiments on a private cloud at
Universidade Federal de Minas Gerais. All experiments used
COMPSs (v. 2.4), HDFS (v. 2.7), or a Spark (v. 2.4) cluster

with a dedicated master node and eight worker nodes. The
virtualized machines had Intel ES6xx processors of 2.5 GHz
with 4 cores, 8 GB of RAM, with Ubuntu Linux 16.04 LTS.

A. Impact of grouping tasks
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Fig. 3. DDF speedup on Titanic’s workflow agains traditional COMPSs and
Spark implementations. A/l indicates speedup of the whole application; Partial
considers just the time of specific task code.

The first experiment, in Fig. 3, evaluates the impact of
grouping multiple functions in a single task using Titanic’s
workflow. That application, as shown in Fig. 1, has some
sets of functions (represented by same-color boxes) that can
be reduced fewer tasks. For instance, all green boxes in can
be merged into a single task. We measured the elapsed time
that comprehends the code snippet of green color boxes and
also measured the total time of the complete application. We
computed the speedup achieved by using DDF against the
original COMPSs code, without that optimization, and also
the DDF speedup over Spark. Results shown are the average
of ten executions.

The line in Fig. 3 identified as “Partial: DDF vs COMPSs”
represents the speedup of just the group of operations in
the green boxes in Fig. 1 when using DDF (which groups
functions when possible) against a direct implementation in
COMPSs without grouping tasks. The speedup for all in-
put sizes considered is increasing, varying from 1.4 to 2.1,
confirming the importance of using that technique. When
we look at the complete application (blue line, “All: DDF
vs COMPSs”), we have a speedup approximately constant
of 1.6. One possible reason for this is that the complete
application involves many tasks, some of which have wide
dependencies, and also because the save operation is expensive
(it involves saving data in HDFS, with replication factor 3);
all this amortizes the speedup of the technique in this case.

When DDF is compared with Spark, the speedup of “Partial:
DDF vs Spark” is also nearly constant (1.4). It makes sense,
because Spark already implements task grouping, so the differ-
ence in execution times is more related to differences of per-
formance between both runtimes, not due to the serialization
overhead. However, when comparing the complete application,
the speedup is close to 1.5 when we use a small data set but,
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Fig. 4. COMPSs Trace of two different Sort algorithms. a) Batcher approach (811 seconds); b) partitioning approach (219 seconds).

as we increase data size, the costs of the data serializations
that could not be avoided in COMPSs are greater then the
benefits of DDF, and the speedup got reduced and stabilized
close to 1. We believe that shows that Group functions are a
powerful optimization technique; by comparing DDF with a
naive implementation in COMPSs we saw that the speedup
depends on the data size and on the number of tasks that can
be grouped. Also, by comparing with Spark, we saw that DDF
can lead to optimized executions in COMPSs that are at least
as good as Spark for Big Data applications, what is a positive
result for COMPSs.

B. Impact of (re-)partitioning data

Fig. 4 illustrates the impact of using a re-partitioning
approach in operations that need a consensus among its
fragments (as exemplified by Sort). In order to conduct this
experiment, we compared the Sort operation implemented in
DDF, which uses an approach of re-partitioning the data to be
sorted by range values, to an implementation of Batcher odd-
even mergesort [18], popular in GPU scenarios, where data is
sorted in pairs following a priority sequence. We show visual
traces of both executions created by the COMPSs runtime
(Fig. 4(a) and 4(b), respectively). Each gray line in both traces
represents a thread. Each worker node has five threads, one
main thread that communicates with the master (represented
by pink boxes) and other four threads to execute parallel tasks.
The Batcher approach (Fig. 4(a)) is inefficient in big data

scenarios, since it requires many steps and many transfers of
partial results to other workers (red lines). Because there are
many concurrent writes to disk, the serialization of results also
takes a lot of time (green boxes). On the other hand, the DDF
approach (Fig. 4b) is more efficient, with a speedup of 3.7 in
this setup. The total time comprehends the definition of keys
used to split data in new fragments, the splitting step itself, the
time to merge fragments with same index and the time to sort
data locally. In this case, the disk does not suffer an overload
because there are fewer writer tasks and less serialization,
leading to an execution time that is more related to the CPU
time proper (white boxes).

C. Performance comparison between frameworks

The next experiment (Fig. 5) compared some classes of
algorithms and operations using DDF and Spark’s DataFrame
library. Both DDF machine learning algorithms, KMeans and
SVM, performed faster than Spark’s versions. Initially, the
Spark version of KMeans algorithm performed slightly faster
than DDF. However, as we increased the number of rows, the
DDF speedup over Spark increased until 2.4. In SVM, DDF
was superior in all cases. In this experiment, Sort had the
lowest speedup (from 0.8 to 1.0). As we saw in Fig. 4, the
partitioning approach reduces the communication cost between
nodes, but it is yet a expensive step in COMPSs. During the
execution of the split stage, each partial output waits until the
end of its task to start the process of saving the output, creating
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Fig. 5. DDF speedup over Spark for algorithms KMeans and SVM, and sort
and distinct operations.

some idle time. However, when we increase the input size, the
speedup tends to increase until we get the same performance
as Spark. That is probably because, as we increase the data
size, Spark starts to have problems to keep data in memory,
so it starts to serialize more data, as COMPSs does. On the
other hand, Distinct is faster because it can be optimized
by performing the partial drop of duplicate rows in initial
partitions to reduce data shuffle in the later stages, what is
probably not done by Spark.

VII. CONCLUSION

Despite the variety of distributed and parallel frameworks
for HPC and Big Data, the use of functional-based pro-
gramming interfaces is becoming a frequent model in many
of them. In this paper, we discussed many implementation
aspects that affect the performance of task-based frameworks,
evaluated their impact on the COMPSs system and showed
how a functional-based interface, a popular abstraction used
in many Data Science tools, can be used to hide complexity
in data-parallel algorithms, improving their performance. We
explored the potential benefits of the integration between
COMPSs, a powerful task-based framework originated in an
HPC environment, with a functional-based interface. Although
COMPSs has an easy-to-use native interface, the developer
needs to take care of many implementation details to obtain
the maximum of performance. With a functional-based API,
many of those details can be hidden from the programmer.

We developed the DDF Library, a set of machine learn-
ing algorithms and operations on top of a functional-based
DataFrame interface (DDF), in Python, for COMPSs. This
interface implements a dynamic task evaluator capable of gen-
erating optimized code following a set of guidelines discussed
in Section IV. We compared the performance of our proposed
API with Spark and the results show that COMPSs with DDF
is a high-performance, user-friendly solution for Big Data,
with a large set of algorithms and operations that could be used
as a viable programming environment. We expect that this data
abstraction helps users familiar with Big Data environments

to use COMPSs as an easy alternative for a high-performance
framework suited for Big Data applications.

The ongoing work includes developing the support for more
functions in DDF and improving the optimization guidelines,
for instance, to support the dynamic reorganization of tasks to
reduce data volume during the shuffle step.
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