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Abstract. This study deals with the methods of architectural design of structures made
of textile membranes. We consider the problem of form finding of membranes strained by
rigid skeletons and cables installed along the free edges of the membrane. First, we recall
the methods used to solve the simple problem of finding form in the case of constant
surface tension. Then we propose a method based on the minimization of the total
potential energy. The problem is discretized using membrane triangular finite elements.

The potential considered is an energy density per unit area of uniform and constant
surface tension. The minimization of this potential leads to the minimal surface solution.
However the problem is singular with respect to the in-plane displacement. To handle
this problem, the potential is enhanced by an elastic energy in order to regularize the
numerical scheme and prevent the mesh degeneration. It is also enhanced by the elastic
energy due to the cable tensions. The solution is obtained by minimizing the potential
energy using the conjugate gradient method.

1 Introduction

The flexible structure like cables and membranes are characterized by form follower
internal forces ; the stress vector remains axial to the cables and remains in-plane in case
of membrane. The shape of such structures, when they are uniformly taut, is essentially
defined by force equilibrium considerations. Conversely, the loads distribution in the mem-
brane are strongly governed by the attained geometry. The structures without bending
stiffness obey this principle.

The literature on the form optimisation may be classified into two main topics : struc-
tural optimization and form finding [8]. The first topics focuses on the search of the initial
shape of the structure through a kinematic criterion or a resistance criterion, whereas the
form finding focuses on the final form that can reached by a structure under a prescribed
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stress field. The first method is general and applies to any kind of structure as an in-
verse problem, whereas the second method is more than often used for structures made of
stretched membranes and cables subjected to large deformations. It is necessary to clearly
distinguish the objectives of these two approaches.

Membrane structures are characterized by a pure tensile in-plane stress state (i.e. wi-
thout bending stress). The pure tension is governed by local equilibrium. When the stress
state is in-plane, uniform and isotropic, the resulting geometry is defined by a minimal
surface. This is the case, for example, of the soap film which exhibits a uniform surface
tension and a minimum surface area.

Bletzinger [2] and Veenendaal [13] summarized methods of form finding developed in
the last decades in three main families :

– Stiffness matrix methods that are based on using the standard elastic and geometric
stiffness matrices [11, 6, 12].

– Geometric stiffness methods which are material independent, based on the force
density method concept with some extensions [5, 1, 10].

– Dynamic relaxation methods which solve the problem to reach a steady-state solu-
tion, equivalent to the static equilibrium solution.

In this study, we will show that the force density method in the case of prescribed
stress field can be formulated as an energy minimisation problem. Use will be made of the
conjugate gradient method, which is a first order method, to minimise the total potential
energy. It will be shown that this method is robust and efficient to solve the form finding
problem.

2 Geometric model

In the force density approach, the membrane is represented as a geometric surface and
not as a material one. The surface represents the midplane of the membrane and serves
only to define the force field domain. The optimal form is defined by this surface when the
local equilibrium of the force field is satisfied at each point of the whole surface. Seeking
for the optimal form requires the definition of an initial surface S ⊂ R2 which defines the
surface state at time t0. This surface evolves towards the optimal form s ⊂ R2, at time
t (t > t0), by a geometric transformation Φ.

We use the bijective mapping function Φ to relate a point X ∈ S to a point x ∈ s :

S � X �→ x = Φ(X, t) ∈ s

The initial surface S is an approximation of the optimal solution s, in the sense that
s is independent from the choice of S. Time t is any kinematic parameter. The material
curvilinear coordinates (ξ1, ξ2) are introduced to describe the surface of the membrane,
the third dimension is not represented geometrically but taken into account through the
thickness denoted ξ3(h/2 ≤ ξ3 ≤ h/2) and assumed to be uniform.
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Figure 1: Transformation du repère matériel.

Representing the membrane by a surface requires both stress and strains fields constant
along thickness ξ3. Integration along the thickness is equivalent to multiplying the inte-
grated quantity by h.

We denote Gα = ∂X/∂ξα the curvilinear base in the initial configuration, and gα =
∂x/∂ξα the mapped base in the final configuration, where Greek indices take the values
{1, 2}.

The metric tensor in the initial configuration is defined by Gαβ = Gα ·Gβ and that in
the actual configuration is defined by gαβ = gα · gβ. The deformation gradient tensor F
writes

F(X, t) =
∂Φ(X, t)

∂X
(1)

and the Green tensor is

E =
1

2

(
FTF− I

)
(2)

We can also write the strain tensor as a function of the metric tensors in the current
and reference configurations :

Eαβ =
1

2
(gαβ −Gαβ) (3)

3 Minimal surface method in form finding

A membrane uniformly and isotropically stretched on its rim takes the form which
minimizes its surface. An example of such membranes is soap films. The surface tension
of the film ensures a membrane retraction as much as possible until reaching the minimum
area. The method of minimal surface amounts to investigate the shape of the membrane
that achieves the minimum total surface s. The problem to solve is formulated as follows :

x = arg min
x

s =

∫

s

ds =

∫

S

JdS (4)

where J is the determinant of tensor F, s the surface in the current configuration and S
the surface in the initial configuration. The surface stationarity condition is
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δs =

∫

S

δJdS =

∫

S

JF−T : δFdS = 0 (5)

It should be noted here that the area s is not necessarily material and the transforma-
tion F is the mapping function that merely connects the two configurations occupied by
the considered surface.

4 Potential energy method for prescribed stress field

In this section, we show that minimum surface finding – which is a purely geometrical
method – can be formulated as a static equilibrium problem using the theorem of potential
energy minimum. The energy considered results from a constant transversely isotropic
stress field (e.g. a uniform surface tension on the membrane). One therefore seeks the form
achieved by the membrane when it is stretched by a known plan stress field, represented
by a Cauchy stress tensor σ prescribed on the whole membrane, of the form :

σ = τ

[
1 0
0 1

]
= τI σi3 = 0, i = 1, 2, 3 (6)

The stress field being prescribed on the current configuration, we seek the position
field x = X +U that makes the membrane in equilibrium position under this load. The
potential energy associated with σ is

Πs = h

∫

s

σ : u,xds (7)

The equilibrium configuration makes the potential energy stationary for any displace-
ment variation δu. The corresponding deformation variation is

δu,x = δu,X ·X,x = δx,X ·X,x = δF · F−T

It follows that when the tension field is isotropic, σ = τI, the stationarity condition of
the potential energy can be written as

δΠs = hτ

∫

s

I : δu,xds = hτ

∫

S

detFF−T : δFdS (8)

which is exactly the minimal surface condition established in Equation (5).
Let us define the potential Πs whose minimum defines the equilibrium surface configu-

ration :

Πs = hτs (9)

The problem to solve is then formulated as follows :
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xsol = arg min
x

Πs = hτ arg min
x

∫

s

ds = hτ arg min
x

∫

S

JdS (10)

This result shows the equivalence, in the case of an isotropic stress field, between the
minimum surface approach and the minimum of potential energy theorem. However, in
the energy method, one can add other potentials of various loads like elastic potentials of
deformable bodies (e.g. cables and flexible supporting structures).

5 Regularization of the form finding methods

The problem of form finding is to find the position x = X + U , i.e. the actual
configuration s, that makes Πs minimum for any variation δU.

This method has the particularity of being singular for degrees of freedom within the
plane of the membrane. Indeed, for a given meshed surface, an arbitrary movement of
nodes in the tangent plane of the membrane does not change the total area. From a
numerical point of view, this can lead to an optimal solution with a very distorted mesh.

To avoid degeneration of the mesh (coincidence of two nodes for example), we should
regularize the problem by limiting their in-plane movements. There are several methods
to regularize the problem. One of them consists in projecting the displacements obtained
at each iteration along the normal to the membrane.

In our case, we have supplemented the quantity to minimize Πs with the elastic strain
energy of the membrane Πe, which plays the role of springs between nodes in the plane of
the membrane. For this energy, the material is assumed hyperelastic and governed by the
quadratic elastic potential of Saint-Venant Kirchhoff with a surface energy density Ψe :

Πe =

∫

V

Ψe(E)dV (11)

In plane stress condition, the out-of-plane stress components vanish :

Σi3 =
∂Ψ(E)

∂Ei3

= 0 (12)

Equation (12)c, Σ33 = 0, establishes an implicit relationship between the components
of the strain tensor.

Σ33 = Σ33 (E11, E12, E22, E33) = 0 (13)

From this equation, the normal component E33 can be expressed in terms of the in-
plane components of E as :

E33 = f (E11, E12, E22) (14)

It is then possible to reduce the volume energy density Ψe into a surface density. For
this, we rewrite the potential Ψ as a function of E11, E12 and E22 in the form :
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Ψ̃e (E11, E12, E22) = Ψ (E11, E12, E22, E33) (15)

The plane stress condition has enabled one to eliminate E33 from the expression of the
elastic potential which depends therefore only on the in-plane components of strain tensor
E. The elastic potential energy of the membrane can be written as

Πe =

∫

V

Ψe(E)dV = h

∫

S

Ψ̃e(E)dS (16)

The minimisation problem involves the quantity Π = Πs +Πe and is the rewritten as

xsol = arg min
x

(Πs +Πe) (17)

Adding the elastic energy Πe to the energy of the surface tension Πs preserves the
structure of the mesh as long as the mesh is far from the optimal shape. However, when
approaching the solution, this energy must be deactivated so that the optimal resulting
shape is not altered by the added elastic energy.

6 Stain energy canceling

The addition of strain energy to the minimizing quantity introduces in-plane stiffness
that disturbs the solution. The minimization leads, as can be seen in Figure 5 below, to
the formation of wrinkles orthogonal to compressive stresses. It is therefore necessary to
ensure that the quantity minimized in (17) leads to the minimum area of the membrane.
To cancel the elastic energy at the end of the iterative process, we simply cancel the
strain tensor. For this, we modify the strain tensor defining Πe by updating the reference
configuration. This idea was first proposed by Bletzinger [8] and proves to be efficient
and robust. The process is repeated until convergence. For each minimization step n, the
strain tensor formula (2) is modified by replacing the metric tensor G in the reference
configuration by that in the configuration reached at the previous step n− 1. At the end
of the iterative process, the two configurations n−1 and n are close enough to each other,
they become asymptotically the same and the strain tensor vanishes. We write

E
(n)
kl =

1

2

(
g
(n)
kl − g

(n−1)
kl

)
(18)

with g
(0)
k = Gk. At convergence, the strain energy Πe, activated for the sole purpose of

the problem regularization, will be automatically canceled.

7 Minimisation of the potential energy

The minimization formulation of the energy due to a uniform and isotropic stress field,
allows extension of the formulation by adding any kind of potential energy to the quantity
to be minimized. Thus, one can easily includes the energy Πc due to deformable cables
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supporting the membrane edges, the energy due to the deformable elements bearing the
structure, or the energy due to dead loads uniformly distributed over the membrane such
as the snow. The problem then writes

xsol = arg min
x

Πtot = arg min
x

(Πs +Πe +Πc + ...) (19)

The total potential energy Πtot is discretized using the finite element method and is
written as a nonlinear function of the nodal unknown displacements {U}. Minimization is
done either by the first order minimizing methods as the conjugate gradient or the second
order which requires the linearization of the energy using the Taylor series expansion :

δΠtot =
∂Πtot

∂ {U}
{δU}+ 1

2
{δU}T ∂2Πtot

∂ {U}2
{δU}+O(‖δ{δU}‖)3 (20)

=
{
∇Πtot

}T {δU}+ 1

2
{δU}T [K] {δU}+O(‖{δU}‖)3 (21)

When using the second order methods of the Newton or quasi-Newton-type we simply
require that the energy is stationary.

When using the first order methods, the solution is sought for with descent directions
oriented in the opposite direction of the potential gradient {∇Πtot}. This type of algorithm
converges in all cases to a minimum whenever it exists. Their main disadvantage is that
its convergence is linear.

The second order methods, like quasi-Newton ones, are preferable to the first order
methods because of their quadratic convergence. However, these methods lose their ad-
vantage when the stiffness matrix is ill-conditioned as in the case of a significant loss of
stiffness. In this situation, the first order methods take an advantage in that the algorithm
works well, even if the critical points exist and making the stiffness matrix singular.

We used the conjugate gradient method to seek for the equilibrium position. This me-
thod uses only the gradient vector of the total potential energy and does not require spe-
cific processing of hypostatic kinematic modes. Numerical developments are implemented
in the Brakke’s Surface Evolver program [4].

8 Numerical examples

8.1 Scherk’s problem

We consider here the classical test of the Scherk form finding problem. It is a minimal
surface with boundaries described by the unit cube. The initial surface is made of three
flat squares which is each meshed using 1024 linear triangular finite elements.

In order to accelerate the evanescence of the elastic potential, we introduce a weighting
factor α = λn with λ ∈ [0, 1] and n the computational step. The problem to solve is then
written as
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(a) Initial mesh (b) Mesh without regulari-
zation.

(c) Elastic potential regu-
larization.

Figure 2: Scherk’s test meshes.
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Figure 3: Convergence of central point z-position with respect to parameter α.

xsol = arg min
x

Πtot = arg min
x

(Πs + αΠe +Πc + ...) (22)

For λ = 1, the problem is the same as in (19), for λ close to zero the coefficient α tends
quickly to zero which reinforces the elastic energy cancellation. Figure 3 shows the effect
of the coefficient α on the middle point position convergence.

8.2 Tent structure

The numerical example presented in what follows is a tent structure composed of an
elastic membrane supported by cables, fixed anchors and rigid hoops. The structure has
a wheelbase on the ground in rectangular form 2l × 3l in the (x, y) plane, blocked on
8 anchors (A, B, ..., H), and surrounded by cables on the free edges. Two hoops are
prescribed at y = l and y = 2l, having the parabolic form z = 2l x

l
(x
l
− 2) with l = 0.5 m.
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A B C D

E F G H

Hoops
Cables

Figure 4: Initial mesh after geometric contraints.

Figure 5: Deformed mesh without elastic energy canceling.

Figure 4 shows the mesh used and the displacement boundary conditions prescribed
on the hoops.

The problem data are fixed as follows :
– For the membrane : surface tension τ = 1 Pa ;
– For the elastic strain energy used for regularization : Young’s modulus 5.105 Pa ;

Poisson’s ratio 0.3 ; thickness 10−4 m.
– For cables : Young’s modulus×section ES = 10 N.
– For the mesh : 1601 nodes, 3072 triangular finite elements.
Figure [5] shows the mesh obtained by minimizing functional Πtot without canceling the

elastic energy of the membrane Πe. The deformed configuration, at this stage, has folds
due to bifurcations arising from the compression of the membrane in certain directions.

By using the updated initial strategy, the elastic energy can be canceled iteratively.
The membrane will gradually tend to a uniform and isotropic stress state. σ = τI. Figure
6 shows the shape obtained after total cancellation of Πe.

9 Conclusions

In this study we have transformed the stress field approach used in the form finding
method to an energy minimisation problem. We have shown that the case of a uniform
isotropic stress field is equivalent to the surface minimization. We have used the initial
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Figure 6: Deformed mesh with elastic energy canceled (Optimal shape).

configuration updating strategy to regularize the numerical scheme. This is done by mo-
dification of the metric tensor of the initial configuration.

The conjugate gradient method used to seek for the energy minimum proves to be very
efficient to correctly handle hypostatic instabilities associated with membranes. Indeed,
the mechanical model used is a pure membrane without bending stiffness. It is precisely
this property of in-plane stress field that is formulated here as the criterion for form
finding.
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