
1

CleanET: Enabling Timing Validation
for Complex Automotive Systems

Sergi Vilardell
‡,†, Isabel Serra†,?, Hamid Tabani†, Jaume Abella†, Joan Del CastilloΨ, Francisco J. Cazorla †

‡Universitat Politecnica de Catalunya (UPC), Spain
†Barcelona Supercomputing Center (BSC), Spain

?Centre de Recerca Matematica (CRM), Universitat Autonoma de Barcelona (UAB), Spain
ΨDepartament de Matematiques, Universitat Autonoma de Barcelona (UAB), Spain

Abstract—Timing validation for automotive systems occurs
in late integration stages when it is hard to control how the
instances of software tasks overlap in time. To make things
worse, in complex software systems, like those for autonomous
driving, tasks schedule has a strong event-driven nature, which
further complicates relating those task-overlapping scenarios
(TOS) captured during the software timing budgeting and those
observed during validation phases. This paper proposes CleanET,
an approach to derive the dilation factor r caused due to the
simultaneous execution of multiple tasks. To that end, CleanET
builds on the captured TOS during testing and predicts how tasks
execution time react under untested TOS (e.g. full overlap), hence
acting as a mean of robust testing. CleanET also provides addi-
tional evidence for certification about the derived timing budgets
for every task. We apply CleanET to a commercial autonomous
driving framework, Apollo, where task measurements can only
be reasonably collected under ’arbitrary’ TOS. Our results show
that CleanET successfully derives the dilation factor and allows
assessing whether execution times for the different tasks adhere
to their respective deadlines for unobserved scenarios.

I. INTRODUCTION

The software timing process for critical real-time systems
starts in early design stages by deriving budgets for the exe-
cution time of tasks, i.e. estimating the Worst-Case Execution
Time (WCET) of tasks [1], [2], along with task schedules.
Both ensure that all software functions execute timely. As the
complexity of critical systems increases, deriving estimates
under the worst-case conditions that can arise during system
operation becomes increasingly complex [2]. This is com-
pounded by the fact that, in early stages, the system is not
even fully integrated. During late design stages, as part of the
incremental integration of the different subsystems, validation1

tests are performed to assess whether the timing of the system
still adheres to its specifications [3].

Software timing validation is more relevant as software
gets integrated on the hardware platform under a close-to-
final setup. It builds on observability to retrieve relevant and
abundant timing information from the platform and controlla-
bility to exercise software under potentially-feasible operation

1Note that verification often refers to the evaluation of whether requirements
and specifications are met by the items composing the system during the
design phase, whereas validation occurs a posteriori once the system has
been designed, in the different integration stages, building intensively on test
campaigns. However, in some domains, such as avionics, these terms can be
used interchanged.

conditions (e.g. with Simulink environments on a host com-
puter). How the jobs of a task overlap with jobs (i.e. tasks
activations) running on other cores plays a key role in software
timing, as it has been shown that contention in the access to
hardware shared resources has huge impact in tasks execution
time [4], [5], [6]. Controlling task overlapping scenarios (TOS)
is challenging in simple systems when a dynamic-priority
scheduling is used (e.g. EDF). As hardware and software
platforms for critical systems increase their complexity, it is
even harder to achieve controlability on TOS as many tasks are
not scheduled according to any well-know scheduling scheme
for real-time systems, or they are simply event driven.

Tests during the validation phase measure timing in rele-
vant scenarios as stipulated in safety guidelines for safety-
critical real-time systems. A solid validation process based on
qualified tools like RapiTime [7] helps achieving sufficient2

coverage of relevant execution scenarios. The absence of
any (timing) violation serves as means of validation of the
correctness of the derived software timing budgets.

Tasks overlapping heavily impacts individual tasks’ execu-
tion time and is an aspect of multicore-based systems for
which no satisfactory solution exists yet. Given a reference
analysis task, the number of other tasks (and the particular
tasks) that overlap with it changes its execution time. Likewise
the degree of overlap, i.e. how long tasks overlap, affects
also its timing behavior. Task overlap varies in non-obvious
manners across individual measurements and also during oper-
ation. Therefore, measurements are subject to hard-to-control
contention, which brings uncertainty to the validation process.
While the user might have means to observe the variability
among tasks in observed TOS during tests, it is hard to enforce
specific TOS.

We make the following contributions to tackle this chal-
lenge:

Contribution 1: We propose CleanET, that stands for clean
execution times, an approach to distill both, contention-free
measurements as well as measurements subject to specific
contention levels, to enable a reliable timing validation process
that captures any TOS that might occur during operation.

2In the context of automotive systems, whether a set of tests suffices or not
relates to the coverage of relevant execution scenarios, as defined by highly
qualified engineers, which enumerate and detail those scenarios so that the
risk of occurrence of execution conditions different to those of the identified
scenarios can be deemed as residual.

The final publication is available at ACM via http://dx.doi.org/10.1145/3341105.3373871

2

CleanET builds upon statistical dependence analysis to derive
the dilation factor r affecting execution times due to simulta-
neous task execution. CleanET resamples the execution times
measured during testing to derive tasks execution time under
(1) no overlapping scenarios (i.e. in isolation), (2) full single
overlapping (i.e. when the task overlaps 100% of the time with
exactly one other task), and (3) data with any specific overlap
representing the worst overlap of interest (e.g. full overlap with
N other tasks). CleanET estimates provide additional means of
validation for derived time budgets and alleviates the pressure
on end users to produce tests cases with different TOS.

Contribution 2: We apply CleanET on a commercial Au-
tonomous Driving (AD) framework, Apollo [8], where the
different modules (tasks) of the framework overlap partially
and in an ’arbitrary’ manner, thus exposing the challenge
that CleanET targets. Apollo is an intricate set of tightly-
coupled software modules, including an Operating System,
which jeopardizes the possibility of collecting measurements
for each module under controlled TOS. CleanET successfully
distills the dilation factor and resamples measurements to any
TOS of interest.

Contribution 3: We illustrate the use of resampled mea-
surements obtained with CleanET by estimating the execution
times for specific Apollo modules for different overlap sce-
narios. Our results show that, in this particular case, we can
account for the impact of multiple tasks fully overlapping with
the one under analysis, thus being able to validate scenarios not
triggered by the available test cases. Our results also show that
accounting for full overlap with 2 tasks instead of 1, produces
a negligible increase of the execution times for this particular
AD framework. Furthermore, we show that, with the input
data available for Apollo, we can also estimate the impact of
the overlap of 3 other tasks, but confidence is lower due to
the low frequency of measurements capturing this scenario. In
any case, CleanET is not constrained to the number of tasks
overlapping with the one under analysis, and allows reasoning
on the impact of overlapping and the confidence of the values
obtained.

The rest of the paper is organized as follows: Section II
provides a brief background on the usual validation process
for automotive systems. Section III analyzes the execution time
measurements from the Apollo autonomous driving software.
Section IV presents our approach to distill noise-free execution
times. In Section V, we present our evaluation of CleanET
on Apollo. Section VI reviews the related work and, finally,
Section VII sums up our conclusions.

II. BACKGROUND

This section provides some background on the usual val-
idation process for some safety-related real-time systems,
in particular those that mostly rely on measurements (e.g.,
automotive, railway). We use automotive terminology for the
sake of consistency. We also introduce some details about
the structure of the Apollo AD framework and provide some
background on solutions to account for interference in high-
performance systems for safety-critical applications with par-
ticular emphasis on measurement-based practices.

Fig. 1: Apollo 3.0 software architecture pipeline.

A. Apollo Autonomous Driving Framework

AD systems drive the vehicle towards a specified destination
as safely and efficiently as possible. To this end, the AD system
includes complex combinations of various input sensors such
as cameras, short-range and long-range radars and LiDARs
to scan the surrounding area around the car and track the
moving objects. The system features sophisticated navigation
schemes to locate the position of the vehicle with centimeter-
level precision. Based on this information, the system plans
the future paths, predicts the trajectory of moving objects,
and controls the vehicle to follow the specified paths. These
are the main stages of almost all practical state-of-the-art AD
systems [8], [9], [10]. Figure 1 shows the main modules and
architecture of a representative AD system, Apollo 3.0. The
main modules are the following:
(1) Perception module identifies the obstacles in the surround-
ing of the autonomous vehicle.
(2) Prediction anticipates the future motion trajectories of
perceived obstacles/objects.
(3) Localization leverages information received from different
sensors to estimate the location of the vehicle precisely.
(4) Navigator (Routing) module tells the vehicle how to reach
the specified destination.
(5) Planning plans the spatio-temporal trajectory of the vehi-
cle.
(6) Control generates control commands such as accelerating,
braking and steering based on the outcome of these modules.
(7) CANBus passes all the control commands to the vehicle
hardware and also provides some information back to the AD
system.
(8) HD Map module is a library that provides detailed struc-
tured information about the roads.
(9) HMI (Human Machine Interface) is a module for viewing
the status and controlling the functions of the vehicle in real-
time.
(10) Monitor is a surveillance system to check all the software
and hardware modules.
(11) Guardian is a safety module responsible to intervene
whenever Monitor detects a failure.

Inter-Module Functional Dependencies: The dependen-
cies between different modules of Apollo can be triggered in
three different ways:

• Periodically, based on a timer (On-Timer).

3

• Once a module produces data to be served by its succes-
sor or successors.

• Whenever a module receives a request message from
another module. Accordingly, a response message should
be computed and published.

As shown in Figure 1, each module may be triggered by
either two or just one of these ways.

• Perception receives sensor input data such as Radar data,
LiDAR point-cloud data, and camera data. Based on these
inputs, this module detects objects of interest and traffic
lights and tracks them inside consecutive frames.

• Localization module has two modes: a RTK-based3 mode
with a timer-based function (On-Timer), and Multiple
Sensor Fusion (MSF).

• Prediction receives output data of both Perception and
Localization. It updates its internal status whenever it
receives a Localization update. However, the main pre-
diction function is triggered once Perception publishes an
output message.

• Navigator module is triggered whenever a routing request
is received.

• Planning, Control and CANBus modules are all triggered
periodically and also when they receive Prediction output,
human commands and Control commands respectively.

In Figure 1, control lines, On-Timer triggers, and inter-
module updates are shown with different arrow types.

B. Timing Validation in Automotive Systems

The need for deriving time budgets for safety-related soft-
ware components in automotive emanates from safety require-
ments, as described in ISO 26262 automotive functional safety
standard [11]. Safety requirements determine the maximum
response time affordable for a given functionality and the
fault tolerant time interval (FTTI), which stands for the time
allowed since a fault occurs until an action is taken to recover
or to bring the system to a safe state. Both determine the
end-to-end time for a given functionality to be performed
(including sensing and actuation time). Once discounted the
time devoted to interfacing with physical components, the
remaining time is the time budget allocated for the software
component to complete its execution.

Automotive systems are designed and verified following ap-
propriate practices to achieve safety compliance. For instance,
WCET estimation tools may be used, together with appropriate
response time analysis methods for task scheduling. Neverthe-
less, a validation step is needed before deploying the system to
detect system faults due to, for instance, the violation of some
assumptions caused during integration. Whether an application
adheres to its timing constraints during the validation process
is normally assessed in hardware-in-the-loop testing environ-
ments, where the complete application can be run. Appropriate
test equipment is used to collect information on the execution
of the application under analysis in general, and each of its
tasks in particular, thus with a much higher observability than

3Real-time kinematic (RTK) positioning is a satellite navigation technique
used to enhance the precision of position data derived from satellite-based
positioning systems (global navigation satellite systems, GNSS).

in the system during operation. However, due to the high
coupling between the different tasks, the operating system,
and the input/output interface of the application, individual
tasks cannot be run in isolation or at externally-controlled
time instants. Hence, although start and end times can be
obtained for the different jobs of each task (observability),
it is not possible to enforce specific release times at will
(controllability). Overall, tasks overlap with each other in an
intricate manner depending on release times dictated by input
data and timers, as well as by their duration.

Execution time measurements, therefore, reflect arbitrary-
looking overlaps across tasks, representative for the input
data used during tests. Whether other overlaps are possible
and whether those can lead to higher execution times is, in
general, unknown and hard to control in practice. Hence,
other than considering an engineering margin on top of the
high watermark execution time to account for scenarios not
triggered by the tests used, end users lack tools to use those
execution time measurements in a more informed manner
for validation purposes. While engineering margins set based
on experience have worked for hardware platforms with low
execution time variability, the increasing use of GPUs and
other high-performance hardware to match the performance
needs of AD frameworks brings much higher performance
variability due to contention in the use of shared resources
(e.g. shared caches and main memory bandwidth). Hence, end
users lack means to quantify whether unobserved scenarios
could lead to timing violations.

C. Accounting for Contention on WCET

Multiple approaches exist to account for contention due to
concurrency on the access to shared hardware resources, as
part of the design and verification process of safety-related
real-time systems. While it is not the purpose of this paper
surveying on this topic, we identify the main families of
techniques. Some techniques control the impact of contention
by building upon some hardware and/or software support [5],
[12], [4]. Other techniques use such support to completely
avoid any impact due to contention [13], [14], [15], [16],
[17]. Finally, some other approaches, rather than controlling
or mitigating contention, aim at upper-bounding it [18], [19].

Several measurement-based WCET estimation techniques
rely on (1) collecting measurements fully representative of the
operation conditions (or the worst-case operation conditions),
or (2) collecting measurements of the task in isolation. In the
former case, measurements already account for contention,
and they can be used to feed appropriate tools for timing
analysis [7], [20], [21], [22], [23]. In the latter case, either
execution time measurements or WCET estimates are inflated
with an upper-bound to the impact of contention resulting in
a contention-aware WCET estimate / response time [6], [24],
[25].

While each of those techniques has its assumptions and
requirements and has been proven appropriate for WCET
estimation as part of the verification process, a validation
step is still needed during system integration phases, in ac-
cordance with safety-related systems development processes.

4

Fig. 2: Timeline interval of Prediction showing the behaviour
of the outliers.

In this context, performing a reliable timing validation process
building on measurements with arbitrary overlap across tasks
is a difficult challenge. This paper addresses this challenge as
presented next.

III. APOLLO CHARACTERIZATION

A. Experimental Setup

We target Apollo [8] AD framework, as the largest existing
AD project with more than 120 partners including top-tier
AI and tech companies, and car manufacturers. Since our
target are real automotive systems, we have ported it to the
NVIDIA’s latest automotive platform, Xavier SoC4, which
is integrated in the Jetson AGX Xavier [27] platform. The
Xavier SoC consists of an Octa-core ARM-based CPU, a 512-
core NVIDIA Volta GPU, and several accelerators such as
specialized deep learning accelerators (NVDLA) to meet the
needs of automotive systems. From all Apollo modules, we
focus on those with most intensive computation requirements,
which are the ones using the GPU: Prediction and Perception.
Those modules create mutual interference (contention), and
hence, challenge timing validation. Both modules use the
GPU in a similar manner since both build upon Deep Neural
Networks (DNN) and Recurrent Neural Networks (RNN).
Both call the same matrix multiplication primitives with sim-
ilar parameters. Therefore, whenever they attempt to use the
GPU simultaneously, they are expected to create significant
interference on each other. In our analysis, for simplicity, we
model how the execution time of the Prediction module is
affected by the overlapping with the execution of Perception
jobs. The symmetrical analysis can also be performed, but we
omit it due to lack of space and since it does not offer further
insights.

B. Prediction Module Timing Behavior

From our analysis of the prediction module’s execution
times we have realized that the vast majority of executions
occur in a non-overlapping manner between each other with

4Xavier is the largest SoC ever built with more than 7 billion transistors
and it is the main SoC integrated in Jetson AGX Xavier, NVIDIA Drive
Xavier, and NVIDIA Drive Pegasus, all targeting the computation demand
for the highest levels of automation (e.g., levels 4 and 5 according to SAE
International [26]).

Fig. 3: Execution time histograms

few exceptions. In particular, periodically a Prediction job
starts with an unusual delay w.r.t. the finalization time of
the previous job; then said job takes longer execution time
than expected. Sometimes, before a long job finishes, a new
Prediction job is released, but it is cancelled soon after its start
since the previous one is still running. Therefore, sporadically
(exactly once every 10 jobs at most), we have two jobs with
anomalous timing behavior. This is illustrated in Figure 2,
where we show an excerpt of the chronogram for the Predic-
tion module. As shown, anomalies appear at time instants 26.5,
28.5 and 29.5 seconds, shown in green color (abnormally high
execution times) and yellow color (abnormally low execution
times after abnormally high ones). We, therefore, classify
execution times into three classes: normal corresponds to the
normal Prediction behavior, before outlier class corresponds to
overly large execution times, and the outliers class corresponds
to the outliers that start before the previous job has finished.

Figure 3 shows the histograms of each class with the same
color code as for previous figure. The particular execution
time mean (in milliseconds) for each class is 100, 144, and
50.3 respectively. Hence, outliers have shorter execution times,
whereas the execution times before the outliers are particularly
high. Finally, normal concentrates most jobs in a relatively
narrow execution time interval.

Based on this evidence, we conclude that execution times
for each class need to be treated separately. Moreover, we build
on the common practice in safety-critical real-time automotive
and robotics systems, among others, where some jobs can fail
(e.g. due to an overrun) as long as the number of failures in
the last M jobs does not exceed a particular threshold, N [28],
thus building on top of the Typical Worst-Case Response Time
(TWCRT) rather than on the absolute Worst-Case Response
Time (WCRT). In our case, by simply studying normal jobs,
we discard up to 2 jobs every 10, whose timing behavior, if
it violates any deadline, would not be a problem as long as
2 out of 10 runs are allowed to fail, thus much in line with
automotive and robotics common practice.

C. Aggregation of Overlaps

Once filtered the Prediction jobs of interest, we study
their overlap with Perception jobs. Our analysis reveals that
each Prediction job can overlap, during different parts of
its execution, with up to 3 Perception jobs. The fraction of

5

Fig. 4: Portion of normalized execution times that overlaps
with different number of Perceptions simultaneously.

time overlapped with 0, 1, 2, or 3 Perception jobs for each
of the Prediction jobs is depicted in Figure 4. Jobs have
been sorted from highest to lowest fraction of overlap with
1 Perception job to ease graphical representation. As shown,
most Prediction jobs spend most of their execution time
overlapped with exactly 1 Perception job. The fraction of time
overlapped with 2 Perception jobs is also significant. Little
time is spent without overlapping in general. Finally, only
sporadically some Prediction jobs overlap with 3 Perception
jobs.

IV. CLEANET

A. Setting the Objective

Complex SoCs like the NVIDIA Xavier have a large internal
hardware and software (e.g. CUDA drivers) state. Modelling
this state, which strongly influences tasks’ execution time, is
quite difficult. In such a complex system, the execution time of
a task can be regarded as a random variable, J . When several
tasks execute simultaneously, they affect each other timing
behavior due to contention in the access to shared resources,
even if tasks have no data or control dependence among them.
The impact of the contention interference depends on (i) the
number of tasks with overlapping execution; (ii) the percentage
of time they overlap; (iii) the particular part of their code that
overlaps; and (iv) the inputs to the program that might affect
tasks access pattern to shared resources. In this work, we focus
on the first two factors, and hence do not model the particular
section of the code of a task that overlaps, nor tasks inputs.

Our objective is to enable the estimation of the execution
time of tasks under different TOS. In particular, by modelling
the dependence of the execution time on the TOS (i.e. how
much overlapping and with how many tasks), we enable
the reliable estimation of the dilation factors, r1, . . . , rm,
impacting execution time due to the task overlapping with 1,
. . . , m tasks respectively. Hence, ri is the factor by which the
execution time with no overlap of the task under analysis must
be multiplied when overlapping with i tasks. For instance, if
ri = 1.5, the non-overlapping execution time of the task under
analysis is 10ms, and it overlaps with i tasks during 4ms, then
the execution time is 6 + 4 · 1.5 = 12ms.

Once dilation factors ri are obtained, and given that we
know the start and end time for all jobs – and so their particular

overlappings, we can deduce execution time measurements
under any TOS (i.e. those regarded relevant but that could not
be tested) since we can obtain the pristine (non-overlapped) ex-
ecution time measurements removing the impact of contention
in the measurements collected, and apply dilation factors to
model any TOS of interest for validation purposes.

The derived dilation factors can be used to validate the
timing behavior of the task under analysis by comparing them
against the corresponding bounds from the verification phase,
e.g. under worst overlapping conditions. They can also be
used to contrast the output of timing analysis techniques that
predict WCET estimates under different TOS. For instance,
since execution times under a given (homogeneous) overlap
correspond to random variables independent and with identical
distribution, then we could use Measurement-Based Proba-
bilistic Timing Analysis (MBPTA) techniques [20], [21], [22],
[23] for that purpose.

It is worth noting that, unlike previous works studying
dependent execution times [29], [30], [31], which focus on
stationary processes and hence, on dependencies across mea-
surements, our work considers external dependencies that are
unlikely to be periodic and that cannot be studied only based
on the actual execution time measurements of the jobs of
the task under analysis, but accounting for the execution
times (more precisely, for the start and end times) of the
jobs of the other tasks running simultaneously in the system.
Stationary processes could be normally studied on top of the
measurements obtained dilating them with our approach to
match worst-case overlaps during operation. Thus, our work
is orthogonal and complementary to previous works since
they consider different types of dependencies (i.e. we target
dependencies on the TOS).

B. Modelling Approach

CleanET assumes a baseline (basal) state without any im-
pact of dilation that corresponds to the execution in isolation
with no overlap with any other task. In practice the basal state
may never occur in the system as it may be not possible to run
the task under analysis without overlapping its execution with
others. We denote the hardware/software state information in
this basal state as I0.

CleanET builds around the mathematical expectation E5. Let
I be the available information on the state of the system for
any arbitrary state, and E(T |I) the expected execution time T
assuming that the system is in a given (observed) state I. The
dilation coefficient, r is defined as follows, thus relating the
execution time of the basal state with that of any other state:

E(T |I) = rE(T |I0) (1)

Whenever the system is not in the basal state, then the
expectation of the execution time, E(T |I), is dilated by
the coefficient r, where in general r > 1 (i.e. execution
overlapping normally leads to increased execution times). In

5The mathematical expectation is given by E[X] =
∑n

i=1 xipi, where x
is a random variable with the probability function, f(x), p is the probability
of occurrence, and n is the number of all possible values, or, informally, the
mean of an infinitely large sample.

6

fact, Equation 1 holds for any state where the amount of
overlapping in I is higher than in I0, thus meaning that any
TOS necessarily results in an increase of tasks execution time.

The basal state of the system (i.e. the execution in isolation)
cannot be observed in general. Otherwise, by observing such
state and any other state, we could trivially derive r. Instead,
we build upon the measurements collected with arbitrary TOS
from a real system where no practical control can be exercised
to enforce specific TOS, as it is the case, for instance, for most
automotive systems. Given a finite sample of execution times
and variables characterizing the state of the system (i.e. how
jobs overlap), we want to estimate a basal state of the system
as a random variable, as well as the dilation coefficient r. For
the sake of this discussion, we consider that jobs either overlap
or do not overlap, neglecting whether they overlap with one or
more jobs. Later we extend the discussion to arbitrary numbers
of overlapping jobs.

C. Mathematical Development of CleanET

The most simple way for describing the state of a system
along the execution period T is by summarizing the informa-
tion of its state. This can be done with only one property
through a binary measure for each instant of time, t of a
fixed duration (e.g. 1 processor clock cycle in the extreme),
see Equation 2 where t is the particular time instant when
we assess the property. In this work the particular property is
whether the execution of the particular job of the task under
analysis overlaps with the execution of any other job.

Wt =

{
1 if the property holds,
0 otherwise

(2)

We can summarize this process through the total time during
which the property holds, i.e. Wt = 1, denoted by V . The
remaining time, T − V , is denoted by U . This approach
approximates the basal state of the system by I0 = (V = 0)
and Equation 1, so that:

E(T |V = v) = r(v)E(T |V = 0) (3)

In Equation 3, E(T |V = 0) stands for the expectation (E(·))
of the execution time (T) when there is no overlap at all (V =
0), r(v) is the dilation factor given a specific overlap v, and
therefore, E(T |V = v) is the expectation of the execution time
given the specific overlap v.

Likewise, let Q be the proportion of the execution time,
T , where the property holds (V/T) and 1 − Q where it does
not (U/T). This approach approximates the basal state of the
system by E(T |Q = 0) and Equation 1, so that:

E(T |Q = q) = r(q)E(T |Q = 0) (4)

Both Equation 3 and 4, allow using regression methods for
parameter estimation [32]. In particular, we want to obtain the
dilation coefficient r, which we obtain as r(1), so when q = 1
(full overlap).

D. Obtaining r

Let X = (T |Q = 0) = (T |V = 0) be the execution time
of the task when the state of the system is basal. Note that
X = (T |V = 0) is the actual random variable, which may
realize into any specific execution time, instead of E(T |V =
0), the expectation, that can only be the Expectation, thus a
single value (i.e. the mean of an infinitely large sample). Let
Y = (T |V) = (T |Q) be the observed execution time, thus
with V time of overlapping (or Q fraction of overlapping).
If an observation of Y is given (the actual execution time
measured), then V is fixed to v, and Q fixed to q, for some v
and q. Note that v and q are directly obtained from observation
of the system since we have the start and end time for each
job of each task, and hence, we can determine whether the
specific job of the task under analysis overlaps its execution
with any other job at any time instant.

We can decompose the observed execution time, Y , as
follows:

Y = U + V = (1− q)Y + qY (5)

(1−q)Y is the part of the execution time of the job in basal
state (no overlapping). Hence, we can define (1−p) such that
(1 − q)Y = (1 − p)X , thus relating the execution time with
overlapping (Y) with the execution time in isolation (X). From
this equivalence, we can describe the dilation coefficient r as
follows:

Y = U + V = (1− q)Y + qY = (1− p)X + rpX (6)

where the rightmost part of the equation decomposes the
measured execution time into (1 − p)X , so the fraction of
non-overlapping execution (1−p) multiplied by the basal state
execution time (X), and rpX , so the fraction of overlapping
execution (p) multiplied by the dilation factor (r) and the basal
state execution time.

Equivalently, we can apply the distributive property:

Y = ((1− p) + rp)X (7)

Moreover, since U + V
r = X , then U = X − V

r , and we
can obtain a linear expression:

Y = U + V = X − V

r
+ V,

Y =
r − 1

r
V +X (8)

Then, we can apply linear regression to obtain r and X in
Equation 8 since Y and V are known.

Note that the basal state corresponds to V = 0, so Y = X .
Also note that if all execution time is overlapped with other
jobs (so V = Y), we would have the following:

Y =
r − 1

r
Y +X (9)

We could transform it into the following expression:

Y

(
1− r − 1

r

)
= X (10)

Thus having that Y
r = X , and Y = rX , which matches

Equation 7 when p = 1 (overlapping fraction).

7

Based on the assumptions of the model, X and Q are
independent, which is equivalent to X and P being inde-
pendent. Then, it follows that, in general, given X and P
being non-observed independent random variables, and U and
V observed random variables such that

U = (1− P)X and V = rPX

for some coefficient r > 0, then a point estimation for r, P
and X is given by

X̂ = U + V/r̂ (11)

P̂ = V/(r̂U + V) (12)

r̂ = minr

{
cov(X̂, P̂)

}
(13)

However, point estimations are not satisfactory from a safety
perspective due to the uncertainty caused by the potential error
in the estimation of execution times. Therefore, we propose a
pessimistic method that overestimates the coefficient r, which
we detail next.

E. Intrinsic Pessimism

Equation 8, states the linear relationship between Y and V.
On the other hand, the linear regression of Y and V provides us
with (α, β, Z) such that α, β ∈ R, and Z is a random variable
that maximizes the independence between Y and V such that
Y = α+ βV + Z. Given the definition of β in simple linear
regression [32] and Equation 8, we can yield the following
expression:

β =
cov(Y, V)

var(V)
=

cov(r−1
r V +X,V)

var(V)
=
r − 1

r
+

cov(X,V)

var(V)
(14)

Therefore, the equivalence β = r−1
r would hold if X

and V were independent. Given that this is not the case, the
relationship between r and β yields:

β >
r − 1

r
(15)

since cov(X,V) > 0, which can be proven from the indepen-
dence of X and P . Note that the covariation between X and
V is generally unknown. Thus, by ignoring it, we overestimate
the factor r−1

r , which, given that r > 1 as indicated before,
implies that we overestimate r.

The consequence of overestimating r is that, by considering
scenarios where the overlapping is higher than measured, the
overestimated r leads to higher predicted execution times than
those in the real system. In our case, this implies that, if
those predicted measurements respect timing budgets, then
real system measurements would necessarily also respect the
budgets. Also, if the system can overrun the timing budget,
predicted measurements obtained with CleanET will indicate
even higher overruns, so faults will be reliably detected.
However, in some cases, time budgets may be respected and
CleanET report that they are violated. Hence, while this may
cost some tightness by imposing the allocation of larger time
budgets than needed, our approach does not challenge the
safety of the system tested.

F. CleanET for Multiple Overlappings

In the previous section we focused the case where one
specific job either does not overlap or partially overlap with
another job. The model can be easily extended to account for
several jobs overlapping at the same time (from 1 to m). This
is done by defining Equation 2 for each number of overlaps,
so having W 1

t ,. . . , Wm
t , where the property in each case is

whether there are exactly i overlaps. For instance, for i = 2,
W 2

t = 1 if and only if the job overlaps with exactly 2 other
jobs in time t. For any other number of overlapping jobs (e.g.
0, 1, 3, etc), W 2

t = 0. Hence, Vi stands for the total time
where property W i

t holds.
We can, therefore, extend our original definition of Y (Y =

U + V = (1 − q)Y + qY) decomposing V and q across the
different types of overlapping (from 1 to m overlapping jobs)
as follows:

Y = U +

m∑
i=1

Vi =

(
1−

m∑
i=1

qi

)
Y +

m∑
i=1

qiY (16)

This allows us to reformulate Equation 7 as follows:

Y =

((
1−

m∑
i=1

pi

)
+

m∑
i=1

ripi

)
X (17)

which can be transformed into the following equation where
linear regression can be directly applied:

Y =

m∑
i=1

(
ri − 1

ri
Vi

)
+X (18)

where Y and all Vi are known, and X and all ri dilation
factors are obtained through linear regression.

V. EVALUATION

For the evaluation of CleanET, we first estimate ri dilation
factors for the different task overlaps. Then, we validate how
dilation factor estimation matches expectations. Finally, we
show how those dilation factors can be used to estimate
execution time bounds for different overlapping scenarios, thus
allowing to validate whether time budgets are violated.

A. Dilation Factors (ri)

1) Single dilation factor: We have applied CleanET to
obtain the dilation factors, ri, for the different numbers of
overlapped tasks. Results are shown in Table I considering a
single dilation factor (whether overlap exists or not), as per
Section IV-D. As shown, execution time with no overlap at
all is around 16.32ms, with a standard deviation of 1.64ms.
However, the impact of overlap is huge since r = 6.85 with
a standard deviation of 0.78. Hence, on average, we could
expect the execution time will full overlap to be around 112ms
(16.32ms · 6.85). For the sake of completeness, the table
also provides the number of execution time observations used
(289), which are those for class 0 before, and the degree of
correlation measured between non-overlapped and overlapped
execution time measurements, which is, as expected, very high
(0.9).

8

TABLE I: CleanET applied to filtered data with Overlap as
co-variate.

Overlap (r) 6.85± 0.78
Constant (p = 0) 16.32± 1.64

Observations 289
Adjusted R-squared (correlation): 0.90

2) All dilation factors: As a second step, we have applied
CleanET to obtain individual dilation factors for 1, 2 and 3
jobs overlapping with the jobs of the task under analysis, as per
Section IV-F. Results are shown below in Table II. We observe
that results for 1 or 2 jobs overlapping are very similar and
ranges (e.g. µ±σ) overlap almost completely. Statistically, we
cannot prove that they are distinguishable and, therefore, we
conclude that overlapping with 1 or 2 jobs must be considered
together, thus defining that the property in Equation 2 holds
if the task overlaps with exactly 1 or 2 jobs. In the case of
3 jobs overlapping, we observe that (1) the value of r3 is
far lower than that for r1 and r2, which would mean that
overlapping with 3 jobs leads to a lower dilation factor (so
a lower execution time increase) than overlapping with 1 or
2 jobs, which is against intuition. However, the real problem
with 3 overlaps relates to the fact that, out of the 289 class 0
measurements, only 9 have 3 jobs overlapping with the task
under analysis for some time, which is, in practice, too scarce
data to raise any reliable prediction. In fact, the (very high)
standard deviation for this case already indicates this behavior
indirectly. The number of measurements including data for
each overlap case is provided in Table III for completeness.
Finally, note that, while the case with no overlap (“Constant”
in the tables) has no meaningful change w.r.t. the case where
we fit only r, it is not absolutely identical. This relates to the
fact that all parameters in Equation 18 are fit together, thus
dealing to minor variations when varying the parameters to fit.

TABLE II: Linear model applied on filtered data with Overlap
time of one, two and three processes at a time.

Overlap 1 (r1) 6.97± 0.81
Overlap 2 (r2) 6.55± 0.81
Overlap 3 (r3) 3.23± 2.42
Constant (p = 0) 16.32± 1.65

Observations 289
Adjusted R-squared (correlation): 0.90

3) Statistically significant dilation factors: After conclud-
ing that 1 and 2 overlapping measurements are not statistically
distinguishable, we apply CleanET again considering only
two dilation factors: r1−2 for 1 or 2 overlaps, and r3 for 3
overlaps, as shown in Table IV below. We note that r1−2 is not
distinguishable in practice with r in Table I when considering
just one dilation factor since the amount of data for 3 overlaps
is too little to cause meaningful differences. We also note that,
by considering 1 and 2 overlaps together instead of separated,
the case for 3 overlaps varies drastically, which reflects the
weakness of the fit for 3 overlaps due to the too little data
available for this case.

TABLE III: Number of class 0 measurements with part of its
execution with 0, 1, 2, 3 jobs overlapping.

Number of Measurements Percentage
overlapping jobs (w.r.t. 289)
Overlap 0 137 47.4%
Overlap 1 288 99.7%
Overlap 2 218 75.4%
Overlap 3 9 3.1%

● ● ● ●● ●●●●●●●●●●● ●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●

●●●
●●

●
●●

●

●
●

●

●

Fig. 5: QQ-plot of full overlap resampled data with CleanET
w.r.t. empirical data with full overlap.

TABLE IV: Linear model applied on filtered data with Overlap
time of one and two processes added, and three processes.

Overlap 1-2 (r1−2) 6.88± 0.78
Overlap 3 (r3) 2.75± 1.68
Constant (p = 0) 16.31± 1.64

Observations 289
Adjusted R-squared (correlation): 0.90

Overall, our results show that scenarios with 0, 1 or 2
overlaps can be reliably resampled from the data available.
If the case with 3 overlaps is regarded as relevant for opera-
tion conditions, then additional input data would be required
including many more measurements corresponding to that
scenario, so that CleanET could deliver a reliable dilation
factor for this case.

B. Validation of the Method

In general, these solutions cannot be validated due to the
lack of reference data, which in this case would correspond to
measurements with the complete execution time with a con-
stant number of jobs overlapping (e.g. 100% of the execution
time overlapping with exactly 1 job). However, in our case,
we have measurements with exactly 1 job overlapping during
their complete execution. In fact, since 1 and 2 overlappings
have been shown to be indistinguishable, and 3 overlappings
occur seldom (too occasionally to be statistically significant),
we consider as reference measurements those in which some
overlapping (with either 1, 2 or 3 jobs) occurs during the whole
execution. Hence, we performed the following:

1) Split the set of measurements into 2 categories: one with
those measurements with 100% overlap (OVL1 group,
152 values), and those with non-full overlap (OVLmix,
the remaining 137 values).

2) Apply CleanET on OVLmix data.

9

●

●

●
●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●
●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●
●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●
●

●

●

●

●●
●●

●

●

●
●

●
●

●
●

●

●●

●

●
●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●●

●
●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

● ●
●

●●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●
●

●

●

●

●●
●●

●

●

●
●

●
●

●
●

●

●●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

Fig. 6: Execution time bounds for no overlapping (p = 0) and
full overlapping (p = 1).

3) Compare the results obtained with CleanET resampling
data in OVLmix to the case with full overlap, with the
actual data with those overlapping characteristics (OVL1
data) with a QQ-plot (see Figure 5).

In the figure, we would like to have a linear relation between
the empirical data and the data resampled with CleanET
(straight line). However, the fact that r is overestimated leads
to non-linearity. Results show that CleanET, using OVLmix
data, produces higher values than those observed empiri-
cally (OVL1), thus corroborating our expectation of having
overestimated execution times for high overlaps due to the
overestimation of r. This supports empirically our expectations
with a reference data set different to that used by CleanET by
partitioning the data into OVL1 and OVLmix groups.

C. Using CleanET Results

We have used CleanET to generate, from the actual mea-
surements obtained from the system with arbitrary overlaps,
measurements corresponding to overlapping scenarios of in-
terest. In particular, since the purpose of timing validation is
assessing that no overrun occurs, we have considered the case
with full overlap. For the sake of illustration, we also show
results for the case of no-overlap.

Figure 6 plots the empirical complementary cumulative
density function (ECCDF) for the three scenarios: actual data
measured (empirical), data obtained with CleanET with no
overlap (basal), and data obtained with CleanET with full
overlap. Together with the empirical data, we fit an exponential
tail to the highest values of the extreme cases (basal and full
overlap), which has been recommended as a suitable approach
to predict high execution times [22], [23]. For that purpose, we
build on peaks-over-threshold methods selecting the threshold
as indicated in [33].

Measurements resampled with CleanET allow considering
cases that could not be explicitly tested in the system under
test. As shown, as expected, the full overlap case leads to
execution times higher than those of the empirical (measured)
case, whereas the basal case, instead, leads to the lowest
execution times one would expect in the real system. Note
that, as discussed in Section IV-E, r values are overestimated.
Hence, the full overlap case is an overestimation of what would
be in practice the behavior of the real system with full overlap,
whose timing behavior would be somewhere in the region

● ●
● ● ● ● ● ● ● ●

● ● ●
● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ●
● ●

● ● ● ● ● ● ●
●

● ●
●

● ● ● ● ● ● ● ● ●
● ●

● ● ●
●

● ● ●

●

●
● ● ● ● ● ● ● ● ● ●

●
● ● ●

● ● ●
● ● ●

● ● ●
● ● ● ● ● ● ● ● ●

● ● ● ●
● ●

● ● ●
● ● ● ● ● ● ● ● ● ●

●
● ● ●

● ●
● ● ● ● ● ● ● ● ● ●

● ●
● ● ● ● ● ●

●
● ● ●

●
● ●

●
● ● ●

●
● ● ● ●

●

● ●

●

●

●

● ● ● ● ● ●

●

●

● ●

● ● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ●
● ● ● ● ●

●
● ● ● ● ● ●

●

●

● ●

●
● ● ● ●

● ●
● ● ● ● ● ● ●

●
● ● ● ● ● ●

●

● ● ● ● ●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ●

●

● ● ● ●

● ●

● ● ● ●

●

●

●

●

●

●

Fig. 7: Impact of the dilation factor (r) on the execution time
bounds as we vary the degree of overlapping (p).

between the empirical measurements for arbitrary overlaps
and the estimated full-overlap measurements obtained with
CleanET. Note also that overestimating r makes that, whenever
we consider lower overlaps than in practice (e.g. basal case),
execution times obtained are in practice lowerbounds of the
true basal case. In any case, the basal case is irrelevant to
validate whether time budgets allocated suffice.

For the sake of completeness, we provide in Figure 7
how execution times expected vary as we vary the degree of
overlap (p). We use peak-over-threshold again, and we collect
the values obtained at different exceedance levels (lvl), from
10−3 to 10−12. As expected, a linear increase of the degree
of overlap, leads to nearly-linear increase of the execution
times expected, with small disturbances due to the uncertainty
associated to threshold selection in the fitting process of
a distribution (an exponential distribution in our case). For
instance, based on the results obtained, if we consider an
exceedance level of 10−6, we would conclude that execution
times could be slightly below 500ms (assuming full overlap
being the worst case during operation). Thus, validation tests
would be passed if such value is lower than the deadline for
the task under analysis.

Overall, CleanET allows exploring any arbitrary degree of
overlap of interest, thus providing end users with means to
validate their system against scenarios that cannot be triggered
during system testing, thus relieving end users from having to
create additional test cases with the hope of those test cases to
produce the execution scenarios that need being considered.

VI. RELATED WORK

The impact of dependencies in WCET estimation has been
mostly considered for the particular case where they exist
across jobs of a given task. In particular, probabilistic WCET
(pWCET) estimation was originally formulated on top of the
assumption of independent and identically distributed (i.i.d.)
execution time observations for a task [34]. Therefore, solu-
tions for pWCET estimation have often built on top of Extreme
Value Theory for i.i.d. processes [35].

However, some researchers noted that execution time depen-
dencies may exist across jobs of a given task, thus jeopardizing
i.i.d. properties, so methods considering those dependencies
would be more convenient [36], [37]. Amongst those works,
Bernat et al. [38] pioneered in the area of execution time
dependencies and analyzed them at the scope of program
components.

10

Santinelli et al. [39] considered a particular type of depen-
dencies across jobs – stationary processes – and concluded that
they could lead to WCET underestimation if not accounted for
carefully. Similarly, Melani et al. [29] showed that appropriate
statistical tests (mostly correlation and independence tests)
can be used to account for those dependencies satisfactorily.
Lima and Bate [40] proposed a solution to mitigate the impact
of dependencies across jobs to facilitate WCET estimation.
Finally, Abella et al. [41] have recently shown that the source
of those dependencies across jobs imposes different constraints
on task scheduling.

However, to the best of our knowledge, CleanET is the first
solution to assess how the dependencies across different tasks
interfere each other’s execution time, and how this information
can be used to obtain execution time measurements either
free of interference or subject to specific levels of interference
(e.g. full overlap) so that timing budgets used for scheduling
purposes can be validated.

VII. CONCLUSIONS

Validating execution time bounds for safety-related real-
time systems becomes increasingly difficult due to the increas-
ing complexity of those systems driven by a higher system
automation. This is particularly true in automotive systems
with the advent of autonomous driving. While end users can
retrieve plenty of data of the execution of their systems during
validation phases, execution cannot be controlled as desired
and hence, execution time measurements are representative for
some scenarios that may underrepresent operation conditions.

This paper proposes CleanET, a novel solution to obtain
measurements representative of any relevant scenario from the
set of measurements obtained during analysis. In particular,
CleanET builds upon estimating the impact of execution time
interference across tasks to allow resampling data into any
degree of interference (i.e. execution overlap) of interest.
CleanET is a purely measurement-based solution, thus in line
with the requirements of automotive end users, that facilitates
testing execution scenarios that cannot be practically pro-
duced by testing engineers. Our results on a commercial AD
framework, Apollo, corroborate the advantages of CleanET for
timing validation.

ACKNOWLEDGEMENTS

This work has been partially supported by the Spanish
Ministry of Economy and Competitiveness (MINECO) under
grant TIN2015-65316-P, the SuPerCom European Research
Council (ERC) project under the European Union’s Hori-
zon 2020 research and innovation programme (grant agree-
ment No. 772773), and the HiPEAC Network of Excellence.
MINECO partially supported Jaume Abella under Ramon y
Cajal postdoctoral fellowship (RYC-2013-14717).

REFERENCES

[1] R. Wilhelm et al., “The worst-case execution-time prob-
lem—overview of methods and survey of tools,” ACM Trans.
Embed. Comput. Syst., vol. 7, no. 3, pp. 36:1–36:53, May 2008.

[2] J. Abella, C. Hernandez, E. Quiñones, F. J. Cazorla, P. R. Conmy,
M. Azkarate-askasua, J. Perez, E. Mezzetti, and T. Vardanega, “Wcet
analysis methods: Pitfalls and challenges on their trustworthiness,” in
10th IEEE International Symposium on Industrial Embedded Systems
(SIES), June 2015, pp. 1–10.

[3] M. D. Natale, J. Abella, J. Reineke, A. Hamann, and G. Farrall,
“Predictable system timing – probab(ilistical)ly?” in DAC (panel in
automotive track), 2016.

[4] J. Nowotsch, M. Paulitsch, D. Bühler, H. Theiling, S. Wegener, and
M. Schmidt, “Multi-core interference-sensitive WCET analysis leverag-
ing runtime resource capacity enforcement,” in 26th Euromicro Confer-
ence on Real-Time Systems, July 2014, pp. 109–118.

[5] H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and R. Ra-
jkumar, “Bounding memory interference delay in cots-based multi-core
systems,” in 2014 IEEE 19th Real-Time and Embedded Technology and
Applications Symposium (RTAS), April, pp. 145–154.

[6] J. N. Jan and M. Paulitsch, “Leveraging multi-core computing architec-
tures in avionics,” in EDCC, 2012.

[7] RapiTime, www.rapitasystems.com, 2008.
[8] “Apollo, an open autonomous driving platform.” http://apollo.auto/,

2018.
[9] “Udacity. An Open Source Self-Driving Car.”

https://github.com/udacity/self-driving-car/, 2017.
[10] “Autoware. An open autonomous driving platform.”

https://github.com/CPFL/Autoware/, 2016.
[11] International Organization for Standardization, ISO/DIS 26262. Road

Vehicles – Functional Safety, 2009.
[12] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Memguard:

Memory bandwidth reservation system for efficient performance isola-
tion in multi-core platforms,” in 19th IEEE Real-Time and Embedded
Technology and Applications Symposium, (RTAS), April 2013, pp. 55–
64.

[13] R. Pellizzoni, B. D. Bui, M. Caccamo, and L. Sha, “Coscheduling of
CPU and I/O Transactions in COTS-Based Embedded Systems,” in Real-
Time Systems Symposium (RTSS), Nov 2008, pp. 221–231.

[14] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and
R. Kegley, “A predictable execution model for COTS-based embedded
systems,” in 17th IEEE Real-Time and Embedded Technology and
Applications Symposium, April 2011, pp. 269–279.

[15] A. Alhammad, S. Wasly, and R. Pellizzoni, “Memory efficient global
scheduling of real-time tasks,” in 21st IEEE Real-Time and Embedded
Technology and Applications Symposium, April 2015, pp. 285–296.

[16] M. Becker, D. Dasari, B. Nicolic, B. Akesson, V. Nelis, and T. Nolte,
“Contention-free execution of automotive applications on a clustered
many-core platform,” in 28th Euromicro Conference on Real-Time
Systems (ECRTS), July 2016, pp. 14–24.

[17] A. Biondi and M. D. Natale, “Achieving predictable multicore execution
of automotive applications using the LET paradigm,” in 24th IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS),
April 2018.

[18] A. Schranzhofer, R. Pellizzoni, J. J. Chen, L. Thiele, and M. Caccamo,
“Worst-case response time analysis of resource access models in multi-
core systems,” in Design Automation Conference, June 2010, pp. 332–
337.

[19] D. Dasari and V. Nelis, “An Analysis of the Impact of Bus Contention
on the WCET in Multicores,” in IEEE 14th International Conference
on High Performance Computing and Communication & 2012 IEEE
9th International Conference on Embedded Software and Systems, ser.
HPCC ’12, 2012, pp. 1450–1457.

[20] L. Santinelli, F. Guet, and J. Morio, “Revising measurement-based
probabilistic timing analysis,” in 2017 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), April 2017, pp. 199–
208.

[21] F. Guet, L. Santinelli, and J. Morio, “On the Reliability of the Proba-
bilistic Worst-Case Execution Time Estimates,” in Embedded Real-time
Software and Systems (ERTS2) Conference, 2016.

[22] L. Cucu-Grosjean, L. Santinelli, M. Houston, C. Lo, T. Vardanega,
L. Kosmidis, J. Abella, E. Mezzetti, E. Quiñones, and F. J. Cazorla,
“Measurement-based probabilistic timing analysis for multi-path pro-
grams,” in 2012 24th Euromicro Conference on Real-Time Systems, July
2012, pp. 91–101.

[23] J. Abella, M. Padilla, J. D. Castillo, and F. Cazorla, “Measurement-based
worst-case execution time estimation using the coefficient of variation,”
ACM Trans. Des. Autom. Electron. Syst., vol. 22, no. 4, Jun. 2017.

[24] E. Dı́az, E. Mezzetti, L. Kosmidis, J. Abella, and F. J. Cazorla,
“Modelling multicore contention on the aurixtm tc27x,” in Proceedings
of the 55th Annual Design Automation Conference (DAC), 2018.

11

[25] J. Jalle, M. Fernandez, J. Abella, J. Andersson, M. Patte, L. Fossati,
M. Zulianello, and F. J. Cazorla, “Bounding resource-contention in-
terference in the next-generation multipurpose processor (ngmp),” in
Proceedings of the 8th European Congress on Embedded Real Time
Software and Systems (ERTS2), 2016.

[26] SAE International, SAE J3016. Levels of Driving Automation, 2014.
[27] D. Shapiro, “Introducing xavier, the nvidia ai supercomputer for the

future of autonomous transportation,” NVIDIA blog, 2016. [Online].
Available: https://blogs.nvidia.com/blog/2016/09/28/xavier/

[28] D. Ziegenbein and A. Hamann, “Timing-aware control software design
for automotive systems,” in Proceedings of the 52Nd Annual Design
Automation Conference, ser. DAC ’15. New York, NY, USA: ACM,
2015, pp. 56:1–56:6.

[29] A. Melani, E. Noulard, and L. Santinelli, “Learning from probabilities:
Dependences within real-time systems,” in 2013 IEEE 18th Conference
on Emerging Technologies Factory Automation (ETFA), Sept 2013, pp.
1–8.

[30] K. Berezovskyi, F. Guet, L. Santinelli, K. Bletsas, and E. Tovar,
“Measurement-based probabilistic timing analysis for graphics processor
units,” in Proceedings of the 29th International Conference on Architec-
ture of Computing Systems – ARCS 2016 - Volume 9637. New York,
NY, USA: Springer-Verlag New York, Inc., 2016, pp. 223–236.

[31] L. Santinelli, F. Guet, and J. Morio, “Revising measurement-based
probabilistic timing analysis,” in 2017 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), April 2017, pp. 199–
208.

[32] X. Yan and X. G. Su, Linear Regression Analysis: Theory and Com-
puting. River Edge, NJ, USA: World Scientific Publishing Co., Inc.,
2009, ch. 2.

[33] J. C. et al., “Methods to distinguish between polynomial and exponential
tails,” Scandinavian Journal of Statistics, vol. 41, no. 2, pp. 382–393,
2014. [Online]. Available: http://dx.doi.org/10.1111/sjos.12037

[34] S. Edgar and A. Burns, “Statistical analysis of wcet for scheduling,”
in Proceedings 22nd IEEE Real-Time Systems Symposium (RTSS 2001)
(Cat. No.01PR1420), Dec 2001, pp. 215–224.

[35] R. Fisher and L. Tippett, “Limiting forms of the frequency distribution of
the largest or smallest member of a sample,” Mathematical Proceedings
of the Cambridge Philosophical Society, vol. 24, no. 2, 1928.

[36] S. Coles, An Introduction to Statistical Modeling of Extreme Values.
Springer, 2001.

[37] S. Kotz and S. Nadarajah, Extreme value distributions: theory and
applications. World Scientific, 2000.

[38] G. Bernat, A. Colin, and S. M. Petters, “WCET analysis of probabilistic
hard real-time system,” in Real-Time Systems Symposium RTSS, 2002.

[39] L. Santinelli, J. Morio, G. Dufour, and D. Jacquemart, “On the Sus-
tainability of the Extreme Value Theory for WCET Estimation,” in 14th
International Workshop on Worst-Case Execution Time Analysis, vol. 39,
2014.

[40] G. Lima and I. Bate, “Valid application of evt in timing analysis by
randomising execution time measurements,” in 2017 IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS), April
2017, pp. 187–198.

[41] J. Abella, E. Mezzetti, and F. Cazorla, “On assessing the viability
of probabilistic scheduling with dependent tasks,” in Symposium On
Applied Computing (SAC), 2019.

