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Abstract: Human hair is considered a ubiquitous waste product and its accumulation can cause 

environmental problems. Hence, the search for alternatives that take advantage of this waste as a 

new raw material is of interest, and contributes to the idea of the circular economy. In this study, 

chemically modified human hair was used as a low cost biosorbent for the removal of heavy metal 

ions from aqueous solutions. The effect of the contact time, the pH, and the biosorbent 

concentration on the biosorption process were investigated. Kinetic modeling indicated that the 

pseudo-second order kinetic equation fitted well with R2 > 0.999. Furthermore, the equilibrium data 

fitted the Langmuir adsorption isotherm at 295 K resulting in saturation concentrations of 9.47 × 

10−5, 5.57 × 10−5, 3.77 × 10−5, and 3.61 × 10−5 mol/g for the sorption of Cr(III), Cu(II), Cd(II), and Pb(II), 

respectively. The biosorption process did not change the chemical structure and morphology of the 

hair, which was shown by FTIR and SEM. In addition, desorption experiments prove that 0.1 mol/L 

EDTA solution is an efficient eluent for the recovery of Pb(II) from the treated human hair. To 

summarize, treated human hair showed satisfactory biosorption capacity and can be considered as 

an effective biosorbent for the treatment of water with a low concentration of heavy metal ions. 
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1. Introduction 

Heavy metal ions are considered extremely harmful to humans, aquatic organisms, and other 

life forms because of their toxicity, accumulation, and non-biodegradable nature, causing various 

diseases and disorders [1]. Hence, the removal of heavy metal ions from wastewater has attracted 

attention for the protection of public health and the environment [2]. Conventional methods for 

removing heavy metal ions, including chemical precipitation, flotation, ion exchange, evaporation, 

and membrane processes are practical and cost-effective only with high strength wastewater (which 

contains high concentration levels of pollutants), and they are ineffective when applied to low 

strength aqueous effluents with heavy metal ion concentrations less than 100 ppm [3]. Adsorption 

techniques currently play an important role in the removal of heavy metal ions from wastewater, 

offering considerable advantages, such as low-cost, availability, profitability, ease of operation, and 

efficiency [4,5]. Various materials have been developed as adsorbents for the removal of heavy metal 

ions. In particular, activated carbon is frequently used as an adsorbent due to its high surface area, 

high adsorption capacity, and high degree of surface reactivity [6]. However, activated carbon is 
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relatively expensive and is difficult to recycle by eluting the heavy metal ions because of the strong 

interaction between activated carbon and heavy metal ions. Waste biogenic materials are considered 

ideal alternative biosorbents for the removal of heavy metal ions from low strength wastewater due 

to their relatively good cost-effective adsorption capacity [7]. Accordingly, various biogenic 

materials, including chitosan derivatives [8], agricultural waste materials [9], chicken feathers 

[10,11], cork waste [12,13], rubber leaf powder [14], chemically modified plant waste [15], and 

soybean stalks [16], among others, have been proposed and applied as biosorbents to effectively 

remove heavy metal ions. The good biosorption properties of these biogenic materials are attributed 

to the presence of abundant metal binding functional groups of these materials, such as carbonyl, 

carboxyl, hydroxyl, sulphate, sulfur, phosphate, and amido and amino groups [17].  

Among natural resources, keratinous materials can be used as biosorbents, either directly or 

after activation, to remove heavy metal ions due to their intricate networks characterized by high 

stability, insolubility in water, and high surface area containing many carboxyl, amido, and sulfur 

functional groups [18]. In addition, keratin is an abundant nonfood protein; in fact, it is the major 

component of wool, hair, horns, nails, and feathers. Moreover, keratin wastes, such as feathers, 

horns, nails from butchery [19], human hair from hairdressers, poor quality raw wools from sheep 

breeding, and some by-products from the textile industry, amount globally to more than four 

millions tons per year [20]. Several examples of the use of keratinous materials have been already 

reported, especially using modified keratinous materials. Al-Asheh et al. compared adsorption 

capacities between inactivated and chemically activated chicken feathers as a biosorbent for 

removing heavy metal ions (i.e., Cu(II) and Zn(II)) from wastewater [21]. Park et al. prepared wool 

and silk blend nanofibrous membranes by electrospinning, which exhibited an excellent 

performance as an adsorbent of heavy metal ions [22]. The Aluigi research group successfully 

prepared keratin-rich nanofiber mats by electrospinning wool keratin/polyamide blends. This 

material shows good adsorption capacity for Cu(II) ions from water, with the adsorption capacity 

increasing with the increase of the specific surface area of the nanofiber mats [23]. 

Keratinous-composed human hair is considered a ubiquitous waste product and its 

accumulation can cause environmental problems. Hence, the search for alternatives that take 

advantage of this waste as a new raw material is of interest, and contributes to the idea of circular 

economy. In this sense, human hair can contribute significantly in many critical areas of public 

importance, such as agriculture, medicine, construction materials, and pollution control [24]. In 

particular, the presence of carboxyl, amido, and disulfide groups in human hair suggest this waste 

product could be a good biosorbent of several chemicals, including heavy metals, although it has 

been rarely studied for this application [11]. In this regard, one of the major drawbacks is that its 

hydrophobic nature in native form limits the diffusion of heavy metal ions from the solution to the 

external surface of the human hair [Error! Bookmark not defined.]. To overcome this issue, disulfide 

bonds present in human hair can be readily oxidized to yield the corresponding cysteic acid 

residues, which increase the hydrophilic properties of the human hair and subsequently improve its 

capability to bind positively charged metal ions [25]. For this reason, oxidized human hair was 

chosen in the present work as a biosorbent for the removal of heavy metal ions from aqueous 

solutions. Environmental parameters affecting the biosorption process, such the pH value, 

biosorbent concentration, and contact time were studied. In addition, FT-IR and SEM analysis were 

conducted for the structural and morphological characterization of the biosorbent after the oxidation 

pretreatment and after the subsequent heavy metal biosorption process. The kinetic and isotherm 

data experimentally obtained were correlated with the established kinetic models (pseudo-first 

order, pseudo-second order, and Weber–Morris intraparticle diffusion model) and with well-known 

thermodynamic models (Freundlich and Langmuir). A comparison between these was performed. 

Finally, a desorption/regeneration test was performed in order to study the reusability of the 

biosorbent. 
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2. Experimental 

2.1. Chemicals 

All the chemicals used in this work were of analytical grade. Stock solutions of separate heavy 

metal ions, such as Cr(III), Mn(II), Ni(II), Co(II), Cu(II), Zn(II), Cd(II), and Pb(II) were prepared by 

dissolving their nitric salts (>99%, all from Panreac, Spain) in deionized water. A 1000 ppm stock 

solution of metal ions was first prepared, which was then diluted to the initial heavy metal 

concentration for each experiment. Sodium hydroxide (>98%, Panreac, Spain) and nitric acid (>70%, 

JT-Baker, Spain) were alternatively used for the pH adjustment of the initial aqueous solution prior 

to commencing the biosorption experiments. In all the experiments, the initial pH was measured, 

and usually the final pH was also checked, using an Omega 300 pH meter (Crison instruments, S.A., 

Spain). 

2.2. Human Hair 

Human hair waste (from different male individuals of approximately 13 years of age) was 

collected from local barbershops. The human hair samples were mixed together, washed with 

common laboratory detergent, rinsed several times with deionized water (purified with a milli-Q 

Gradient system from Millipore Corporation) and then left to dry at room temperature (22 ± 1 °C). 

The hair was cut to an approximate length of 1–2 mm using scissors. 

2.3. Chemical Treatment of Human Hair 

The treatment process of the human hair was carried out as follows: 20.0 g of the untreated 

human hair was weighed and soaked in 400 mL of the pretreatment reagent of known concentration 

(10% H2O2, originally at 35% in water, from Sigma-Aldrich, Germany) and at adjusted pH of 9 (pH 

9.0 yields better biosorption results in comparison with others, when pH 5.0, pH 7.0 and pH 9.0 are 

assayed) [26]. After a given soaking time (5 h), the solution was filtered. The hair separated from the 

solution was washed many times with deionized water. To minimize any loss of the treated hair, at 

each washing step, the hair was separated by centrifugation, and the liquid was then decanted. 

Finally, the treated and cleaned hair was dried at room temperature. 

2.4. Characterization of Human Hair 

Structural characterization of the human hair was carried out to analyze any chemical change 

produced in the samples after the oxidative pretreatment and/or after the biosorption of heavy 

metals. The identification of the functional groups in the untreated and treated human hair was 

performed using a Fourier transform infrared (FT-IR) spectrometer (Tensor 27, Bruker, Germany). 

The spectra were recorded in the range of 600–4000 cm−1 with 16 scans and a resolution of 4 cm−1. The 

surface morphology of the human hair samples (untreated and treated) was observed by scanning 

electron microscope (SEM; ZEISS EVO® MA 10, Oberkochen, Germany). The samples used the 

sputter-coating arrangement. 

2.5. Heavy Metal Ions Biosorption Experiments 

The uptake of heavy metal ions onto the hair systems was carried out by batch experiments at a 

constant temperature (22 ± 1 °C) on a rotary mixer (CE 2000 ABT-4, SBS Instruments SA, Barcelona, 

Spain) at 25 rpm. In all sets of experiments, 0.1 g of human hair (untreated or treated) was weighed 

in 50 mL plastic extraction tubes; the 10 mL of heavy metal ion aqueous solution was added and the 

final system was shaken for a certain period of time. Usually, the concentration of each heavy metal 

ion was 0.10 mmol/L (for multiple heavy metal system containing eight ions) and 0.18 mmol/L (in 

the multiple-metal system containing four ions, and also in the single-metal systems). The pH was 

adjusted to 4.0, unless otherwise specified. The initial pH of the multiple heavy metal aqueous 

solution was varied within the range 1.0 to 6.0 (higher pH values were not considered to avoid 
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precipitation of metal hydroxides). To study the effect of the biosorbent concentration on metal 

uptake, its mass was varied from 1 to 20 g/L. The effect of the initial metal ion concentration on 

biosorption isotherms was studied in single-metal systems with 0.1 g of treated human hair. A range 

of initial metal ion concentrations from 0.5 × 10−3 to 2.0 mmol/L was used. In all cases, after agitation, 

the two phases were separated by decantation and the liquid was filtered through 0.22 μm syringe 

Millipore filters (Millex-GS, Millipore, Ireland). Then, the heavy metal concentration in the 

remaining aqueous solution was determined by an inductively coupled plasma optical emission 

spectrophotometer with mass detector, ICP-MS (XSERIES 2 ICP-MS, Thermo Scientific, Bremen, 

Germany). 

The uptake of the metal ions by human hair was calculated using Equation (1), which quantifies 

the biosorption efficacy: 

100% 
−

=
i

fi

C
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nbiosorptio  (1) 

where Ci and Cf are the initial and the final concentration of heavy metal in the aqueous phase 

solution, respectively (in mmol/L). 

The amount of metal sorbed per unit of mass of biosorbent at time t (qt in mmol/g) was 

calculated using Equation (2): 
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where V is the total volume of the solution (in L), W is the amount of biosorbent (in g), and Ci and Cf 

are the initial and the final concentrations of heavy metal in the aqueous solution (each given in units 

of mmol/L), respectively. 

The amount of metal sorbed at the equilibrium per unit of mass of biosorbent (qe in mmol/g) was 

obtained as follows: 
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where V is the total volume of the solution (in L), W is the amount of biosorbent (in g), and Ci and Ce 

are the initial and equilibrium concentrations of heavy metal in the aqueous solution (each given in 

units of mmol/L), respectively. 

All batch biosorption experiments were carried out in duplicate and the results are reported as 

their average in the corresponding figures (experimental errors found were less than 2.5% and 

0.0025 mmol/g in the biosorption percentage and the biosorption capacity, respectively). 

2.6. Desorption, Regeneration and Reuse 

Desorption experiments were performed only for the removal of Pb(II) from treated human hair 

samples as biosorbent. Each hair sample containing the adsorbed Pb(II) was contacted and stirred 

with 10 mL of 0.1 mol/L HNO3 or 10 mL of 0.1 mol/L EDTA. After 24 h of mixing (with the rotary 

mixer) at room temperature (22 ± 1 °C), the aqueous and solid phases were separated by 

centrifugation and subsequent filtration, and the Pb(II) content of the final solution was analyzed by 

ICP-MS, as indicated in Section 2.5. Desorption percentage was calculated using Equation (4): 

100
)(

)(
=

adsorbedIIPbofamount

desorbedIIPbofamount
desorption %  (4) 

The reuse of the treated human hair in a second biosorption step, after elution of the adsorbed 

metal ions (with nitric acid or EDTA), requires the cleaning of the remaining eluting solution from 

the surface of the biomaterial. The treated human hair was washed with deionized water and dried 

in an oven at 40 °C overnight. These regenerated human hair samples were employed to adsorb 

heavy metals again. 
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All batch biosorption, desorption, and regeneration experiments were carried out in duplicate 

and the results are reported as their average in the corresponding figures (experimental errors found 

were less than 2% and 0.002 mmol/g, in the biosorption and desorption percentages and the 

biosorption capacity, respectively). 

3. Results and Discussion 

3.1. Comparison of Biosorption Efficacy Between Untreated and Treated Human Hair 

The oxidation of human hair usually takes place with hydrogen peroxide in an acid or alkaline 

medium by attacking the disulfide bond of keratin. As a result of this reaction, sulfonic acid groups 

are formed, and hair samples are functionalized. In an alkaline medium, the oxidation process is 

much more effective [Error! Bookmark not defined.]. Moreover, during oxidation, other proteins in 

the human hair are also oxidized, which leads to cell membrane damage causing the cortex and the 

cuticle to open and separate. The objective of this pretreatment is to increase the hydrophilicity of 

the human hair surface and also to increase its specific surface area. The biosorption capacities of 

untreated and treated human hair samples for recovering eight metal ions (Cr(III), Mn(II), Ni(II), 

Co(II), Cu(II), Zn(II), Cd(II), and Pb(II)) were determined. The obtained results are shown in Figure 

1. As seen from the figure, the metal biosorption capacity of chemically treated human hair is 

significantly better than that of untreated human hair. Moreover, the affinity of both types of hair for 

Cr(III), Cu(II), and Pb(II) is greater than that for the other metal ions, which can be explained by the 

stronger interactions between the functional groups of the biosorbent and these three metal ions. The 

metal biosorption onto the treated human hair follows in the order of Cr(III) > Pb(II) > Cu(II) > Cd(II) 

> Ni(II) > Co(II) > Mn(II) > Zn(II). Finally, four metal ions, namely, Cr(III), Cu(II), Cd(II), and Pb(II), 

were selected from those metals to study the biosorption mechanism of treated human hair in 

subsequent experiments. 

 

Figure 1. Comparison of biosorption between untreated and treated human hair in a multiple-metal 

system. The initial metal ion concentration was 0.1 mmol/L, the contact time was 24 h, the pH was 

4.0, and the biosorbent was 0.1 g in 10 mL of the initial solution. 

3.2. FT-IR and SEM Characterization 

In order to understand how metal ions bind to the biosorbent, it is essential to identify the 

functional groups of its surface as these could be responsible for the metal binding. Thus, the 

untreated, treated, and metal loaded-treated human hairs were discriminated by FT-IR, as can be 

seen from the infrared spectra collected in Figure 2. The full-scan spectra of human hair (Figure 2a) 
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display their corresponding infrared peaks. The broad and medium intensity band ranging from 

3000 to 3600 cm−1 is indicative of the stretches of the bonds belonging to the carboxylic acid 

(-COOH), alcohol (-OH), and amino acid (-NH2) groups. The peaks located at 1632 cm−1 (amide I), 

1520 cm−1 (amide II), and 1241 cm−1 (amide III) are related to typical human hair amino acids. The 

peaks at 1041, 1075, 1180, and 1229 cm−1 all correspond to different products of cystine oxidation in 

human hair, and their peak assignment belongs to sulfonate (S-O sym. stretch), cystine monoxide 

(R-SO-S-R), sulfonate (S-O asym. stretch), and cystine dioxide (R-SO2-S-R), respectively. Carefully 

comparing the spectra of the three different hair samples, some differences can be seen between 

them, as expected, due first to the oxidation process (treated human hair), and, later, to the metal 

biosorption (metal loaded-treated human hair), particularly in the region from 850 to 1750 cm−1 (see 

Figure 2b). The intensity of the peaks at 1041 and 1180 cm−1 increased after chemical pretreatment, 

which means that conversion of cystine to cysteic acid, cystine monoxide, and cystine dioxide, as 

well as to sulfonates, occurred during this treatment process. The weak broad shoulder between 

approximately 1000 and 1130 cm−1 in the untreated human hair infrared spectra is probably due to 

environmental factors, such as sunlight, chlorinated water, and frequent shampooing causing partial 

oxidation of the hair surface [27]. The FT-IR spectra from treated human hair before and after the 

metal biosorption are very similar, indicating that the main functional groups on treated human hair 

did not change during the metal biosorption process (which can be an indication of a possible reuse 

of such biomaterial). However, the slight differences found around 1400 cm−1, and some red shift of 

the emission spectra (from 3277.2 cm−1 to 3274.8 cm−1, from 1526.8 cm−1 to 1519.7 cm−1, and from 

1078.4 cm−1 to 1074.9 cm−1), before and after the biosorption process, is probably related to the 

presence of the heavy metal ions on the hair surface. Based on the FT-IR spectra changes, as seen in 

Figure 2, some hair surface chemical functional groups (including hydroxyl, amino, carboxyl, and 

sulfonic acid) could act as important biosorption sites for heavy metal ions. 
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Figure 2. FT-IR spectra of human hair. UH: untreated human hair, TH: treated human hair, MTH: 

metal loaded-treated human hair. (a) Full-scan spectra, and (b) spectra in the range from 850 to 1750 

cm−1. 

The scanning electron microscopy (SEM) technique was applied to address concern about the 

alteration of the human hair surface morphologies in the different cases of the study. Figure 3 shows 

the SEM micrographs of the untreated, treated, and metal-loaded treated human hair. It is observed 

that each cuticle scale of the human hair is uniquely shaped. Some have smooth rounded edges and 

others have jagged edges, overlapping each other as they ascend along the length of the fiber 

towards the tip (Figure 3). The surface topographies of the untreated and treated human hair are 

different (see Figure 3a,b for comparison): the majority of the cuticle scales of the treated human hair 

fibers represent a more jagged appearance, probably due to the oxidation treatment. After metal 

biosorption, the surface appears to be somewhat smoother compared with the hair prior to its use, 

suggesting that the cuticle scales are closed through biosorption, probably due to the acidic water 

media (see Figure 3b,c). 

 

Figure 3. Scanning electron microscopy (SEM) micrographs of the human hair: (a) and (a’) 

correspond to the untreated human hair; (b) and (b’) correspond to the treated human hair; and (c) 

and (c’) correspond to the metal loaded-treated human hair. 
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3.3. Effect of the pH in Multiple Metal System 

The pH level of the aqueous solution is an important variable for the biosorption of metal ions 

onto the biosorbents, due to the metal speciation and the speciation of the chemical functional 

groups present on the biosorbent’s surface. The pH was controlled at the beginning and end of the 

experiments in order to evaluate any differences. The changes observed were lower than 0.3 units, 

and thus considered not significant. 

The effect of the pH solution on the removal efficacy of the treated human hair for Cr(III), 

Cu(II), Cd(II), and Pb(II) was studied between pH 1.0 and 6.0 in the multiple-metal system (Figure 

4). As observed from the results in Figure 4, the biosorption of metal ions increases significantly with 

increasing the pH. This behavior can be explained by the competition between the protons and the 

metal ions for the same binding site on the surface of the treated human hair. At low pH values, the 

surface of the biosorbent would also be surrounded by H+ ions, which decrease the Cr(III), Cu(II), 

Cd(II), and Pb(II) ions interaction with binding sites of the treated human hair. As the pH increases, 

the basic forms of the chemical functional groups on the hair surface predominate, increasing 

negative charge, so metal cation biosorption increases. However, when the pH is around 5, the 

partial hydrolysis of metal ions (particularly for Cu; the remaining metals could occur at pH higher 

than 5) results in the formation of M(OH)n(m−n) species affecting the biosorption hair capability. The 

biosorption percentage found could be related to the precipitation of the metals. Therefore, pH 4.0 

was selected as the optimal condition in the subsequent experiments. 

 

Figure 4. Effect of pH on the biosorption of the treated human hair for Cr(III), Cu(II), Cd(II), and 

Pb(II) in the multiple-metal system. The initial concentration was 0.18 mmol/L, the contact time was 

24 h, and the biosorbent was 0.1 g in 10 mL initial solution. 

3.4. Effect of Biosorbent Concentration 

The effect of the biosorbent concentration on the removal efficacy of Cr(III), Cu(II), Cd(II), and 

Pb(II) ions was studied in the range of 1–20 g/L in a multiple-metal system (Figure 5). It was 

observed that the removal efficacy of the treated human hair for Cr(III), Cu(II), Cd(II), and Pb(II) 

ions increased with the increase of biosorbent concentration (Figure 5a). This can be explained by the 

increase in surface area of the biosorbent when increasing its amount, which in turn increases the 

binding sites. For Cr(III) and Pb(II), the sorbed metal ion (mmol) per unit weight of biosorbent 

significantly decreased by increasing the biosorbent concentration (Figure 5b). This can be explained 

due to the fact that at high biosorbent concentration, the available metal ions in the aqueous solution 

are insufficient to cover all the biosorbent sites due to the corroborated high affinity of these two 

metals (as can be seen from results collected in Figures 1 and 4). Furthermore, the metal uptakes 



Water 2020, 12, 1263 9 of 17 

 

(mmol/g) for Cu(II) and Cd(II) are basically stable with the increase of biosorbent concentration; this 

means the biosorption quantity of Cu(II) and Cd(II) increases through increasing the biosorbent 

concentration. Thus, functional groups induced on the biosorbent hair surface have stronger affinity 

for Cr(III) and Pb(II) than for Cu(II) and Cd(II). 

 

 

Figure 5. Effect of the biosorbent concentration on the percentage of biosorption (a) and on the 

amount of sorbed metal ion per unit weight of biosorbent (b) of the treated human hair for Cr(III), 

Cu(II), Cd(II), and Pb(II) in the multiple-metal system. The initial metal ions concentration was 0.18 

mmol/L, the contact time was 24 h, and the pH of the 10 mL initial aqueous solution was 4.0. 

3.5. Effect of Contact Time 

Contact time with aqueous contaminated samples is an important parameter for successful 

usage of biosorbents in practice. Multiple- and single-metal aqueous systems (at pH = 4) of Cr(III), 

Cu(II), Cd(II), and Pb(II) were placed in contact with treated human hair (0.1 g) for periods of 5, 10, 

20, 30, and 45 min, and 1, 2, 3, 4, 6, 12, 24, 48, and 72 h. Results plotted in Figure 6 show the 

biosorption capacity of treated human hair for removing Cr(III), Cu(II), Cd(II), and Pb(II) ions. Three 

steps can be differentiated during biosorption: the initial step with fast metal biosorption, the second 

step with gradual biosorption, and the third step, which can be related to the equilibrium uptake. 
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The first step can be related to the diffusion of metal species from the solution to the external surface 

of the hair, which occurred instantaneously. The second step corresponds to a gradual biosorption 

uptake of heavy metal ions until reaching an equilibrium (the third stage). For each metal ion, the 

biosorption efficacy is higher for the single-metal system than for the multiple-metal system. Among 

these, the percentage of biosorption for Cd(II) is outstanding, with an increase from 29% to 86%. 

Furthermore, the single-metal system reached the biosorption equilibrium more rapidly than the 

multiple-metal system (around only 30 min in the former case), which is attributed to the effect of 

the competition between the heavy metal ions. Therefore, the selectivity order is Cr(III) > Pb(II) > 

Cu(II) > Cd(II), which corresponds to biosorption efficacy in the single-metal system of 98%, 96%, 

95%, and 86%, respectively. 

 

 

Figure 6. Percentage of biosorption of the treated human hair for Cr(III), Cu(II), Cd(II), and Pb(II) at 

different contact times. (a) Multiple-metal system, and (b) single-metal system. The initial metal ion 

concentration was 0.18mmol/L, the pH was 4.0, and the sorbent concentration was 10 g/L. 

3.6. Kinetic Studies 

Kinetic models have been used to model experimental data in order to investigate the 

mechanism of biosorption. Furthermore, it is important to determine the potential rate controlling 
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steps, such as mass transport, chemical reaction, and intraparticle diffusion processes, in such 

systems. Many attempts have been made to formulate a general expression describing the kinetics of 

liquid–solid phase sorption systems [28]. In the present case, the kinetic models applied to the 

treated human hair as a biosorbent of heavy metals in solution were the pseudo-first order equation 

[29], the pseudo-second order equation, and the Weber–Morris intraparticle diffusion model. These 

are given by Equations (5)–(7), respectively: 

t
k

qqq ete
303.2

log)(log 1−=−  (5) 

eet q

t

qkq

t
+=

2

2

1
 (6) 

dt ktkq += 21
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where, qe and qt are the amount of biosorbed metal ions per unit of mass biosorbent (in mmol/g) at 

the equilibrium and at time t (min), respectively; k1 (in min−1) is the rate constant of the pseudo-first 

order equation; k2 (in g/(mmol·min)) is the rate constant of the pseudo-second order equation; k3 is 

the intraparticle diffusion rate constant (in mmol/(g·min1/2)); and kd is the intercept that relates to the 

thickness of the boundary layer. 

Experimental data were fitted to pseudo-first and pseudo-second order kinetic models and the 

rate corresponding constants (k), correlation coefficients (R2), and qe were estimated (values shown in 

Table 1). It is noteworthy that the pseudo-first order equation does not fit well for the whole range of 

time, which is generally applicable only over the initial time of the sorption processes, i.e., 30 and 60 

min for the multiple- and single- metal biosorption systems, respectively [30]. Moreover, for the four 

metal ions in single and multiple systems, the calculated qe did not match well with experimental 

data, which suggests the insufficiency of the pseudo-first order model to fit the experimental data. 

The pseudo-second order model is more likely to predict kinetic behavior for the whole range 

of time studied, which indicates that chemical sorption is the rate-controlling step [31]. Correlation 

coefficients were always greater than 0.999, and the values of the predicted equilibrium biosorption 

capacities showed a good correlation with the experimental qe values for all four metal ions in both 

systems. This shows that the biosorption process perfectly complies with the pseudo-second order 

model. In other words, the chemical sorption due to the formation of chemical bonds between the 

metal and sorbent in a monolayer onto the surface is the rate-controlling step [32]. The equilibrium 

biosorption capacities for Cr(III), Cu(II), Cd(II), and Pb(II) were 0.0166, 0.0174, 0.0165, and 0.0174 

mmol/g, respectively, in the single-metal system, and 0.0155, 0.00945, 0.00429, and 0.0133 mmol/g, 

respectively, in the multiple-metal system. 

Table 1. Sorption kinetic constants in the multiple- and single-metal systems for Cr(III), Cu(II), 

Cd(II), and Pb(II) for both pseudo-first and pseudo-second order models. 

Metal Cr Cu Cd Pb 

System Single Multiple Single Multiple Single Multiple Single Multiple 

Pseudo 

first 

order 

k1 × 103 

(min−1) 
9.21 a 4.19 b 6.91 a 15.0 b 26.3 a 12.9 b 26.8 a 27.3 b 

qe (mmol/g) 0.00132 0.00655 0.00263 0.00346 0.00151 0.00190 0.00173 0.00233 

R2 0.9327 0.7343 0.9905 0.8794 0.9136 0.8592 0.8381 0.9030 

Pseudo 

second 

order 

k2(g/mmol 

min) 
15.4 1.51 3.83 6.75 38.2 16.2 17.8 16.6 

qe (mmol/g) 0.0166 0.0155 0.0174 0.00945 0.0165 0.00429 0.0174 0.0133 

R2 1.000 0.9993 0.9999 0.9999 1.000 0.9997 1.000 1.000 

kd 

(mmol/g) 
0.0151 0.00831 0.0145 0.00517 0.0148 0.00223 0.0157 0.0103 

a: 30 min, b: 1 h. 

For the single-metal system, the kinetic constant values found for the pseudo-second order 

model (k2) decreased in the following order: Cd (II) > Pb(II) > Cr(III) > Cu(III). This indicates that Cd 
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(II) was more easily and rapidly adsorbed by treated human hair than Pb(II), Cr (III), and Cu (II). In 

this case, the sorption rate was lower for the heavy metal with the smallest ionic radius since Cu(II) 

has an ionic radius of 0.069 nm compared to 0.097 nm for Cd(II), 0.119 nm for Pb(II), and 0.070 nm 

for Cr(III). 

The pseudo-first and pseudo-second order models cannot provide information about the 

diffusion mechanism controlling biosorption. Thus, the Weber–Morris intraparticle diffusion model 

was adjusted [33]. The plots of qt versus t1/2 are shown in the Figure 7. Unlike some simple cases, 

mathematical formulations representing the diffusion and biosorption are generally solvable 

analytically. In this case, these plots can be divided into multi-linear correlations, which indicates 

that the biosorption process take place in three steps and is not controlled solely by the intraparticle 

diffusion mechanism. The first stage corresponds to the sharper stage, where the metal ions move 

from the solution to the external surface of the biosorbent, through film diffusion, or the boundary 

layer diffusion of the metal species [34]. The second step describes the gradual biosorption onto the 

surface of the treated hair, where the intraparticle diffusion is the rate-limiting [35]. The third stage 

corresponds to the final biosorption equilibrium where the intraparticle diffusion starts to slow 

down due to extremely low metal ion concentration left in the solution. The presence of these three 

stages in the plots (Figure 7) suggests that the film diffusion and intraparticle diffusion were 

simultaneously controlling the biosorption process and both are enhanced with the increase of the 

initial metal concentration. 

 

 

Figure 7. Weber–Morris intraparticle diffusion kinetic model applied for the metal ion biosorption 

onto the treated human hair, with time: (a) in the multiple-metal system, and (b) in the single-metal 

system. 
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3.7. Thermodynamic Isotherm Characterization 

Sorption isotherms at equilibrium are very important data to understand the mechanism of 

each sorption system from a physicochemical perspective. The sorption capacity of a sorbent can be 

also described by the equilibrium sorption isotherm, which is characterized by some specific 

constants whose values provide information about the affinity between the liquid–solid sorption 

systems. 

In the present study, two isotherm models were selected to fit the experimental data, namely, 

the Freundlich and Langmuir isotherm models [36]. The linear forms of the Freundlich and 

Langmuir isotherms are presented by Equations (8) and (9), respectively: 

eFe C
n

kq log
1

log log +=  (8) 

L

e

Le

e

K
C

K

b

q

C 1
+=  (9) 

where Ce is the equilibrium concentration of the metal ion in the residual solution (in mol/L); qe is the 

amount of the sorbed metal at the equilibrium per unit of mass of sorbent (in mol/g); kF and n are 

Freundlich constants; and KL = Q0b, where Q0 and b are the Langmuir constants, corresponding to the 

saturation concentration of the sorbed metal ion per unit of mass of sorbent (in mol/g) and the ratio 

of sorption/desorption rates (in L/mol), respectively. 

For both models and following Equations (8) and (9), log qe versus log Ce and Ce/qe versus Ce are 

calculated and compared with the experimental data, respectively. In addition, all the constants and 

correlation coefficients obtained for each model are summarized in Table 2. 

Table 2. Freundlich and Langmuir isotherm constants for the biosorption of Cr(III), Cu(II), Cd(II), 

and Pb(II) by the treated human hair. 

 Constant Cr Cu Cd Pb 

Freundlich 

KF × 103 1.56 2.87 0.546 0.247 

n 2.30 1.90 2.86 3.63 

R2 0.8646 0.8402 0.9291 0.8607 

Langmuir 

Q0 × 105 (mol/g) 9.47 5.57 3.77 3.61 

B × 10−4 (L/mol) 1.07 2.06 8.64 8.04 

KL (L/g) 1.01 1.15 3.26 2.90 

R2 0.9912 0.9905 0.9952 1.000 

−ΔG0 (kJ/mol) 22.8 24.4 27.9 27.7 

From the correlation coefficient values of both isotherm equations, it was observed that the 

Langmuir isotherm fitted the data better than the Freundlich isotherm, showing that the biosorption 

process relies on a specific site’s sorption mechanism where adsorbate molecules occupy specific 

sites on the biosorbent. In Figure 8, experimental and calculated data for the Langmuir isotherm 

model are represented showing good correlation between the data. Taking on board the Langmuir 

equation, the saturated biosorption capacities of the treated human hair at 295 K for Cr(III), Cu(II), 

Cd(II), and Pb(II) were 9.47 × 10−5, 5.57 × 10−5, 3.77 × 10−5, and 3.61 × 10−5 mol/g, respectively. 
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Figure 8. Experimental (·) and calculated (-) values adjusting using the Langmuir isotherm model for 

the sorption of Cr(III), Cu(II), Cd(II), and Pb(II) using the treated human hair. 

It is worth noting that the theoretical maximum values of adsorption capacity given by the 

Langmuir equation (Qo) for the treated human hair were found to decrease in the order Cr (III)> 

Cu(II) > Cd(II) ~Pb(II). The metals with highest absorption capacities are those with lowest ionic 

radius, i.e., Cu(II) and Cr(III), while Pb(II), which has the largest ionic radius (0.119 nm), shows the 

smallest sorption capacity. This observed trend, based on the ionic radius, may be caused by the 

quick saturation of adsorption sites induced by the largest ions. This behavior is in agreement with 

that observed for the absorption of Pb(II), Cd (II), Ni(II), and Zn(II) using natural zeolite as a sorbent, 

where the adsorbed amount decreased as the ionic radius increased [37]. 

In addition, from the estimated Langmuir sorption/desorption constant, the standard Gibb’s 

free energy (ΔG0) of the biosorption process can be evaluated by using Equation (10): 

bRTG ln0 −=  (10) 

where b is the Langmuir equilibrium constant shown in Equation (8), R is the universal gas constant 

(8.314 J/mol K), and T is the absolute temperature (K). The standard Gibb’s free energy (ΔG0) values 

are shown in Table 2. The negative ΔG0 values indicate that the biosorption of metals into human 

hair is thermodynamically feasible and of spontaneous nature. 

3.8. Desorption, Regeneration, and Reuse Studies 

Recovery of the adsorbed heavy metals and reuse of the biosorbent are of significance from the 

viewpoint of practical application. As indicated previously, two eluent solutions, EDTA and HNO3, 

were screened for their potential to desorb Pb(II) ions from metal-adsorbed treated human hair (98% 

of biosorption). Both eluents can effectively desorb the heavy metal ions from the metal 

loaded-treated human hair, with the elution efficiency of EDTA solution being slightly better than 

that of the HNO3 solution, 89% ± 1% and 85% ± 1%, respectively. EDTA may combine both acidic 

and complexing effects, while nitric acid only has the acidic effect to liberate the adsorbed metals, 

which explains the higher ability of EDTA for removing the metal. In addition, the ability of EDTA 

to complex heavy metals, such as lead, due to the high complex constant, is well known.  

The reuse of regenerated human hair for the possible continuous removal of heavy metals was 

investigated. After the desorption process, the hair samples were washed several times (following 

two different methods of cleaning), dried in an oven at 40 °C overnight, and their performance in a 

second biosorption step of fresh Pb(II) aqueous sample was then checked. The results show that the 

metal removal percentages (in the second biosorption step) of the regenerated hair samples are 
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dependent on the elution methods. When using EDTA as eluent and deionized water for rinsing the 

used biomaterials, the Pb(II) removal percentage was 87 ± 2 %, while for samples eluted with HNO3 

the metal removal was 38 ± 4 %. Consequently, although HNO3 is a very powerful metal eluent, it 

shows negative effects for the reuse of hair samples and results in a decrease of metal uptake 

capacity during the second application. This is probably because the acidic environment after the 

desorption step with nitric acid leads to the ionization state of functional groups on the biomaterial’s 

surface, thus becoming a competitive medium for the next metal biosorption step. To confirm this 

concept, another set of samples were first eluted using EDTA, then rinsed with HNO3 solution, and 

later washed with deionized water and dried. The biosorption capacities of the regenerated human 

hair samples by this method also decreased the second time (75 ± 1 %). It is clear that the desorption 

of metal adsorbed onto the biomaterials using HNO3 negatively affects their reuse. 

4. Conclusions 

Chemically treated human hair behaved better than untreated hair in the process of removing 

metals from aqueous effluent. In particular, treated human hair was demonstrated to be an effective 

biosorbent for the removal of Cr(III), Cu(II), Cd(II), and Pb(II), and showed less effectiveness for 

metals such as Ni(II), Co(II), Mn(II), and Zn(II). It was observed that the operating parameters 

controlling the biosorption process, such as the pH of the aqueous heavy metal solution, the 

biosorbent concentration, and the contact time, had a significant influence on the metal uptake. In 

addition, treated human hair showed higher biosorption capacity when metals were applied in the 

single-system compared with the multiple-system solution, due to the induced competition between 

metal ions for the biosorbent sites. In the single system, removal efficacy of the treated human hair 

was found to be 86% for Cd(II), 92% for Cu(II), 96% for Pb(II), and 98% for Cr(III) when working 

with 10 g/L of biosorbent concentration at pH = 4.0. 

According to the kinetic study, the biosorption of metal ions onto the treated human hair 

followed well the pseudo-second order kinetic model. Hence, physico-chemical interaction between 

induced functional groups (i.e., sulfonic acid groups as demonstrated by FTIR) in treated hair and 

metal ions is the fundamental mechanism controlling biosorption, with the film diffusion being the 

rate limiting step. Biosorption at equilibrium was better correlated with the Langmuir isotherm 

model compared to the Freundlich model, corroborating the finding that the mechanism of sorption 

is based on site-specific molecular sorption. The calculated standard Gibb’s free energy (ΔG0) 

indicated the thermodynamically feasible and spontaneous nature of the biosorption process. 

Preliminary desorption experiments proved that EDTA and HNO3 solutions were efficient 

eluents for the recovery of Pb(II) from the treated human hair. In particular, the treated human hair 

regenerated with EDTA showed the best biosorption efficiency when reused. 

Taking into consideration the present findings, it can be stated that treated human hair could 

potentially be used as an effective and low-cost biosorbent for the removal of heavy metal ions from 

aqueous solution. 
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